
Enhancing Multivariate Time Series Classification
Using LSTM and Evidence Feed Forward HMM

Achyut Mani Tripathi
Department of Computer Science & Engineering

Indian Institute of Technology, Guwahati
Guwahati-781039, Assam, India

Email: t.achyut@iitg.ac.in

Abstract—This paper presents a hybrid classifier that combines
a Long Short Term Memory (LSTM) and an Evidence Feed For-
ward Hidden Markov Model (EFF-HMM) to classify multivariate
time series (MTS). Learning of the EFF-HMM is performed
based on mistakes of the LSTM. Confusion matrix obtained after
classification of the MTS by the LSTM is employed during a
learning process of the EFF-HMM. The EFF-HMM efficiently
models a temporal characteristic and uncertainty of the MTS.
The hybrid classifier combines strengths of the LSTM and EFF-
HMM to enhance the accuracy of the MTS classification. The
proposed method is tested on Human Activity Recognition (HAR)
dataset to classify various human activities. The experiments and
results show the proposed method outperforms as compared to
state of the art methods.

I. INTRODUCTION AND RELATED WORK

Technology advancement boosts demand for sensor-
equipped monitoring applications that are capable of providing
ongoing insight of any dynamical process such as an industrial
process that requires continuous supervision of high volume
data generated by different sensors associated with functional
units. Robotics [1], Stock Market [2], Climate Forecasting [3],
Human activity recognition [4] and anomaly detection [5],
[6] are popular areas that require time series classification.
The time series (TS) is a collection of data instances arrange
according to time index. In a nutshell, the TS can be further
classified into two classes first is univariate time series (UTS),
and second is multivariate time series (MTS). The MTS is a
collection of the multiple correlated TS that are recorded over
time.

Extraction of informative features from the TS has gained
considerable attention from data researchers. Various methods
have been proposed to classify the TS. Bag of words (BOW)
[7], Dynamic Time Wrapping (DTW) [8] and, Trend-Value
pair [9] are popular features that have been successfully
applied to measure similarity between the multiple TS. Classi-
fication of the UTS is less complicated as compared to classify
the MTS. High speed, high volume, and dependencies among
the multiple TS impose several challenges to classify the MTS.

In [10], DTW with a parametric deviation was used to
perform multivariate time series classification (MTSC). In
[11], author used a combination of DTW and Longest common
subsequence (LCS) for MTSC. Wang et al. [12] proposed an
echo state network with an evolutionary algorithm to classify
the MTS. In [13], temporal abstraction in combination with an

interval between the time series based method was proposed
to classify MTS. Shapelet based features were used in [14]
to extract compelling features for the early classification of
the MTS. But all the techniques mentioned above are failed
to model sequential, uncertainty, and temporal characteristics
of the MTS. Hidden Markov Model (HMM) is successfully
applied to learn and model the sequential characteristics of the
sequential data. The TS can be considered as the sequential
data with the temporal characteristics. The HMM models are
well explored to classify the MTS. In [15], an imprecise HMM
was proposed for the MTSC. Wang et al. [16] proposed a
hybrid model by combining a GMM and the HMM for the
MTSC. However, the majority of existing MTS classification
techniques requires an additional feature engineering over the
MTS for the MTSC.

In recent years deep learning has attracted data researchers
to apply the deep learning-based methods to classify the MTS.
A major advantage of the deep learning methods is that it
does not require additional feature engineering to classify
the MTS and capable of learning complex behavior of the
MTS. In [17], a novel multi-channel based convolution neural
network (CNN) was proposed to classify MTS. In [18], chin
et al. proposed a novel CNN framework to classify MTS. Cui
et al. [19] proposed a multi-scale CNN-based technique that
automatically extracts time series features at different scales
to classify MTS. In [20], author proposed a combination of
LSTM and fully connected CNN to classify MTS. In [21],
MTS Deep Net was proposed that extracts spatial and temporal
features for MTSC. The other deep learning methods that have
been well studied to classify the MTS can be found in [22],
[23], [24], [25]. But the deep learning models fail to model
the uncertainty of the MTS. The uncertainties of MTS can
be easily modeled by probabilistic models such as the HMM
[26] and an Evidence Feed Forward Hidden Markov Model
(EFF-HMM) [27]. In the proposed work, a hybrid classifier
is developed that combines strength of the deep learning and
probabilistic technique to model the temporal characteristics
and uncertainties of the MTS.

The primary contribution of this paper is to enhance the
MTSC performance using Long short term memory (LTSM)
[28] and the EFF-HMM [27]. The EFF-HMM learns from
mistakes of the LSTM and correctly classifies the MTS.

The remainder of this paper is organized as follows: Section
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II provides preliminaries of techniques used to develop the
hybrid classifier. Section III presents a framework of the hy-
brid classifier. Section IV describes experiments and obtained
results, and finally, conclusion and future work are presented
in section V.

II. PRELIMINARIES

This section offers basics of the LSTM, HMM and EFF-
HMM.

A. Long Short Term Memory (LSTM)

The LSTM [28] is a special kind of recurrent neural
network (RNN) that resolves an issue of vanishing gradient
problem of the RNN. The LSTM is capable of handling long
term dependencies, thus well applied to model the sequential
and temporal characteristics of the TS. Architecture of the
LSTM consists of four neural networks interacting in a special
fashion. Memory part of the LSTM, also named as cell state,
consists of three major gates an input gate, an output gate,
and a forget gate, respectively. Fig.(1) shows the memory cell
of the LSTM. The forget gate performs identification of an

Fig. 1: Architecture of LSTM

undesired information need to exclude from the cell state.
Eq.(1) shows computation of output of the forget date in the
LSTM cell.

ft = σ(Wf∗[xt, ht−1] + bf ) (1)

Where ft is current output of the forget gate, σ is a sigmoid
function, Wf is weight, xt is a current new input, ht−1 is
output from the earlier time stamp and bf is a bias of the
forget gate.

Next step is to identify what new information required to
be saved in the cell. To perform the task mentioned above the
LSTM uses two layers i.e. an input gate layer and a tanh layer.
Later output of the two layers are combined to store the new
information in the LSTM cell. Eq.(2) shows computation of
an output of the input gate layer. Eq.(3) shows computation
of an output of the tanh layer.

It = σ(WI ∗ [xt, ht−1] + bI) (2)

Where It is a output of the input gate layer, WI is a weight
matrix, bI is a bias of the input gate layer.

C
′

t = tanh(Wc′ ∗ [ht−1, xt] + bc′ ) (3)

Where C
′

t is a output of the tanh layer, Wc′ is a weight matrix,
bc′ is a bias of the tanh layer. Combination of the output of
input gate layer and tanh layer is performed using Eq.(4).

Ct = ft ∗ Ct−1 + It ∗ C
′

t (4)

Where Ct−1 is a cell output of the previous time stamp.
At last outputs of the cell i.e. Ot and ht are calculated using

Eq.(5) and Eq.(6) respectively.

Ot = σ(Wo ∗ [ht−1, xt] + bo) (5)

Here bo is a bias of the output gate and Wo is a weight matrix
of the output gate.

ht = Ot ∗ tanh(Ct) (6)

B. Hidden Markov Model (HMM)

The HMM [26] is a popular probabilistic machine learning
technique used to model observation sequences. The HMM is
successfully applied to model the TS. The HMM efficiently
models the uncertainty and temporal characteristics of the TS.
HMM, parameters (θ) are learned using the Baum Welch
algorithm [26], and later the Viterbi algorithm [26] is used
to compute posterior probabilities of different hidden states.
Fig.(2) shows the HMM model with two states S1 and S2

and two observations O1 and O2. Inference mechanism of

Fig. 2: Hidden Markov Model

the HMM requires three parameters θ = (π, a, b). Here a
is matrix that denotes transition probabilities between the
states, b is a matrix that denotes emission probabilities of the
observations from the states and π is a matrix that denotes
initial probabilities of the give states. Eq.(7) is used to perform
inference using the HMM. Where t is a time stamp and T is
a total time stamp.

P (S = s|O = o, θ) = πs(1)

T−1∏
t=1

as(t)s(t+1)

T∏
t=1

bs(t)o(t) (7)



C. Evidence Feed Forward HMM (EFF-HMM)
EFF-HMM [27] is an extension of the traditional HMM. In

the HMM transition probability among the observations are
not considered while the computation of the posterior probabil-
ity. The EFF-HMM includes transition among the observations
while computation of the posterior probability, thus enhances
the classification accuracy. The EFF-HMM mainly requires
learning of four parameters θ=(π, a, b, τ). Here an additional
parameter τ is a matrix that denotes transition probability
between the observation symbols O. Fig.(3) shows the EFF-
HMM model with the two states (S1, S2) and two observation
symbols (O1, O2).

Fig. 3: Evidence Feed Forward Hidden Markov Model

1) Initial Probability

πi = Initial probability of being in the state i (8)

2) Transition Probability

aij =
N(Sj |Si)

N(Si)
(9)

Where, aij is a transition probability of transition from
the state Si to Sj . N(Si)= Number of times the state is
Si and N(Sj |Si)=Number of times state changes from
the state Si to the state Sj

3) Emission Probability

bik =
N(Ok|Si)∑N
i=1N(Ok|Si)

(10)

Where, bik is an emission probability of the observation
symbol k from state Si and N(Ok|Si) is number of
times observation Ok is emitted from the state Si

4) Observation Transition Probability

τpqij =
N(Ot

p(i), O
t+1
q(j))

N(Ot
p(i))

(11)

Where, N(Ot
p(i), O

t+1
q(j)) is number of times Op is emit-

ted at time t from state Si and Oq is emitted at time t+1
for the state Sj at time stamp t. N(Ot

p(i)) is number of
times Op emitted from the state Si

Posterior probability of being in state S using the EFF-
HMM is calculated using Eq.(12). The Eq.(12) has the

additional term (τ) as compared to the Eq.(7). Table
I shows size of the different probability tables for the
EFF-HMM model.

P (S = s|O = o, θ) = πs(1)

T−1∏
t=1

as(t)s(t+1)

T∏
t=1

bs(t)o(t)

T−1∏
t=1

τ
o(t)o(t+1)
s(t)s(t+1) (12)

The major reason behind the selection of the EFF-HMM is
to explore the observation to observation linkage to recognize
patterns present in a given data set. These patterns can
be expressed in terms of the transition probability between
the observations that further provides better classification as
compared to the standard HMM.

TABLE I: Size of different probability tables in EFF-HMM

S.No. Probability
Table

Size
(Rows,Columns) M=No. of States

N= No. of Emitted
Observation Symbols

1 Π (1,M)
2 a (M,M)
3 b (M,N)
4 τ (M*M),(N*N)

III. PROPOSED METHOD

This section describes a methodology used to design the
hybrid classifier for MTSC.

A. Hybrid Classifier for MTSC
The proposed hybrid classifier arranges the LSTM and

EFF-HMM classifiers at two different layers. Here primary
objective is to perform two rounds of classification using the
LSTM and EFF-HMM. Initially, the MTS is classified by the
LSTM, and in the second round the same MTS is reclassified
by the EFF-HMM. At any time stamp misclassified MTS by
the LSTM is correctly classified by the EFF-HMM.

Following are the major steps that describe working of the
hybrid classifier.

1) Train the LSTM classifier using training data.
2) Classify the training data by the trained LSTM obtained

from step-1.
3) Compute confusion matrix for the training data classified

by the LSTM.
4) Use actual train labels to calculate the transition proba-

bility (a) of the EFF-HMM by the Eq.(9)
5) Use the confusion matrix to estimate values of the

emission probability (b) and observation transition prob-
ability (τ) by the equations (10) and (11). Table II shows
an example of learning the parameters of EFF-HMM
for a dataset with 20 data instances. Table II shows the
actual and predicted train labels of all 20 data instances.
In our case, the predicted train labels are identified by
the LSTM. Table III, Table IV and Table V shows
the transition probability matrix, emission probability
matrix and observation transition probability matrix for



TABLE II: Example of Learning of EFF-HMM

Time
Stamp

Actual
Label

Predicted
Label

1 1 1
2 2 1
3 1 1
4 1 1
5 2 1
6 1 2
7 2 1
8 1 2
9 1 1
10 1 2
11 2 1
12 2 1
13 2 1
14 1 2
15 1 2
16 2 2
17 1 1
18 1 2
19 2 2
20 2 1

the EFF-HMM trained using the data shown in the Table
II.

6) Use the trained LSTM and EFF-HMM to classify test
MTS.

TABLE III: Transition Probability Table of EFF-HMM

States 1 2
1 0.45 0.55
2 0.62 0.38

TABLE IV: Emission Probability Table of EFF-HMM

States Observation
1 2

1 0.35 0.65
2 0.69 0.31

TABLE V: Transition Probability Table Between Observations
of EFF-HMM

State State 1 2
Observation 1 2 1 2

1 1 0.33 0.67 1 0
2 0.5 0.5 0.5 0.5

2 1 0.25 0.75 1 0
2 1 0 1 0

Fig.(4) shows how the EFF-HMM model corrects the mis-
classified class label by the LSTM. Initially, the test MTS is
classified by the LSTM, and in the second step, EFF-HMM
reclassifies the test MTS to identify correct class label. Fig.
(5) shows working procedure of the hybrid classifier.

Fig. 4: Correction by Mistakes Technique

Fig. 5: Hybrid Classifier Using EFF-HMM and LSTM

IV. EXPERIMENTS AND RESULTS

This section explains the experiments and results.

A. Dataset Description

To test the efficacy of the hybrid classifier, we selected
the human activity recognition (HAR) dataset developed by
Davide et al. [4]. Various sensors are used to record a
movement of a person while performing numerous activities.
The data set consists of recordings of a total of the 30 humans
having age in between 19 to 48 years. The data set contains
a total of six activities Walking (W), Walking Down (WD),
Walking Up (WU), Sitting (ST), Standing (SD), and Lie Down
(LD). Samsung Galaxy SII is used to record X, Y, Z data
using accelerometer and gyroscope sensors with a recording
frequency of 50Hz.

B. Training Data

Training data contains the recordings for 21 persons and has
a total of 7352 data instances. The training data contains 1374
samples of the W activity, 1286 samples for the WU activity,
1407 samples for the WD activity, 1226 data instances for the
ST activity, 986 data samples for the SD activity, and 1073
data instances for the LD activity. Table VI shows the number
of data samples belong to the different human activities in the
training and test data.



TABLE VI: Number of Training and Test Data Samples for
Each Activity

S.No Activity Training

Data)

Test

Data

1 Walking (W) 1374 532

2 Walking Upstairs (WU) 1286 491

3 Walking Downstairs (WD) 1407 537

4 Sitting (ST) 1226 496

5 Standing (SD) 986 420

6 Lie Down (LD) 1073 471

Total 7352 2947

C. Test Data

Test data consists of data gathered for 9 persons for all the
six activities mentioned above. The test data contains a total
of 2947 data samples. 532 data samples of the W activity, 491
data instances for the WU, 537 data instances for the WD, 496
data samples for the ST activity, 420 data samples of the SD
activity, and 471 data instances for the LD activity.

D. Model Description

To show the efficiency of the proposed method, we com-
pared the results of the hybrid classifier with three other
supervised machine learning models. Total four models are
developed to classify the MTS. Details of the four models are
as follows:

(i) The first model is the LSTM. We train the LSTM for
various mini-batch size and hidden units, and the best training
accuracy is obtained for the LSTM with 200 hidden units,
100 epochs, a mini-batch size of 150, a dropout rate of 0.5, a
learning rate of 0.0001, and with a RELU activation function.
Table VII shows training accuracy of the LSTM with the
different parameters.

TABLE VII: Training accuracy of LSTM for different mini-
batch size and hidden units

No. of Hidden Units
Mini Batch Size (Training Accuracy (%))

50 100 150
25 94.15 93.92 92.32
50 94.56 95.69 95.67
75 95.81 95.92 96.12

100 95.95 96.06 95.29
125 95.84 95.99 95.78
150 95.72 95.79 95.34
175 95.39 95.18 95.21
200 95.67 95.63 95.81

(ii) The second model is a Multi class Support Vector Ma-
chine (MCSVM) with RBF kernel, and value of a parameter
σ is selected as σ = 0.6. We used the same technique as used
in [5] to extract <trend value> pair features from the MTS
to train and test the MCSVM classifier. Windows size of 30
data samples is used to extract the features.

(iii) The third model (LSTM-HMM) is a combination of the
LSTM and HMM with six hidden states .

(iv) The fourth model (LSTM-EFF-HMM) is a combination
of the LSTM and EFF-HMM with six hidden states.

In the HMM and EFF-HMM number of the different emitted
observations, and the number of the hidden states is same and
equal to six (number of different human activities).

E. Results
Initially, the four models are trained using the training data,

and later the test data is used to inspect the performance
of the four models. The accuracy attains by the MCSVM
classifier is 82.59%. The MCSVM classifier also shows the
lowest precision rates to classify the six human activities.
The LSTM classifier obtained the accuracy of 88.06% and
shows the precision rate of 81.39%, 80.45%, 95.34%, 87.30%,
90.48% and 93.84% to classify the W, WU, WD, ST, SD
and LD activities. The classification accuracy of the LSTM
classifier is improved by 1.08% when the HMM is used in
combination with the LSTM for the classification. The LSTM-
HMM attains the accuracy of 89.14%. The highest accuracy
96.17% is achieved by the hybrid classifier and also shows
the highest precision rates 93.98%, 93.69%, 98.14%, 96.77%,
96.90%, and 97.66% to classify the W, WU, WD, ST, SD
and LD activities. Tables VIII, Table IX, Table X and Table
XI shows confusion matrix for the MCSVM, LSTM, LTSM-
HMM and LSTM-EFF-HMM.

An interesting observation can be seen by comparing the
performance of the LSTM-HMM and the LSTM-EFF-HMM.
The LSTM-EFF-HMM improves the accuracy of the LSTM by
8.11%. However, LSTM-HMM improves the same by 1.08%.
It is clear from the performance of the LSTM-HMM and
the LSTM-EFF-HMM that the transition probability between
the observation symbols adds more useful information to the
model and enhances the classification accuracy as compared to
traditional HMM model that lacks the use of the observation
transition probabilities during the inference.

The result of the proposed method is compared with state of
the art methods to classify the numerous human activities in
the HAR dataset. Table XII shows the classification accuracy
and the existing methods to classify the human activities in
the HAR dataset. It is clear from Table XII that the proposed
method attains the second position in terms of the classification
accuracy and may attains more accuracy if more inspection is
performed in the feature representation step.

TABLE VIII: Confusion Matrix for MCSVM

Activity W WU WD ST SD LD Precision(%)

W 420 102 0 0 8 2 78.95

WU 103 365 0 0 12 11 74.34

WD 0 0 500 10 12 15 93.11

ST 17 37 0 403 12 27 81.25

SD 30 20 5 4 340 21 80.95

LD 15 2 12 11 25 406 86.20

Recall(%) 71.79 69.39 96.71 94.16 83.13 84.23 82.59



TABLE IX: Confusion Matrix for LSTM

Activity W WU WD ST SD LD Precision (%)

W 433 89 0 0 5 5 81.39

WU 73 395 0 0 0 23 80.45

WD 0 0 512 0 0 25 95.34

ST 2 22 0 433 17 22 87.30

SD 12 7 0 0 380 21 90.48

LD 0 2 0 8 19 442 93.84

Recall (%) 83.27 76.70 100 98.19 90.26 82.16 88.06

TABLE X: Confusion Matrix for LSTM-HMM

Activity W WU WD ST SD LD Precision (%)

W 437 88 0 0 3 4 82.14

WU 68 399 0 0 0 24 81.26

WD 0 0 512 0 0 25 95.34

ST 4 16 4 446 15 11 89.92

SD 8 3 0 1 387 21 92.14

LD 0 2 0 3 22 446 96.69

Recall (%) 84.53 78.85 99.22 99.11 90.63 83.99 89.14

TABLE XI: Confusion Matrix for LSTM-EFF-HMM

Activity W WU WD ST SD LD Precision (%)

W 500 30 0 0 0 2 93.98

WU 20 460 0 0 0 11 93.69

WD 0 0 527 0 0 10 98.14

ST 1 5 0 480 5 5 96.77

SD 3 0 0 0 407 10 96.90

LD 0 0 0 1 10 460 97.66

Recall (%) 95.42 92.93 100 99.79 96.45 92.37 96.17

V. CONCLUSION

The hybrid classifier is presented in this paper that combines
the strength of the LSTM and EFF-HMM. The LSTM classi-
fies the human activities using the raw data of the HAR dataset,
and the EFF-HMM efficiently models the temporal assets and
uncertainty of the MTS. The proposed models shows the better
classification accuracy as compared to the MCSVM, LSTM-
HMM, and, LSTM. In future, we would like to extend the
method to classify anomalies in the multivariate time series
data.
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