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Abstract—In this paper we present a foundational study on a
constrained method that defines learning problems with Neural
Networks in the context of the principle of least cognitive
action, which very much resembles the principle of least action
in mechanics. Starting from a general approach to enforce
constraints into the dynamical laws of learning, this work focuses
on an alternative way of defining Neural Networks, that is
different from the majority of existing approaches. In particular,
the structure of the neural architecture is defined by means
of a special class of constraints that are extended also to the
interaction with data, leading to “architectural” and “input-
related” constraints, respectively. The proposed theory is cast
into the time domain, in which data are presented to the network
in an ordered manner, that makes this study an important
step toward alternative ways of processing continuous streams
of data with Neural Networks. The connection with the classic
Backpropagation-based update rule of the weights of networks
is discussed, showing that there are conditions under which our
approach degenerates to Backpropagation. Moreover, the theory
is experimentally evaluated on a simple problem that allows us
to deeply study several aspects of the theory itself and to show
the soundness of the model.

Index Terms—Cognitive Action Laws, Constrained Neural
Networks, Learning Over Time

I. INTRODUCTION

When a large amount of supervised data is available, (Deep)
Neural Networks have shown to yield impressive results in
several real-world tasks [1]–[3]. The classic formulation of
supervised learning in Neural Networks consists in optimizing
the values of the weights attached to a pre-designed neural
architecture in order to fit the given training data under some
regularity conditions or, in any case, to control the learning
process to avoid overfitting and gain generalization skills [4].
Stochastic gradient descent [5] is commonly regarded as the
de facto schema for the optimization of the network weights.
According to this approach, at each time step only one sample
(or a mini-batch of samples) is considered, and the training
data are shuffled before the beginning of any training epoch,
completely ignoring any information eventually available in
the data ordering. Whenever the system is designed to learn
from data as soon as they become available over time, we
move a step toward a real online learning setting. Neural
Networks are also exploited in this setting, even if there
are several other challenging issues than are not present in
the static batch case [6], and stochastic gradient descent can

still be applied, updating the network weights after having
processed each newly received sample.

In this paper we follow the ideas behind the principle of
least cognitive action which very much resembles the principle
of least action in mechanics, and that was investigated in the
context of Neural Networks and Computer Vision in [7], devel-
oping the so-called Cognitive Action Laws of Learning. Such
learning framework naturally deals with learning problems in
which the time component plays a crucial role, so that it is
well-suited to approach in a principled way those cases in
which data become available over time, that is the setting of
this paper.

Starting from the seminal work of [8], optimization prob-
lems on the weights of Neural Networks can be equivalently
formulated by extending the space of the learnable parameters,
introducing a constrained optimization problem on the product
space of weights and other neuron-related variables, as also
investigated in more recent works [9]–[11]. This point of view
allows us to describe the structure of the architecture of the
network in terms of constraints involving such extended set
of learnable parameters. Moreover, a constraint-based descrip-
tion has implications in the way the network operations can
be parallelized and, potentially, in the way the structure of
the network is progressively developed, thus offering a very
generic perspective on which to build a foundational study.

In this paper we develop this idea by introducing the so-
called architectural constraints among neurons, and also input
constraints between each input neuron and the corresponding
feature of the considered input example, thus fully breaking
down the description of the network in terms of constraints.
We show how these constraints can be applied within the
context of the principle of least cognitive action to model
a temporal evolution of the variables of the network. This
approach allows us to formulate a learning problem that is
intrinsically linked, from the beginning, to the idea of dealing
with a temporal trajectory of the weights, as opposed to
the classical approaches where the definition of the learning
problem and the choice of the optimization algorithm consist
of two separate and conceptually orthogonal aspects.

Our foundational study is developed using the formalism of
calculus of variations with subsidiary conditions. We show
how it is possible to formulate the theory using Lagrange
multipliers and how those multipliers can be explicitly found
by solving a linear system in as many unknowns as the
number of neurons in the network. We also discuss how this
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theory, in a specific regime of the regularization parameters
and in certain conditions of dissipation, exactly reproduces the
Backpropagation rule for the computations of the gradients.

There are many reasons to pursue this dynamical approach
to learning [7], [12], especially in those learning problems
where the data comes as a (temporally) coherent signal.
Dynamical constraints, such as invariance under motion [12],
can be valuable in guiding the learning process, and the theory
presented in this paper is developed as a building block to
enable the implementation and the analysis of such temporal
constraints for deep architectures (for example, in order to
overcome the layer-wise training limitations of [12]).

This paper is organized as follows. Section II describes the
proposed theoretical study, that is experimentally assessed fo-
cusing on a simple and easy-to-understand problem in Section
III. Finally, Section IV concludes the paper with our ideas
about future work.

II. LEARNING FRAMEWORK

Our learning framework is rooted on the idea of describing a
Neural Network by means of constraints among neural units.
Before going into a formal definition and describing all the
details, we illustrate the basic idea using a running example.
Then, in Section II-A we will inject the network into the
time domain, while the connection with Backpropagation is
formalized in Section II-B.

The diagram on the right shows a feed-
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4
forward network with 2 input units (trian-
gles), 2 hidden and 1 output neurons (cir-
cles). The graph of the architecture makes
explicit the way in which the values associ-
ated with the input nodes (vertices 0 and 1)
are propagated up until the output of the network (vertex 4). In
particular, if we denote with xi the output of the i-th neuron
and with wij the weight associated with the arch j → i, then
the diagram in the figure implies x2 = σ(w20x

0 + w21x
1),

x3 = σ(w30x
0 + w31x

1) and x4 = σ(w42x
2 + w43x

3),
being σ the activation function. Therefore, in the (w, x) space
these compositional relations between the nodes variables xi,
i = 0, . . . , 4 can be regarded as architectural constraints,
namely G2 = G3 = G4 = 0, where:

G2 = x2−σ(w20x
0+w21x

1), G3 = x3−σ(w30x
0+w31x

1),

G4 = x4 − σ(w42x
2 + w43x

3).

Moreover the way in which input signals are provided to
the network can be regarded as additional constraints. Let us
suppose we want to compute the value of the network on
the input x0 = e0 and x1 = e1, where e0 and e1 are two
scalar values; this two assignments can be interpreted as two
additional input constraints G0 = G1 = 0 where

G0 = x0 − e0, G1 = x1 − e1.

We can now formally describe the models that we consider
in this paper, that in Section II-A will be used to formulate the
learning problem in the context of the time domain. Given a
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x1 = σ(w10E0)

(b)

Fig. 1. Visualization of the neural constraints for the neural network
0 1

(two neurons {0, 1}). Constraint G1(x,W ) = 0, restricted to the plane x0 =
E0, is shown in (a). In (b), such restriction is represented in the w10–x1 plane.

simple digraph D = (N,A) of order ν, where N is the set of
vertices, while A is the set of edges. Without loss of generality,
we can assume N = {0, 1, . . . , ν − 1} and A ⊆ N × N . A
neural network associated with D consists of a set of maps
i ∈ N 7→ xi ∈ R and (i, j) ∈ A 7→ wij ∈ R together
with ν constraints Gj(x,W ) = 0, j = 0, 1, . . . ν − 1 where
W is the weight matrix (i.e., (W )ij = wij) and x the vector
of the outputs of the neurons. Let Mν(R) be the set of all
ν × ν real matrices and M↓ν(R) the set of all ν × ν strictly
lower triangular matrices over R. In the rest of the paper we
will always assume that W ∈M↓ν(R), i.e., a directed acyclic
graph. The relations Gj = 0 for j = 0, . . . , ν − 1 specify
the computational scheme with which the information diffuses
through the network.

In a typical network with ω inputs, the structure of these
constraints are defined as follows (see also Fig. 1). For any
vector ξ ∈ Rν , for any matrix M ∈Mν(R) with entries mij

and for any given C1 map (i.e., a differentiable map whose
derivative is continuous) e : [0,+∞) → Rω we define the
constraint function on neuron j when the example e(τ) is
presented to the network as

Gj(τ, ξ,M) :=

{
ξj − ej(τ), if 0 ≤ j < ω;

ξj − σ(mjkξ
k) if ω ≤ j < ν,

(1)

where σ : R → R is of class C2(R) (i.e., it is differentiable
and its derivative is of class C1(R)), and we used the Einstein
notation (i.e., there is a sum on the index k), that we will
exploit throughout the whole paper to simplify the notation.1

With this choice it is clear that the set of all constraints
Gj(τ, x,W ) = 0, j = 0, . . . , ν − 1 is the usual computational
scheme of a feed-forward network with input e(τ) whenever
we choose W ∈ M↓ν(R). Throughout the paper we will
use the notation Gjτ , Gjξ, G

j
M for the partial derivatives

with respect to the first, second and third arguments of Gj ,
respectively. Notice that the dependence of the constraints on
τ reflects the fact that the computations of a neural network
should be based on external inputs.

A. Principle of Least Cognitive Action

Human cognitive processes do not emerge with a well-
defined distinction between training and test set. As time goes
by, humans react efficiently to new stimuli, which suggests us

1Summation is intended over all repeated indices of an expression.



to look for alternative foundations of learning by embedding
the agent into its own time-driven learning environment.

Following the ideas of [7], we establish a link with mechan-
ics by paralleling the weights W , along with the neuronal
outputs x, to the Lagrangian coordinates of a system of
particles. We define the temporal trajectories of the variables
of the learning problem by laws that come from stationarity
conditions of a functional, as it happens for canonical coordi-
nates in classical mechanics.

In particular, we indicate with t ∈ [0,+∞) the time variable
and we assume that the updates rules of the parameters are
obtained from the stationarity conditions of the functional

A (x,W ) :=

∫
1

2
(mx|ẋ(t)|2+mW |Ẇ (t)|2)$(t)dt+F (x,W ),

(2)
where mx and mW are positive scalars (also
referred to as masses, in analogy with physics),
$(t) is a time-dependent positive weighing term, and
F (x,W ) :=

∫
F (t, x, ẋ, ẍ,W, Ẇ , Ẅ ) dt (where F is related

to the potential energy of the system). Notice that the kinetic
energy, which appears in A (x,W ), is a sort of temporal
regularization term that, once minimized, leads to develop
weights that settle to constant values. The functional in
Eq. (2) is subject to the previously introduced constraints

Gj(t, x(t),W (t)) = 0, 0 ≤ j < ν, (3)

where the map Gj(·, ·, ·) is taken as in Eq. (1). Notice that, in
what follows, we will sometimes drop the dependency on the
variables to simplify the notation.

Let ( Gξ
GM

) be the (ν + ν2) × ν Jacobian matrix of the
constraints G with respect to its second and third argument,
respectively (ξ and M ):

(
Gξ
GM

)
ij

:=

G
j
ξi for 0 ≤ i < ν,

Gjvec(M)i−ν
for ν ≤ i < ν + ν2,

where, for any matrix M , vec(M) is a vectorization of
M . Variational problems with subsidiary conditions can be
tackled using the method of Lagrange multipliers to convert
the constrained problem into an unconstrained one (see [13]).
In order to use this method, it is necessary to verify the
independence hypothesis between the constraints; in this case
we should check that the matrix ( Gξ

GM
) is full rank. Indeed the

following proposition holds true:

Proposition 1. The matrix ( Gξ
GM

) ∈ M(ν2+ν)×ν(R) is full
rank.

Proof. First of all notice that if (Gξ)ij = Gjξi is full rank also
( Gξ
GM

) has this property. Then, since

Gjξi(τ, ξ,M) =

{
δij , if 0 ≤ j < ω;

δij − σ′(mjkξ
k)mji if ω ≤ j < ν,

we immediately notice that Giξi = 1 and that for all i > j we
have Giξi = 0. This means that

(Gjξi(τ, ξ,M)) =


1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1

 ,

which is clearly full rank.

This result is sufficient for the existence of Lagrange mul-
tipliers λj(t) such that the (weak) extremals of (2) subject to
constraints (3) are extremals of the following functional:

A ∗(x,W ) =

∫
1

2
(mx|ẋ(t)|2 +mW |Ẇ (t)|2)$(t) dt

−
∫
λj(t)G

j(t, x(t),W (t)) dt+ F (x,W ).

(4)

The equations ruling the update of model parameters (x,W )
come from the Euler-Lagrange equations for this variational
problem:

−mx$(t)ẍ(t)−mx$̇(t)ẋ(t)− λj(t)Gjξ(x(t),W (t))

+ LxF (x(t),W (t)) = 0;
(5)

−mW$(t)Ẅ (t)−mW $̇(t)Ẇ (t)− λj(t)GjM (x(t),W (t))

+ LWF (x(t),W (t)) = 0,
(6)

where LxF = Fx − d(Fẋ)/dt+ d2(Fẍ)/dt2 and
LWF = FW − d(FẆ )/dt+ d2(FẄ )/dt2 are the functional
derivatives of F with respect to x and W respectively (see
[13], [14]).

An expression to compute the Lagrange multipliers is de-
rived by differentiating two times the constraints with respect
to time and using the obtained quantities to substitute the
second-order terms in the Euler-Lagrange equations:(GiξaGjξa

mx
+
GimabG

j
mab

mW

)
λj =$

(
Giττ + 2(Giτξa ẋ

a

+Giτmabẇab +Giξambc ẋ
aẇbc)

+Giξaξb ẋ
aẋb +Gimabmcdẇabẇcd

)
− $̇(ẋaGiξa + ẇabG

i
mab

)

+
Lx

a

F G
i
ξa

mx
+
LwabF Gimab
mW

,

(7)
where Giτ , Giττ , Giξa , Giξaξb , G

i
mab

and Gimabmcd are the gra-
dients and the Hessians of constraint (3). In order to compute
the multipliers λj , Eq. (7) must be solved. We conjecture that
an approximate solution scheme can be implemented, by using
an iterative procedure seeded with the multipliers computed at
the previous time instant. However, in this paper we focus on
the exact solution of Eq. (7).

Initial conditions. Now let us suppose that we want to
design an iterative update algorithm for x and W over time,



starting from an arbitrary initial point and going on according
to the learning theory so far stated. In this framework, the
update algorithm comes straight from the numerical solution
of the differential Eqs. (5)–(6) with Cauchy initial condi-
tions. Clearly, we have to choose W (0) and x(0) such that
gi(0) ≡ 0, where we define gi(t) := Gi(t, x(t),W (t)), for
i = 0, . . . , ν − 1. However, since the constraints must hold
also for all t ≥ 0, we also need g′i(0) = 0. These conditions,
written explicitly, mean:

Giτ (0, x(0),W (0)) +Giξa(0, x(0),W (0))ẋa(0)

+Gimab(0, x(0),W (0))ẇab(0) = 0.

If the constraints do not depend explicitly on time, it is
sufficient to choose ẋ(0) = 0 and Ẇ (0) = 0, while for time
dependent constraints this condition leaves:

Giτ (0, x(0),W (0)) = 0,

which is an additional constraint on the initial conditions x(0)
and W (0) to be satisfied. Therefore, one possible consistent
way to impose Cauchy conditions is

Gi(0, x(0),W (0)) = 0, i = 0, . . . , ν − 1;

Giτ (0, x(0),W (0)) = 0, i = 0, . . . , ν − 1;

ẋ(0) = 0;

Ẇ (0) = 0.

(8)

Once we fix x(0), W (0), ẋ(0) and Ẇ (0) as above, higher
derivatives of the variables x and W are determined by the
differential equations (5)–(6).

B. Reduction to Backpropagation

Let us consider a supervised problem described by the
potential (a loss function) V (t, x(t)), which measures the error
on the example presented at time t when the outputs of the
neurons are x(t); in particular choose

F (t, x(t), ẋ(t), ẍ(t),W (t), Ẇ (t), Ẅ (t)) = −eϑtV (t, x(t)) .
(9)

where ϑ is a damping factor. We will now show that Eqs. (5)–
(7) in the limit mx → 0, mW → 0, mx/mW → 0
reproduce first-order dynamics, where the updates of W are
performed as prescribed by Backpropagation. In order to see
this, choose γ = mWϑ and multiply both sides of Eqs. (5)–
(7) by exp(−ϑt), then take the limit mx → 0, mW → 0,
mx/mW → 0. In this limit, Eq. (6) and Eq. (7) become,
respectively:

Ẇij = − 1

γ
σ′(wikx

k)δix
j ; (10)

GiξaG
j
ξaδj = −VxaGiξa , (11)

where δj is the limit of exp(−ϑt)λj and Vx is the partial
derivative of V with respect to its second variable (x). Because
the matrix Giξa is invertible Eq. (11) actually becomes

Tδ = −Vx, (12)

where Tij := Gjξi . This matrix is upper triangular, thus ex-
plicitly showing the backward structure of the propagation of
the delta error of the Backpropagation algorithm. In supervised
problems, V depends only on the output value of the network.
Hence, whenever i is not an output neuron, computing δi by
solving Eq. (12) corresponds to:

δi = σ′(wjkx
k)wjiδj .

On the other hand, regarding the output units, Eq. (12)
enforces the initialization of the δs based on the value of the
supervision:

δi = −Vxi .

It is clear from these remarks that in Eq. (10) the Lagrange
multiplier-related term δ plays the role of the delta error of
Backpropagation.

III. EXPERIMENTAL ANALYSIS

We investigated an easy-to-understand task in order to pro-
vide an experimental assessment of the proposed theory. The
task consists in classifying 2-dimensional data according to
the well-known non-linearly separable XOR Boolean function.
However, this task is defined in the time domain, so that data
is provided to the system in an online fashion, according to a
function that basically models a trajectory in the input space,
passing through the vertices of the Boolean hypercube. In
particular, samples are collected along a circular trajectory, as
shown in Fig. 2. At each time instant, a sample is provided to
the system. Differently, supervision is provided to the system
only when the coordinates (e0, e1) of the input sample belong
to small circular regions (R = 0.2) centered around the
vertices of the hypercube; in this case, the target of the nearest
vertex is considered. In detail, the equations of the trajectory
are

e0(t) = φ(t)(u0 +R cos(Ωt))

e1(t) = φ(t)(v0 +R sin(Ωt))

φ(t) =
1

2

(
1 + tanh

( t− a
b

))
where u0 = 0.5, v0 = 0.5, a = 6, b = 0.9, Ω = 0.25. The
smoothing function φ is used to get a null derivative of the
signals at t = 0.

We used a model similar to the one that we introduced as
running example in Section II, i.e. a one-hidden-layer feed-
forward neural network with hyperbolic tangent as activation
function σ and biases, as shown in Fig. 3. We used a potential
(loss) term that is structured as Eq. (9) and the loss function V
is the classic Mean Squared Error (MSE). Model accuracy and
the loss value are computed either on the Boolean hypercube
corners or on a set of points sampled from uniform distribu-
tions over the supervision regions. In particular, we used the
notation Acc, Loss to indicate the former case, while Acc2,
Loss2 are about the latter. Each experiment consists of 10 runs
with different random initializations of W ∼ U(−

√
2,
√

2 ),
being U the uniform distribution. Results are averaged over
the runs (± standard deviation).



Fig. 2. Trajectory along which samples are fed to the system. When we
sample from within the red/green regions, a supervision is also provided. The
blue diamonds are the vertices of the Boolean hypercube.
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Fig. 3. Neural architecture: e0(t) and e1(t) are the input signals, while y(t)
is the supervision signal.

We compare the proposed approach with a baseline system
that exploits stochastic gradient descent to optimize the loss
function V only, operating in the same online learning setting
described above. The considered task generates samples that
have a very high temporal correlation, making the task not
trivial. Table I reports the results of the baseline model, as a
function of the choice of the learning rate η. It is interesting
to notice that such model fails to correctly classify the data in
most of the cases, being it extremely sensitive to the choice
of η, as expected.

The proposed learning approach involves solving differ-
ential equations of a second-order model (see Section II-A,

Eq. 5, Eq. 6). We used the LSODA solver, available in the
ODEPACK Fortran library. The algorithm, originally proposed
in [15], implements Adams and BDF methods with auto-
matic stiffness detection and switching. We set ∆t = 0.1
and error control performed by the solver is determined by
rtol = atol = 1.49·10−8. We also consider a first-order model
that is implemented by assuming to have reached the limit
conditions of (Section II-B). On the other hand, for 1st-order
equations (Section II-B) we used the Euler method, in order to
reproduce the small weight updates typical of gradient descent
methods. In all the following experiments, we ensured that the
learning rate of the baseline model, η, is chosen coherently
with the scaling factors of Eq. 10 and the step-size ∆t. In
particular, we set η = ∆t/γ = ∆t/(mWϑ).

TABLE I
PERFORMANCE OF THE BASELINE MODEL AS A FUNCTION OF THE

LEARNING RATE η.

η Acc Loss Acc2 Loss2
0.001 0.650 ± 0.122 0.906 ± 0.133 0.651 ± 0.117 0.911 ± 0.132

0.0025 0.700 ± 0.150 0.759 ± 0.209 0.697 ± 0.147 0.767 ± 0.205

0.01 0.825 ± 0.115 0.475 ± 0.283 0.823 ± 0.116 0.491 ± 0.278

0.03 0.875 ± 0.125 0.398 ± 0.388 0.873 ± 0.128 0.410 ± 0.392

0.1 0.900 ± 0.166 0.305 ± 0.472 0.902 ± 0.161 0.313 ± 0.476

0.125 0.900 ± 0.166 0.315 ± 0.492 0.901 ± 0.163 0.321 ± 0.496

0.3 0.900 ± 0.166 0.349 ± 0.560 0.900 ± 0.166 0.353 ± 0.562

0.5 0.900 ± 0.166 0.369 ± 0.601 0.900 ± 0.166 0.371 ± 0.602

0.8 0.950 ± 0.100 0.197 ± 0.393 0.950 ± 0.101 0.199 ± 0.397

1 0.975 ± 0.075 0.096 ± 0.288 0.974 ± 0.076 0.102 ± 0.293

2 0.550 ± 0.100 1.800 ± 0.400 0.550 ± 0.099 1.802 ± 0.395

3 0.525 ± 0.075 1.900 ± 0.300 0.524 ± 0.071 1.904 ± 0.287

A. Comparison between First-Order Model and Baseline

In Section II-B we discussed the relationships between a
special instance of our model, that is the first-order case, and
Backpropagation.

We compared the trajectories of the weights and bi-
ases comparing such model with the baseline case, setting
η = ∆t/γ = 0.3 using the previously described criterion, and
reporting them in Fig. 4. For each parameter (i.e., weights
and biases) we have two trajectories (same color, different
style), one from our model, one from the baseline system. It
is interesting to see that the two dynamics converge to almost
identical values (differences are due to round-off errors),
confirming the correctness of the results of Section II-B.

B. Comparison between Second and First-Order Model

Section II-B suggests that the second-order model can be
moved very close to a first-order model when using small
masses and strong damping. We compared the weights (and
biases) dynamics of the second-order model, under the afore-
mentioned conditions, with the first-order model. In particu-
lar, we set ϑ = 333.3,mx = 1.0 · 10−5,mW = 1.0 · 10−3 and
γ = ϑ · mW . Fig. 5 (that follows the same organization of
Fig. 4) shows that the two algorithms exhibit almost identical
behaviour.



Fig. 4. Comparison between the dynamics of the weights and biases of the
first-order model (lines) and the baseline system (dotted lines with markers).
The value of the weights (or biases) is plotted against time. Trajectories with
the same colors are about the same parameter. The two dynamics converge to
almost identical values, indistinguishable in the first time instants (differences
for larger t are due to numerical errors).
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Fig. 5. Comparison between the dynamics of the weights and biases of the
second-order model (lines) and the first-order one (dotted lines with markers).
The value of the weights (or biases) is plotted against time. Trajectories with
the same colors are about the same parameter (refer to legend of Fig. 4). The
two algorithms exhibit almost identical behavior.

Notice that to obtain equivalent differential problem formu-
lations it is required to have coherent initial conditions. In the
case of the second-order model, the initial value of derivatives
of variables is arbitrary, while in the first-order model it is
given by the differential equation itself. An easy way to ensure
consistency between the formulations is to multiply, in both
the models, the potential term V , with a weighing function
(1 − eϑt) that, under the assumption of strong damping,
gets to 1 very quickly. Moreover, with this choice we obtain
Ẇ (0) = 0, which implies coherence of initial conditions of
the two problems and easier convergence of the solution of

the second-order problem to the first-order one. The latter is
essentially a continuous-time online learning gradient descent
algorithm (as the baseline system), with the only difference
being the time-dependent factor (1− eϑt). When altering the
potential term as suggested, we get a stronger convergence of
the derivatives at the left boundary. On the other hand, the
overall slight difference between the weights trajectories is
motivated by the non-zero inertial properties of the second-
order formulation.

(a) w/o (1− e−ϑt) (b) with (1− e−ϑt)

Fig. 6. Comparison between the dynamics of the weights and biases of the
second-order model (lines) and the first-order one (dotted lines with markers).
The value of the weights (or biases) is plotted against time. Trajectories with
the same colors are about the same parameter (refer to legend of Fig. 4). (a)
Without altering the potential term with the weighing function (1−e−ϑt), (b)
using the altered potential term. Notice that (b) shows a stronger coherence
close to the boundary t = 0.

C. Comparison between Second-Order Model and Baseline

We performed an extended comparison between the pro-
posed second-order model and the baseline system. We con-
sidered different sets of values for the key parameters of our
theory, that are the masses mx, mW and the damping term ϑ.
The learning rate η of the baseline model is computed as a
function of such parameters: η = ∆t/γ = ∆t/(mWϑ) (further
details in the introduction of Section III).

Results are reported in Tab. II. When small masses and
large damping coefficients are used, the compared systems
perform in a very similar way (rows 1, 2, 4). Otherwise, the
behaviours depart one from each other, since the dynamics
of the second-order model are clearly more structured that
in the vanilla baseline. We also measured the norms of the
constraining functions involving the neural units at the last
time instant T

|g(T )| =
(ν−1∑
j=0

(
Gj(T, x(T ),W (T ))

)2)1/2

,

and we report them in the fifth column of Tab. II. Overall,
constraints are fulfilled in all the evaluated settings, confirming
the soundness of the proposed update scheme for the Lagrange
multipliers of Eq. (7). Interestingly, the differences between
Acc and Acc2 (and also Loss and Loss2) are minimal,
suggesting that the classifier is keeping some margin among
the vertices of the Boolean hypercube. We further investigated



TABLE II
COMPARISON OF THE SECOND-ORDER MODEL WITH THE BASELINE SYSTEM, WITH DIFFERENT CONFIGURATIONS OF THE MODEL PARAMETERS. ROWS

1,2,4 ARE ASSOCIATED WITH SMALL MASSES AND STRONG DAMPING. BASELINE RESULTS ARE TAKEN FORM TAB. I.

SECOND-ORDER MODEL BASELINE
η mx mW ϑ |g(T )| Acc Loss Acc2 Loss2 Acc Loss

0.3 1.0 · 10−4 1.0 · 10−2 33.3 0.030 ± 0.007 0.900 ± 0.166 0.348 ± 0.557 0.899 ± 0.167 0.354 ± 0.557 0.900 ± 0.166 0.349 ± 0.560

0.03 1.0 · 10−4 1.0 · 10−2 333 0.034 ± 0.003 0.850 ± 0.166 0.436 ± 0.436 0.848 ± 0.167 0.450 ± 0.436 0.875 ± 0.125 0.398 ± 0.388

0.3 1.0 · 10−4 5.0 · 10−1 0.667 0.030 ± 0.007 0.625 ± 0.125 1.499 ± 0.499 0.624 ± 0.124 1.504 ± 0.494 0.900 ± 0.166 0.349 ± 0.560

0.125 1.0 · 10−4 1.0 · 10−2 80.0 0.031 ± 0.002 0.850 ± 0.200 0.466 ± 0.591 0.851 ± 0.199 0.475 ± 0.590 0.900 ± 0.166 0.315 ± 0.492

0.8 1.0 · 10−4 1.0 · 10−2 12.5 0.031 ± 0.004 0.950 ± 0.100 0.197 ± 0.393 0.950 ± 0.100 0.200 ± 0.394 0.950 ± 0.100 0.197 ± 0.393

0.0025 1.0 5.0 8.0 0.030 ± 0.001 0.450 ± 0.187 1.156 ± 0.231 0.467 ± 0.179 1.150 ± 0.227 0.700 ± 0.150 0.759 ± 0.209

this aspect by visualizing the decision boundaries developed
by the model, reported in Fig. 7 (related to the setting of row
5 in Tab. II), which confirms the previous considerations. The
whole supervision-related areas are correctly classified, even
if the sampling trajectory only intercepts a small portion of
such areas, i.e. the arcs of circumference contained within the
supervision regions. For completeness, we also report the same
picture in the case of the baseline model, Fig. 8, that leads to
a similar result in terms of margin (we randomly selected one
of the 10 runs).

Fig. 7. Second-order model. Decision regions of the network resulting from
one of the runs using parameters in row 5 of Tab. II (random initialization).

We analyzed the weight dynamics in three configurations
that we selected in order to move from (a) a uniformly weighed
case (mx = mW = ϑ = 1), (b) an intermediate setting
(mx = 0.001, mW = 0.1, ϑ = 5) and (c) the already
mentioned small-masses-large-damping case (mx = 0.0001,
mW = 0.001, ϑ = 33). Fig. 9, top-row, show the dynamics of
the second-order model, while Fig. 9, bottom-row, is about the
baseline model (having only parameter η, chosen as previously
mentioned in order to produce comparable behavior). Oscilla-
tions are significant (case (a)), unless damping is remarkably
high (case (c)). As expected, when inertial properties of the
variables are not negligible, the dynamics are smoother and
less peaky with respect to signal variations (slower behavior).

Fig. 8. Baseline model. Decision regions of the network resulting from one
of the runs using parameters in row 5 of Tab. II (random initialization).

IV. CONCLUSIONS AND FUTURE WORK

We presented a theoretical study of a generic framework
that describes the structure of a Neural Network by using
constraints among the neural units, and that we injected into
the time domain. When data are gradually presented to the
system in an online fashion, the proposed framework allowed
us to devise the trajectory of the values of the weights
that is optimal with respect to the Least Action Principle.
We described the connection of the ideas of this paper and
Backpropagation, showing that the latter can be obtained by
some choices on the parameters of our model, as confirmed
by an experimental analysis in which different aspects of the
theory were evaluated. We plan to exploit the outcome of this
work in order to handle those dynamic constraints that enforce
coherence over time, such as motion coherence [12], coherence
on predictions over groups data points [16] or on space regions
[17], [18].
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