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Abstract—This work focuses on classification over time series
data. When a time series is generated by non-stationary phe-
nomena, the pattern relating the series with the class to be
predicted may evolve over time (concept drift). Consequently,
predictive models aimed to learn this pattern may become
eventually obsolete, hence failing to sustain performance levels
of practical use. To overcome this model degradation, online
learning methods incrementally learn from new data samples
arriving over time, and accommodate eventual changes along the
data stream by implementing assorted concept drift strategies.
In this manuscript we elaborate on the suitability of online
learning methods to predict the road congestion level based on
traffic speed time series data. We draw interesting insights on
the performance degradation when the forecasting horizon is
increased. As opposed to what is done in most literature, we
provide evidence of the importance of assessing the distribution of
classes over time before designing and tuning the learning model.
This previous exercise may give a hint of the predictability of the
different congestion levels under target. Experimental results are
discussed over real traffic speed data captured by inductive loops
deployed over Seattle (USA). Several online learning methods
are analyzed, from traditional incremental learning algorithms to
more elaborated deep learning models. As shown by the reported
results, when increasing the prediction horizon, the performance
of all models degrade severely due to the distribution of classes
along time, which supports our claim about the importance of
analyzing this distribution prior to the design of the model.

Index Terms—Time series, online learning, deep learning,
concept drift, traffic forecasting, congestion prediction.

I. INTRODUCTION

Real-time machine learning (also known as stream learning
or stream data mining) has acquired special relevance with
the advent of the Big Data era [1], [2], becoming one of its
most widely acknowledged challenges. Due to the incoming
volume of data, their speed or the lack of computational
resources, stream learning algorithms have no access to all
historical stream data because the storage capacity needed for
this purpose becomes unaffordable. Indeed, data streams are
fast and large in size (potentially infinite), so information must
be extracted from them in real time. The usage of limited
resources (e.g. time and memory) often implies sacrificing
performance for efficiency of the learning technique in use.

Besides the inherent difficulty of learning from streaming
data incrementally, data streams are often produced by non-
stationary phenomena, which may imprint changes on the
incoming data distribution, ultimately leading to the so-called

concept drift [3]. Drifts imply that predictive models trained
over data become eventually obsolete, and do not adapt
suitably to new distributions. Therefore, they must adapt to
drifts as fast as possible to maintain good performance scores.
In this context, the community has devoted intense research
efforts towards the development of stream learning algorithms
capable of undertaking predictive tasks over data streams
under minimum time and memory requirements, and with
resiliency against drifts in the stream data distribution [4]–
[6]. The need for overcoming these drawbacks stems from
many real applications, such as manufacturing, environmental
sensing, telecommunications, social media, marketing, enter-
tainment, and smart grids, to mention a few [7].

Among such applications, one of the fields where stream
learning methods have been targeted most is traffic modeling
[8]. Indeed, endless vehicular data are produced nowadays,
coming from inductive loops hidden beneath ground soil,
traffic cameras or infrared sensors. Due to its direct application
in the context of traffic management, traffic forecasting by
using diverse machine learning flavors conforms a very active
investigation field, with a wide research community, and
dozens of scientific publications every year [9], [10]. These
comprehensive surveys show that, although traffic flow soars
as the main traffic variable to be predicted, variables such as
speed, travel time or occupation are also gaining momentum
in recent years as a consequence of their actionability as
road service level estimators. The essential purpose of traffic
management systems, for which the level of service is inferred
from e.g. congestion levels, is to take active measures and
provide information to road users [11]. Thus, while traffic flow
forecasts need to be interpreted alongside other inputs, such
as the road capacity or the typical flow profiles at different
locations of the road network, variables like speed or travel
time are more straightforward to be used, as it is easier for
a practitioner to discriminate whether a certain speed implies
free-flow circulation or a bottleneck.

On the other hand, traffic flow time series present recog-
nisable daily patterns [12] over time. Such patterns ease the
formulation of short-term prediction schemes, whereas speed
time series show the effects described in the three-phase traffic
theory [13], staging longer periods without change, and being
changes particularly abrupt. Speed predictions are, hence,
more challenging to obtain than flow estimations, although
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they might render better performance metrics when the error
is averaged. All in all, defining congestion levels as an output
variable either before or after performing the prediction is a
step that helps not only with the actionability of data-informed
traffic management processes, but also with the assessment of
individual performance metrics for each traffic service level.

Unfortunately, to the best of the authors’ knowledge there is
no prior work around the feasibility of predicting service levels
from traffic data by resorting to online learning methods. In
traffic management it is often the case that the legacy traffic
management infrastructure does not meet the computational
requirements imposed by the fast arriving data flows recorded
by road sensors, nor do traditional models consider the possi-
bility that the captured road data evolve over time. This work
covers this research niche by focusing on the online estimation
of traffic congestion levels by using a wide spectrum of data
stream learning algorithms. Specifically, the contributions of
this work can be summarized as follows:
• We design a thorough model comparison study compris-

ing offline and online variants of well-established learning
algorithms, including traditional batch learning algorithms,
learning methods suited for evolving data streams, and
recurrent Deep Learning approaches.

• We assess the performance of the aforementioned online and
offline learning methods on a real speed dataset captured
over Seattle (USA), comprising a variety of values for the
forecasting horizon.

• We shed light on the specific nature of time series under-
neath this prediction problem, which unveil the reasons for
the noted high degradation of the models under considera-
tion when the horizon prediction is increased.
The rest of the manuscript is structured as follows: Section

II provides information about the data and learning methods
considered in the study. Next, Section III presents the design
of the experimental setup, whereas Section IV collects and
discusses the obtained results. Finally, Section V summarizes
the conclusions drawn from this work, and outlines future
research lines rooted on our findings.

II. MATERIALS AND METHODS

The data utilized for experimentation have been retrieved
from a public repository of vehicular traffic captured over the
road network of Seattle (USA), published in [14]. The dataset
provides speed measurements collected by 322 inductive loops
(also denoted as automatic traffic reader (ATR) in the special-
ized literature) deployed on four freeways in Seattle area: I-
5, I-405, I-90, and SR-520. Readings are provided in miles
per hour, every 5 minutes for the whole year 2015, and they
present no missing data, amounting to 105120 speed values
for each ATR. These retrieved data are used to train methods
able to predict congestion levels at different points of the road.
The comparison study of predictive methods described below
is tested on four locations in order to assess its performance
with different traffic profiles. Two ATRs in I-5 (153.48 and
176.01 mileposts), one in SR-520 (3.97 milepost) and last
one in I-405 (7.00 milepost) have been selected, establishing as

selecting principle that none of them or their surrounding ones
are located immediately before or after an intersection with
another freeway, which could distort relations among them.

It is intuitive to think that congestion events are propagated
downstream along the road. However, certain circumstances
of traffic may have an impact upstream [15]. Based on this
rationale, we propose the following scheme: for a certain speed
value of inductive loop A recorded at time step t, the predictive
features will be assumed to be speed values at time steps {t−
5, . . . , t − 1} recorded in the 4 next and four previous ATRs
located in the road surroundings of A, as well as the past
speed values {t−5, . . . , t−1} recorded in A itself. Thus, each
data instance fed to the predictive models consists of 45 speed
input values and one output target variable. For each group of
4+4+1 = 9 ATRs, the maximum distance between the center
and the furthest ATR never results to be greater than 6 miles.
This allows for the analysis of spatio-temporal relations among
the different ATR locations. In most recent literature, it is usual
to find that Deep Learning approaches for traffic modeling take
advantage of such spatio-temporal relationships [16], [17]. It
is our hypothesis that the impact of such relations is not that
straightforward. We will elaborate further on this statement
with the results of our study in hands (Section IV). For the
sake of space, we do not provide details for the selection of
the number of ATRs before and after the target one, which
was done based exclusively on their relative contribution to the
performance of the models (as per an ablation study performed
off-line).

Faced with the challenge of estimating congestion levels,
speed data must be labeled accordingly. Under this premise,
there are two possible approaches when facing a congestion
level estimation problem: i) to map the time series to con-
gestion labels under a certain criterion, yielding a discrete
annotation of samples that allow undertaking the classification
task directly; or ii) to formulate the estimation of the con-
gestion level as a regression problem, predict the continuous
value of the speed directly, and then apply the aforementioned
criterion to the predicted value to designate its congestion
label. In the first case, it is crucial to know the characteristics
that define each class, or to have the time series already
labeled by an external agent. Otherwise, it is only possible to
perform the second method, in which the predicted continuous
signal is delivered to the external agent, in order to apply
the classification a posteriori. Anyhow, there is a need to
transform the speed continuous series of values into a discrete
series of levels of congestion. To this end, three phases of
traffic (free-flow, congestion and bottleneck) are
established according to different thresholds of speed, follow-
ing the criterion described in [13]. We have not considered
any of these options better a priori, so that experiments later
discussed can shed light on which of them perform better.

A. Considered Learning Methods

Once datasets have been furnished, we design a performance
comparison study comprising a selection of learning methods
that are capable of operating in both online and offline (batch)



mode. The applicability of these methods depend on whether
the congestion level estimation strategy is approached as a
classification or regression task, whose convenience in terms
of performance will be analyzed with quantitative evidences
in Section IV. We now list the considered learning methods
without considering the annotation strategy, along with some
customized approaches designed ad-hoc for this study:

1) Naı̈ve Method (NM): The predicted value for the traffic
congestion level of NM equals that of the last example seen
by the model.

2) Shallow Learning methods: Except for the last two
methods (which are available in the Scikit-Learn library [18]),
the bulk of shallow learning methods considered in our
study are implemented in Scikit-Multiflow [19]. The Scikit-
Multiflow library is designed for learning from stream data
in Python, built upon other popular open-source libraries
including the aforementioned Scikit-Learn [18], MOA [2]
and MEKA [20]. It provides multiple state-of-the-art learning
methods for different stream learning problems, including
single-output, multi-output and multi-label predictive tasks.
All shallow methods have been initialized by using its default
configuration, and are next listed and described briefly:
• Naı̈ve Bayes (NB): a Bayesian model assuming indepen-

dence between input features given the output [21].
• KNN-ADWIN (KNNA): a K-Nearest Neighbors classifier

implementing the adaptive window (ADWIN) change de-
tector to actively adapt to drifts [22], [23].

• Perceptron (P): a linear classifier without drift adaptation.
• Adaptive Random Forest (ARF): a Random Forest with

a drift detector per compounding tree, triggering selective
resets in response [24].

• Additive Expert Ensemble (AEE): an ensemble that adapts to
concept drift by adding new experts (prediction strategies),
pruning the weakest ones according to a weighting policy,
and predicting the output with the greatest weight [25].

• Dynamic Weighted Majority (DWM): similar to AEE, it
employs different weighting policies [26].

• Online Boosting (OB): online version of the AdaBoost
ensemble method, including ADWIN at its core [27].

• Online Smote Bagging (OSB): online version of the
SMOTEBagging ensemble method, including ADWIN and
oversampling methods to account for class imbalance [27].

• Oza Bagging (OZB): online version of the Oza Bagging
ensemble method [28].

• Oza Bagging-ADWIN (OZBA): OZB variant that incorpo-
rates an ADWIN change detector.

• Hoeffding Tree (HT): very fast decision tree capable of
adapting to changes, that uses the Hoeffding bound to deter-
mine the number of examples needed to make a decision. It
grows an alternative sub-tree whenever an old one becomes
questionable, and replaces the latter when the new becomes
more accurate [29].

• Hoeffding Adaptive Tree (HAT): Hoeffding bound based
decision tree, using ADWIN [30].

• Hoeffding Anytime Tree (HATT): extremely fast decision
tree that is similar to HT, but performs new splits in the

tree as soon as the improvement of making this action is
proven. This makes HATT learn new concepts faster, but
with greater computational load [31].

• Adaptive Very Fast Decision Rules (VFDR): in contrast to
nodes and leafs present in decision trees, VFDR constructs a
set of rules that provides more design flexibility, as it allows
for the removal of individual rules without rebuilding the
entire model [32].

• Passive Aggressive (PA): this method splits the solution
space by a weight vector. When a wrong classification
takes place, the weight vector is updated (aggressive state).
Otherwise, the algorithm status does not change (passive
state) [33].

• Stochastic Gradient Descent (SGD): linear classifiers (e.g.
SVM with linear kernel, logistic regression) implementing
stochastic gradient descent training [34].

3) Deep Learning methods: Besides traditional shallow
learning techniques, Deep Learning models have recently
shown good capabilities for traffic forecasting [16], [17], [35],
[36]. Motivated by the conclusions drawn from these works,
we have designed a Deep Learning architecture specifically
designed for online learning, based on an hybridization of
convolutional layers (to capture short-term time dependencies)
and Long Short-Term Memory (LSTM) units (to grasp long-
term dependencies over time) [35], [37]. The aforementioned
input of 45 speed features per predicted value, is initially
processed through a one-dimensional convolutional layer of
32 filters and 32 time steps. The dimensionality of the output
of this convolutional layer is reduced by applying MaxPooling
with a factor of 2. Output values are fed to a stateful LSTM
layer of 64 cells to extract long-term temporal relationships.
Then, a fully-connected layer of 50 neurons connect the flat-
tened output of the hybrid convolutional-recurrent architecture
to the target variable to be predicted. Specifically, a single
neuron provides the predicted speed value at time step t + 1
for regression. In the case of classification, the last layer
is composed by 3 neurons, one per feasible class, preceded
by a Softmax activation function that converts logit values
to estimations of the probability of each congestion level.
Hyperparameters were chosen after an offline grid search.

Along with the latter, another three architectures are consid-
ered by removing the convolutional layer, or by replacing the
LSTM units of the recurrent layer with less-parametric Gated
Recurrent Units (GRU) [38]. This yields:

• Online Convolutional LSTM Neural Network (OCLSTM):
the Deep Learning architecture described above.

• Online LSTM Neural Network (OLSTM): OCLSTM without
the convolutional layer.

• Online Convolutional GRU Neural Network (OCGRU):
OCLSTM, changing the LSTM units with GRUs.

• Online GRU Neural Network (OGRU): OLSTM, changing
the LSTM units with GRUs.

4) Extreme Learning Machine: extreme learning machine
(ELM) is a generalization of single-hidden feed-forward net-
works (SLFN), where the hidden layer, that carries out feature



mapping, does not need to be tuned [39]. Essentially, ELM
initializes at random the values of weights and biases of hidden
layer neurons, making them independent of the training data.
The input data is projected into hidden layer after applying
weights and biases, after which the weights between the
hidden layer and the output layer can be learned efficiently
by performing a generalized Moore-Penrose inversion of the
matrix containing such weights. In this work we consider an
online sequential implementation of ELM, known as OS-ELM
[40], with a hidden layer of 1500 units (selected after off-line
fine-tuning, with results not shown due to the lack of space).

B. Offline and Online Versions of the Learning Methods

Traffic forecasting systems are commonly operated in longer
intervals that those typically tackled in stream learning sce-
narios. This is why research done in this area is scarce [35],
[41]. However, in the particular context of traffic forecasting,
the advantages of adopting a stream learning approach reside
in the need for dealing with possible concept drift [8], as well
as in the implementation constraints derived from deploying
the model [11]. Usually, after a traditional batch training phase
using all initially available data, the traffic forecasting system
is deployed. Then new streaming data arrives, but it can be
unfeasible to retrain and update the model by simply learning
again from scratch over all data received until then.

When this is the case, two options can be selected: i)
keeping the original model, without updating it whatsoever
(offline); or ii) incrementally learning from every newly ar-
riving sample (online). To this end, we compare different
offline/online learning methods, from traditional learning al-
gorithms that allow for incremental learning (including those
designed for concept drift adaptation), to more elaborated
novel deep learning architectures. This will allow us to com-
pare between both approaches, while analyzing the advantages
and caveats of each learning mode for the problem at hand.
In addition, the naı̈ve model is used as the baseline of our
comparison study, which sets the minimum hurdle the other
learning methods should overpass to justify their adoption.

C. Classification Metrics

The accuracy of the estimated congestion levels is eval-
uated in terms of the F1 score [42]. A separated F l

1 score
is computed for each of the three congestion levels l ∈
{free-flow,congestion,bottleneck}. Since the an-
notation of the dataset gives rise to a severely imbalanced
distribution of classes (congestion levels), we opt for an
unweighted mean UMF1 of the aforementioned F l

1 scores:

UMF1 =
1

3

∑
l

F1
l, (1)

where all classes feature equal importance (weight) in the
computation. Consequently, the value of the overall score does
not get affected by a skewed distribution of the score across
different classes.

III. EXPERIMENTAL SETUP

This section describes the experimental setup constructed
to provide an informed answer to three different research
questions (RQ):

• RQ1: Should we tackle the problem as a classification task,
or instead predict the speed value and discretize afterwards?

• RQ2: Which online learning technique performs best?
• RQ3: How does the performance degrade when the fore-

casting horizon is increased? Why?

Before attempting to answer RQ2 and RQ3, it is compulsory
to select, as per the response to RQ1, one of the main paths
of the workflow displayed in Figure 1. To this end, in order
to discriminate between regression ( A©) or classification ( B©),
we use OCLSTM architecture, in conjunction with NM as a
baseline of the worst case scenario. These two methods should
achieve different levels of predictive performance among re-
gression and classification, which will allow us to discard one
of these strategies, and proceed forward with the rest of the
study by focusing only on the strategy of choice.

After selecting between A© or B© strategies, the rest of the
experiments are executed with the overall best performing
strategy. In regards to RQ2, for each learning method under
consideration, we compare its performance when operating in
offline (no update) and online fashion (incremental learning).
Initially, the algorithms are trained with only the first week
of year 2015, employing a batch size of one sample in order
to be able to update the model after each arriving sample,
during online setting. Because recordings are detached by
5 minutes, this yields 2016 examples for the batch training
phase. For the online setting, the model predicts the next
arriving sample as a test, and assumes that the real value
of the example just tested is available for training (test-then-
train). This scheme is held until the last sample of the dataset
is reached. The offline setting proceeds in the same way,
but without updating the model after every new sample. By
comparing these approaches, we can reveal the degree of
improvement between both options.

In addition to the above offline/online comparison study,
each model is tested with different prediction horizons (RQ3),
from h = 1 (i.e. prediction for slot t with features up to
time t − 1) to h = 20, implying the estimation of the
speed at the evaluated point within 5 minutes and up to 100
minutes in the future. A deeper horizon would imply adopting
different forecasting strategies, focused on the long term, such
as clustering or historical averaging, instead of the pattern-
based models here considered. This evaluation procedure gives
rise to a set of performance values from h = 1 to h = 20,
for predictions obtained with speed measurements obtained in
instants {t − 5, . . . , t − 1} from the surrounding ATRs, and
from the ATR under analysis itself. The analysis of different
predictive horizons is crucial for this experimental setup, as
the way in which predictions degrade can be indicative of how
the input features relates to the output to be estimated.
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Fig. 1. Experimentation workflow. Datasets are built based on speed values, from selected mileposts of a highway. Then, we use the naı̈ve model NM and
the OCLSTM model to choose among one of two strategies: predict speed values and then apply labeling process A© or to label the original dataset prior to
modeling and then, to face a classification problem B©. After selecting one of these strategies, a comparison study of different learning methods and forecasting
horizons is performed for offline/online modes of operation.

IV. RESULTS AND DISCUSSION

Prior to applying the experimental workflow defined in
Section III, thresholds that define the three established classes
must be determined. Following the guidelines described in [13]
and after analysing in detail the traffic profiles of the roads
under study, thresholds have been established in 42 mph, as the
speed over which the state is considered free flow, and 22 mph,
as the speed under which the speed is considered a bottleneck.
Congested state is defined between both thresholds. When
these cutting lines are plotted over data, one can annotate
sampling points with their traffic congestion level at every
point in time: as such, samples labeled with free-flow and
bottleneck are above and below the defined levels, while
those belonging to the congestion class fall in between.

RQ1: Should we tackle the Problem as a Classification Task,
or instead predict the Speed Value and discretize afterwards?

Experiments to answer RQ1 are run in the first place. Table
I reports the obtained results for ATR SR520, from which we
extract conclusions buttressed by the scores achieved for the
rest of ATRs (not shown for the sake of clarity).

TABLE I
PERFORMANCE OF REGRESSION A© AND CLASSIFICATION B© STRATEGIES,

USING OFFLINE AND ONLINE SETTINGS
(F1-SCORE PER CLASS AND OVERALL UMF1)

Methods Freeflow Congestion Bottleneck Overall

Offline Online Offline Online Offline Online Offline Online

NM 0.986 0.986 0.738 0.738 0.614 0.614 0.779 0.779
A© OCLSTM 0.946 0.985 0 0.746 0 0.482 0.315 0.738
B© OCLSTM 0.981 0.992 0.387 0.845 0.417 0.755 0.595 0.864

The NM exhibit performance scores considered to be the
baseline of any other modeling choice. Any more complex

learning method whose efficiency is underneath this perfor-
mance is of no practical value, as NM does not require any
training, nor does it demand computational efforts to produce
a prediction. Being NM a naı̈ve model without any learning
capabilities, offline and online performance scores are the
same in this case. When inspecting the OCLSTM results, we
should bear in mind that in highways, the dominant class is
typically free-flow. Our collected data is not an exception
to this statement. For this reason, even at an offline setting,
F1-score is high for this class (traffic is mostly free-flow),
leaving slight room for improvement during online learning.
However, the other two classes are more scarce, so they
become a key point when attempting to boost performance.

Table I reveals that the discretization of speed values prior
to modeling (classification strategy) improves the accuracy
of the estimations for both offline and online settings. This
suggests that given only 2016 examples during initial batch
training phase, regression is a more difficult task with respect
to classification, leading to worse performance for A© if no
model update is done. It could be expected that, given enough
data and updates to the model during online training, the score
achieved by the regression and classification strategies would
eventually converge. However, in a realistic setting, strategy
B© (classification) was found to surpass A© (regression) over
all classes. This is the reason why B© is hereafter adopted as
the best strategy for the application under consideration.

RQ2: Which Learning Technique performs best?

After selecting classification B© as the preferred strategy for
traffic congestion estimation, we have performed several sim-
ulations over the data gathered in the four mileposts defined in
Section II. For each point, UMF1 between the three congestion
levels is computed, applying offline and online settings, over



TABLE II
UMF1 OF DIFFERENT LEARNING TECHNIQUES OVER t+ 1 FORECASTING HORIZON. COLUMN TITLES SHOW ANALYZED INTERVAL.

Methods I-405 (4.73-8.90 mile) I-5 (151.25-155.69 mile) I-5 (174.16-177.75 mile) SR-520 (0.83-5.14 mile)

Offline Online Offline Online Offline Online Offline Online

NB 0.722 0.736 0.677 0.755 0.683 0.704 0.630 0.760
KNNA 0.729 0.738 0.742 0.766 0.729 0.727 0.585 0.766

P 0.615 0.818 0.410 0.729 0.424 0.682 0.379 0.709
ARF 0.805 0.961 0.748 0.960 0.639 0.945 0.610 0.948
AEE 0.736 0.739 0.683 0.759 0.707 0.701 0.653 0.763

DWM 0.725 0.743 0.686 0.772 0.683 0.714 0.653 0.751
OB 0.271 0.801 0.319 0.838 0.321 0.807 0.315 0.800

OSB 0.271 0.687 0.319 0.722 0.321 0.670 0.315 0.765
OZB 0.722 0.737 0.747 0.763 0.728 0.727 0.594 0.765

OZBA 0.271 0.730 0.319 0.763 0.321 0.718 0.315 0.762
VFDR 0.819 0.993 0.677 0.980 0.683 0.971 0.630 0.978

HT 0.892 0.995 0.677 0.980 0.683 0.984 0.630 0.994
HAT 0.572 0.788 0.668 0.851 0.676 0.739 0.634 0.856

HATT 0.807 0.992 0.319 0.984 0.804 0.985 0.592 0.991
PA 0.660 0.751 0.412 0.679 0.507 0.621 0.565 0.723

SGD 0.437 0.832 0.490 0.737 0.353 0.691 0.479 0.794
OELM 0.507 0.835 0.650 0.857 0.452 0.631 0.564 0.840

OCLSTM 0.829 0.890 0.716 0.805 0.647 0.848 0.595 0.864
OLSTM 0.833 0.914 0.737 0.826 0.743 0.899 0.583 0.724
OCGRU 0.809 0.873 0.764 0.794 0.600 0.829 0.738 0.831
OGRU 0.841 0.910 0.678 0.745 0.756 0.885 0.576 0.700

NM 0.728 0.728 0.772 0.772 0.694 0.694 0.779 0.779

all learning methods described at Subsection II-A. The results
are reported in Table II, which depicts a test bench of different
learning methods and the degree of improvement that would
be expected when adopting and online approach over offline.

Again, NM shares the same metrics for the offline/online
settings, and sets a lower performance bound to be over-
passed by the rest of models. With one week of data provided
at offline setting, and by never updating these models, it is
a priori expected that online versions perform better, with
continuously updated knowledge. However, we observe that
these performance differences are not that acute for most
methods, which entails that the one week information that
the offline models lean on is enough to provide reliable
predictions. Differences in which this gap operates in each
location reveals how stable data are: for instance, differences
are slighter in I-405 than in SR-520, which suggests that speed
data behaves more consistently along weeks in the former
ATR than in the latter. This poses a question about how much
information is required to build a reliable offline model at each
location.

When online approaches are considered, it should be noted
that ARF, HT, HATT and VFDR present the highest perfor-
mance, showing that adaptative learning methods represent the
best approach when dealing with online stream data problems.
The first three methods operate quite similar, by growing a new
and more adapted-to-actual-trend decision tree and replacing
older one. VFDR uses rules instead of decision trees, but
concept drift adaptation mechanism works quite similar to
each other. In the case of OELM based solution, it performs
well at three of the analyzed ATR locations, but at the last one
it falls below NM metrics. OELM is a learning method that
adapts quickly to changes, with minimal computational cost,

but at a high dependence on the hidden layer initialization,
which usually delivers unstable results. Lastly, the designed
Deep Learning architectures perform beyond NM in the online
setting. However, we would like to note that there is not a best
architecture for this specific problem. At some cases, models
featuring the convolutional layer (i.e. OCLSTM, OCGRU)
render higher scores, while at other cases, plain recurrent
neural networks occur to perform better. Consequently, in no
way we can claim that LSTM based Deep Learning methods
outperform those relying over GRU-based counterparts or
vice-versa, because there is no pattern that support any of
these hypotheses.

RQ3: How does the performance degrade when the forecasting
horizon is increased? Why?

Finally, we also analyzed the performance evolution of the
models when the forecasting horizon is increased. For this
purpose, we have selected the best performing method of each
family presented in Section II-A. Then, we test offline/online
settings for h = 1, h = 5, h = 10 and h = 20. Figure 2
collects graphically the obtained results.

As could have been expected beforehand, at three of
the four considered mileposts, the performance score of the
congestion class decreases drastically after the forecasting
horizon is set beyond h = 1. Given the described class thresh-
olds, while analyzing speed data series, it is common that there
are no more than two consecutive congestion labeled samples,
before class changes from free-flow to bottleneck
or from bottleneck to free-flow. The instability of
class distribution makes the prediction of the congestion
class particularly challenging for higher forecasting horizons,
due to a lack of available information for models: when
models learn from examples of this class, most of their
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Fig. 2. Performance per class (columns) and ATR locations (rows) for the selected learning methods, over offline and online settings. The upper legend
indicates chromatic identifier of each model implementation, placing offline on top of online settings, due to their lower performance. Seven increasing
forecasting horizons are analyzed, with the interval between horizons being set to 5 minutes.

recent past correspond to speed values that belong to other
class. In the test phase, a sample with those kind of values
is more likely to be classified in the other class, specially
having the model much more samples of this kind to observe.
However, those transitions (from free-flow/bottleneck
to congestion) represent the real challenge of estimating
speed, as from a predictive perspective, estimating the next
data point is for most of data series as simple as providing the
previous data point: in free-flow, the speed will be mostly
the free-flow speed, and during a bottleneck, it will be close
to 0. Thus, speed estimations that are obtained with regression
techniques and assessed by measuring the error could be
regarded as impractical, and certainly pointless. Indeed, in
many cases the good performance metrics respond to the
abundance of free-flow periods in the series, in which the error
is minimal, while for the periods of change, bigger errors are
produced, but they are dissipated when all error measurements
are averaged. This effect can be seen in our own experiments
when errors per class are averaged into UMF1. The interest,
hence, resides in the detection of the moment when a transition
between states is produced.

In the case of the SR520 highway, traffic profile is clearly
different with respect the other analyzed mileposts. Here, the
performance of bottleneck class has a more pronounced
negative trend when increasing the forecasting horizon. Our
hypothesis is that it is a less crowded highway where the
worst congestion level is rarely reached for a long period
of time. As most of the observed samples correspond to
free-flow and congestion, it is harder for the model
to predict correctly the bottleneck state. Nevertheless, as
Figure 2 clearly shows, it is easier for a model to face a

lack of consecutive examples of the bottleneck class when
compared to congestion, as this latter class occurs in short
transitions between the other traffic levels. In other words, the
traffic state needs to pass through the congestion class
in order to switch between free-flow and bottleneck,
making mistakes when predicting the congestion class the
most harmful for the overall performance of the model.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have revealed the capabilities of online
learning setting for congestion level prediction over traffic
data. The provided results support the initial hypothesis of the
remarkable degree of improvement that online learning should
achieve over offline learning, when traditional batch training
approach is not an option. Furthermore, additional analysis
when enlarging the forecasting horizon was performed by
considering the best performing approach as per a comparison
study of diverse offline/online learning methods. These out-
comes support our initial speculations about the importance of
undertaking a previous study on the class distribution, before
starting to develop a classification model. Unfortunately, many
scientific results reported in the literature are exposed with
an inappropriate approach, where scores of the majority class
disguise the poor prediction performance of other classes.
However, the real practical value of these models is to excel
at identifying transitions between classes, because it is in this
shift when the road traffic profile changes.

All these insights open up a line of future work that could
exploit the observed similarities between traffic profiles at
different points of the road network. Specifically, transfer
learning could help in this regard, by which models specific to



a certain highway point are not pre-trained in batch, but rather
take advantage of other models already trained elsewhere over
the road network. This approach could reduce the amount of
training data required to properly develop a predictive model.

ACKNOWLEDGMENTS

The authors would like to thank the Basque Government for
its funding support through the EMAITEK and ELKARTEK
programs. Eric L. Manibardo receives funding support from
the Basque Government through its BIKAINTEK PhD support
program (grant no. 48AFW22019-00002).

REFERENCES

[1] D. Laney, “3D data management: Controlling data volume, velocity and
variety,” META group research note, vol. 6, no. 70, p. 1, 2001.
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