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Abstra
t�Re
ently, models of neural networks in the real

domain have been extended into the high dimensional domain

su
h as the 
omplex number and quaternion domain, and several

high-dimensional models have been proposed. These extensions

are generalized by introdu
ing Clifford algebra (geometri
 alge-

bra). In this paper we extend 
onventional real-valued Hop�eld-

type neural networks into the o
tonion domain and dis
uss their

dynami
s. The o
tonions represent a parti
ular extension of the

quaternions whi
h also represent a parti
ular extension of the


omplex numbers and have 7 imaginary parts. They are non-


ommutative and non-asso
iative on multipli
ation and do not

belong to Clifford algebra due to the latter fa
t. With this in

mind we propose four models of o
tonion Hop�eld-type neural

networks. We derive existen
e 
onditions of an energy fun
tion

and 
onstru
t energy fun
tion for ea
h model.

Index Terms�Hop�eld neural network, o
tonion neural net-

work, energy fun
tion, existing 
ondition

I. INTRODUCTION

In re
ent years, there have been in
reasing resear
h interests

of arti�
ial neural networks and many efforts have been

made on appli
ations of neural networks to various �elds.

As appli
ations of the neural networks spread more widely,

developing neural network models whi
h 
an dire
tly deal

with 
omplex numbers is desired in various �elds. Several

models of 
omplex-valued neural networks have been pro-

posed and their abilities of information pro
essing have been

investigated [1℄, [2℄. Furthermore those studies are extended

into the quaternion numbers domain, and models of quaternion

neural networks are proposed and a
tively studied [2℄, [12℄.

These extensions are generalized [3℄ by introdu
ing Clifford

algebra (also 
alled geometri
 algebra) [4℄�[6℄.

It is well known that one of the pioneering works that

triggered the resear
h interests of neural networks in the last

three de
ades is a proposal of models for neural networks

by Hop�eld [7℄�[9℄. He introdu
ed the idea of an energy

fun
tion to formulate a way of understanding the 
omputation

performed by fully 
onne
ted re
urrent neural networks and

showed that a 
ombinatorial optimization problem 
an be

solved by them. The energy fun
tions have been applied to var-

ious problems su
h as qualitative analysis of neural networks,

synthesis of asso
iative memories, optimization problems and

so on ever sin
e.

The extensions of the Hop�eld-type neural networks to the


omplex domain and the quaternion domain have been studied.

The existen
e 
ondition of an energy fun
tion was derived

for the 
omplex-valued Hop�eld-type neural networks [10℄,

[11℄ and for quaternion Hop�eld-type neural networks [12℄.

Those studies were also extended into the domains of the dual

numbers and the hyperboli
 numbers [13℄. In all those studies

the appli
ation of the energy fun
tions to qualitative analysis

of the Hop�eld-type neural networks was also dis
ussed. All

the domains into whi
h the real valued Hop�eld-type neural

networks were extended so far, that is, the 
omplex, dual,

hyperboli
 numbers and the quaternions belong to Clifford

algebra [4℄�[6℄, [14℄.

In this paper we extend 
onventional real-valued neural

networks into the o
tonion domain. The o
tonions represent

a parti
ular extension of the quaternions whi
h also rep-

resent a parti
ular extension of the 
omplex numbers, and

have 7 imaginary parts. They are non-
ommutative and non-

asso
iative on multipli
ation and do not belong to Clifford

algebra due to the latter fa
t. There have been various attempts

to �nd appli
ations for the o
tonions mainly in geometry and

physi
s [15℄�[17℄ and they are expe
ted to be appli
able to

high dimensional signal pro
essing. Some studies on o
tonion

neural networks, whose inputs, outputs, weights and biases

are all o
tonions, also have been done [18℄�[20℄. C.-A. Popa

presented the gradient des
ent algorithm for training o
tonion

feedforward neural networks [19℄. In [20℄ C.-A. Popa studied

the stability analysis of neutral-type o
tonion neural networks

with time varying delays.

This paper presents models of fully 
onne
ted re
urrent

neural networks, whi
h are extensions of the real-valued

Hop�eld-type neural networks to the o
tonions and dis
uss

dynami
s of those models from the point view of existen
e

of an energy fun
tion. We have already proposed a model

of Hop�eld-type o
tonion neural networks and derived the

existing 
ondition of energy fun
tions for it [18℄. Due to

the fa
t that the o
tonions are non-
ommutative and non-
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asso
iative on multipli
ation, a 
ouple of different models 
an

be 
onsidered. In this paper, with this in mind, we propose

four models of Hop�eld-type o
tonion neural networks. We

also derive the existen
e 
onditions of energy fun
tions for

ea
h of them and 
onstru
t an energy fun
tion for ea
h model.

Similar to the real-valued ones, the energy fun
tions enable

us to analyze qualitative behaviors of the re
urrent o
tonion

neural networks and to apply to various problems su
h as

synthesis of asso
iative memories, optimization problems and

so on.

II. OCTONIONS

The o
tonions, whi
h we denote by O, are an 8-dimensional

algebra with basis

{1, e1, e2, e3, e4, e5, e6, e7}

and their multipli
ation is given in Table I, whi
h des
ribes

the result of multiplying the element in the ith row by the

element in the jth 
olumn [15℄. An o
tonion number x ∈ O

is des
ribed by

x =x(0) + e1x
(1) + e2x

(2) + e3x
(3)

+ e4x
(4) + e5x

(5) + e6x
(6) + e7x

(7)
(1)

where x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)
are real num-

bers. It is found from Table I that the o
tonions are non-

TABLE I

OCTONION MULTIPLICATION TABLE

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 -1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 -1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 -1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 -1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 -1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 -1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 -1


ommutative on multipli
ation:

eiej = −ejei 6= ejei

for i 6= j, non-asso
iative on multipli
ation:

(eiej)ek = −ei(ejek) 6= ei(ejek)

for i 6= j 6= k, and the o
tonion O does not belong to the

Clifford algebra be
ause of the latter fa
t.

x(0)
of (1) is 
alled real part, and is represented by Re(x).

An o
tonion whose real part is equal to zero is 
alled pure

o
tonion. The o
tonion 
onjugate x∗
is de�ned by

x∗ =x(0) − e1x
(1) − e2x

(2) − e3x
(3)

− e4x
(4) − e5x

(5) − e6x
(6) − e7x

(7). (2)

The norm of an o
tonion number |x| is de�ned by

|x|2 = x∗x =

7
∑

i=0

x(i)2 . (3)

III. FOUR MODELS OF HOPFIELD-TYPE OCTONION

NEURAL NETWORKS

In this se
tion we propose models of fully 
onne
ted

re
urrent neural networks, whi
h are extensions of real valued


ontinuous-time Hop�eld neural networks into the o
tonion

domain. Sin
e the o
tonions are non-
ommutative and non-

asso
iative on multipli
ation, a 
ouple of different models


an be 
onsidered. We present four models of Hop�eld type

o
tonion neural networks.

The �rst model is a dire
t extension of the Hop�eld neural

networks, des
ribed by differential equations of the form [18℄:

Model 1:











τi
dui

dt
= −ui +

n
∑

j=1

wijvj + bi

vi = f(ui) (i = 1, 2, ..., n)

(4)

where n is the number of neurons, τi is the time 
onstant of

the ith neuron, ui and vi are the state and the output of the ith
neuron at time t, respe
tively, bi is the threshold value, wij is

the 
onne
tion weight 
oef�
ient from the jth neuron to the

ith one, and f(·) is the a
tivation fun
tion of the neurons. In

the model ui, vi, bi and wij are all o
tonions: ui ∈ O, vi ∈ O,

bi ∈ O and wij ∈ O. The time 
onstant τi is a positive real

number: τi ∈ R, τi > 0. The produ
t wijvj is performed

a

ording to the o
tonion multipli
ation table shown in Table

I. The a
tivation fun
tion f(·) is a nonlinear fun
tion whi
h

maps from an o
tonion to an o
tonion: f : O → O, and

dui

dt
:=

d

dt
u
(0)
i +

7
∑

j=1

ej
d

dt
u
(j)
i .

Note that the neural network des
ribed by (4) is a dire
t

o
tonion-domain extension of the real-valued 
ontinuous-time

neural network of Hop�eld type.

Sin
e the o
tonions are non-
ommutative on multipli
ation,

the model in whi
h the produ
t wijvj in the model (4) is

repla
ed by vjwij is a different model. As the se
ond model

we 
onsider the model whi
h is des
ribed by differential

equations of the form:

Model 2:











τi
dui

dt
= −ui +

n
∑

j=1

vjwij + bi

vi = f(ui) (i = 1, 2, ..., n)

. (5)

Noting that in Model 1 (4) the signal vi is weighted from

the left hand side and in Model 2 (5) the signal vi is weighted
from the right side, the other models in whi
h the signal

vi is weighted from both sides 
an be 
onsidered. Letting

the weight by whi
h vi is multiplied from the left be wℓ
ij

and from the right be wr
ij , su
h models are obtained by

repla
ing wijvj in (4) or vjwij in (5) by wℓ
ijvjw

r
ij . Note

that, sin
e the o
tonions are non-asso
iative on multipli
ation,

wℓ
ij(vjw

r
ij) and (wℓ

ijvj)w
r
ij are different. We 
onsider the

additional following two models.



Model 3:











τi
dui

dt
= −ui +

n
∑

j=1

wℓ
ij(vjw

r
ij) + bi

vi = f(ui) (i = 1, 2, ..., n)

. (6)

Model 4:











τi
dui

dt
= −ui +

n
∑

j=1

(wℓ
ijvj)w

r
ij + bi

vi = f(ui) (i = 1, 2, ..., n)

. (7)

IV. DEFINITION OF ENERGY FUNCTIONS

We are now in the position to give the de�nition of energy

fun
tions for the o
tonion neural networks Model 1 (4), Model

2 (5), Model 3 (6) and Model 4 (7). If the neural network of

Model 1 (4) is real valued, that is, ui, vi, bi and wij are all real,

ui ∈ R, vi ∈ R, bi ∈ R, wij ∈ R and the a
tivation fun
tion is

a real nonlinear fun
tion f : R → R, the existen
e 
ondition

of an energy fun
tion whi
h Hop�eld et al. obtained is that

the weight matrix W = {wij} is a symmetri
 matrix (wij =
wji) and the a
tivation fun
tion is 
ontinuously differentiable,

bounded and monotoni
ally in
reasing. The following fun
tion

E : Rn → R was proposed as an energy fun
tion for the

network.

E(v) = −
1

2

n
∑

i=1

n
∑

j=1

wijvivj −
n
∑

i=1

bivi

+
n
∑

i=1

∫ vi

0

f−1(ρ)dρ (8)

where v = [v1, v2, · · · , vn]T ∈ Rn
and f−1

is the inverse

fun
tion of f . Hop�eld et al. showed that, if the existen
e


onditions hold, the network (4) has the fun
tion E(v) and

it has the following property; the time derivative of E along

the traje
tories of (4), denoted by

dE
dt

∣

∣

(4)R
is less or equal to

0,

dE
dt

∣

∣

(4)R
≤ 0, and furthermore

dE
dt

∣

∣

(4)R
= 0 if and only if

dvi
dt

= 0 ( i = 1, 2, · · · , n ).
We de�ne an energy fun
tion for the o
tonion neural

networks of Model 1 (4), Model 2 (5), Model 3 (6) and Model

4 (7), by the analogy to that for Hop�eld type real-valued

neural networks as follows.

De�nition 1: Consider the o
tonion neural network (N )
where N is the equation number, 4, 5, 6 or 7. E is an energy

fun
tion of the o
tonion neural network (N ), if the following

onditions are satis�ed.

(i) E(·) is a mapping E : O → R.

(ii) The derivative of E along the traje
tories of the

network (N ), denoted by

dE
dt

∣

∣

(N )
, satis�es

dE
dt

∣

∣

(N )
≤ 0.

Furthermore,

dE
dt

∣

∣

(N )
= 0 if and only if

dvi
dt

= 0 ( i =

1, 2, · · · , n ).

V. EXISTENCE CONDITIONS OF ENERGY FUNCTIONS

A. O
tonion A
tivation Fun
tion

One of the important fa
tors to 
hara
terize dynami
s of

re
urrent neural networks is their a
tivation fun
tions whi
h

are nonlinear fun
tions. It is therefore, important to dis
uss

whi
h type of nonlinear fun
tions is 
hosen as a
tivation

fun
tions for the o
tonion neural networks of Model 1 (4),

Model 2 (5), Model 3 (6) and Model 4 (7). In the real-

valued neural networks, the a
tivation is usually 
hosen to be

a smooth and bounded fun
tion su
h as a sigmoidal fun
tion.

Re
all that, in the 
omplex domain, the Liouvill's theorem

says that `if f(·) is analyti
 at all points of the 
omplex

plane and bounded, then f(·) is 
onstant'. Sin
e a suitable

f(·) should be bounded, it follows from the theorem that if

we 
hoose an analyti
 fun
tion for f(·), it is 
onstant over

the entire 
omplex plane, whi
h is 
learly not suitable. In

the 
omplex-valued neural networks in [10℄, [11℄, in pla
e of

analyti
 fun
tion, a fun
tion whose real and imaginary parts

are 
ontinuously differentiable with respe
t to the real and

imaginary variables of its argument, respe
tively, is 
hosen

for the a
tivation fun
tion and the existen
e 
onditions of an

energy fun
tion are derived.

In this paper, a

ording to the dis
ussion on the a
tivation

fun
tion of the 
omplex-valued neural networks [10℄, [11℄, we


hoose a fun
tion whi
h satis�es the following 
onditions as

the a
tivation fun
tion for the o
tonion neural networks of

Model 1 (4), Model 2 (5), Model 3 (6) and Model 4 (7).

Let us express the nonlinear o
tonion fun
tion f(u) : O →
O as:

f(u) = f (0)(u(0), u(1), · · · , u(7)) (9)

+

7
∑

i=1

eif
(i)(u(0), u(1), · · · , u(7)) (10)

where

u = u(0) +
7

∑

i=1

eiu
(i)

(11)

and f (i), i = 0, 1, 2, 3, 4, 5, 6, 7 is a real fun
tion: f (i) :
R8 → R. We assume the following 
onditions on the a
tivation

fun
tion f(u) : O → O of the o
tonion neural networks of

Model 1 (4), Model 2 (5), Model 3 (6) and Model 4 (7).

(i) f (l)(·), (l = 0, 1, · · · , 7) are 
ontinuously differen-

tiable with respe
t to u(m), (m = 0, 1, · · · , 7).
(ii) f(·) is a bounded fun
tion, that is, there exists some

M > 0 su
h that |f(·)| ≤ M .

From this assumption, we 
an de�ne the Ja
obian matrix of

the a
tivation fun
tion f at a point u, denoted by Jf (u) =
{αlm(u)} ∈ R8×8

where

αlm(u) =
∂f (l)

∂u(m)

∣

∣

∣

∣

u

. (12)

B. Derivation of Existen
e Conditions

We now dis
uss existen
e 
onditions of the energy fun
tions

for the o
tonion neural networks of Model 1 (4), Model 2

(5), Model 3 (6) and Model 4 (7). We need the following

assumptions on the a
tivation fun
tion.

Assumption 1: The a
tivation fun
tion f satis�es

(i) f is an inje
tive fun
tion,



(ii) Jf (u) is a symmetri
 matrix for all u ∈ O,

(iii) Jf (u) is positive de�nite for all u ∈ O.

Be
ause of the 
ondition (i) of Assumption 1 and bound-

edness of f , there exists the inverse fun
tion of f , denoted by

g = f−1
. We express g as u = g(v):

g(v) = g(0)(v(0), v(1), · · · , v(7))

+

7
∑

i=1

eig
(i)(v(0), v(1), · · · , v(7)) (13)

where g(l) : R8 → R (l = 0, 1, · · · , 7). Then, the following

lemma holds.

Lemma 1: If f satis�es Assumption 1, there exists a s
alar

fun
tion G(v) : O → R su
h that

∂G

∂v(l)
= g(l)(v(0), v(1), · · · , v(7)) (l = 0, 1, · · · , 7). (14)

Proof: We de�ne the Ja
obian matrix of g at v by

Jg(v) = {βlm} ∈ R8×8
where βlm = ∂g(l)/∂v(m)

By partially differentiating both sides of the equations

u(l) = g(l)(v(0), v(1), · · · , v(7)) with respe
t to u(m) (l,m =
0, 1, · · · , 7), the relation I = Jg(v)Jf (u) is obtained for all

u, where I ∈ R
8×8

is identity matrix. From this relation

and the 
onditions (ii) and (iii) of Assumption 1, the fa
t

Jg(v) = {Jf (u)
−1}t = Jg(v)

t
holds. Therefore we have

∂g(l)

∂v(m)

∣

∣

∣

∣

v

=
∂g(m)

∂v(l)

∣

∣

∣

∣

v

(l,m = 0, 1, · · · , 7) (15)

for all v ∈ O. Let us de�ne a fun
tion G by

G(v) =

∫ v(0)

0

g(0)(ρ, 0, 0, 0, 0, 0, 0, 0)dρ

+

∫ v(1)

0

g(1)(v(0), ρ, 0, 0, 0, 0, 0, 0)dρ

+

∫ v(2)

0

g(2)(v(0), v(1), ρ, 0, 0, 0, 0, 0)dρ

+

∫ v(3)

0

g(3)(v(0), v(1), v(2), ρ, 0, 0, 0, 0)dρ

+

∫ v(4)

0

g(4)(v(0), v(1), v(2), v(3), ρ, 0, 0, 0)dρ

+

∫ v(5)

0

g(5)(v(0), v(1), v(2), v(3), v(4), ρ, 0, 0)dρ

+

∫ v(6)

0

g(6)(v(0), v(1), v(2), v(3), v(4), v(5), ρ, 0)dρ

+

∫ v(7)

0

g(7)(v(0), v(1), v(2), v(3), v(4), v(5), v(6), ρ)dρ.

(16)

It 
an be easily shown by using (15) that the fun
tion G
satis�es the equations (14).
In the followings we derive the existing 
onditions of energy

fun
tions of the o
tonion neural networks and 
onstru
t energy

fun
tions by using the fun
tion G.

The following theorem holds for the o
tonion neural net-

works of Model 1 (4) and Model 2 (5).

Theorem 1: Consider the o
tonion neural networks of Model

1 (4) and Model 2 (5). If the weight 
oef�
ients wij satisfy

wji = w∗
ij (i, j = 1, 2, · · · , n), (17)

and the a
tivation fun
tion f satis�es Assumption 1, then there
exist the energy fun
tions for them. The energy fun
tions are


onstru
ted as:

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i wijvj + 2b∗i vi)−G(vi)

}

(18)

for the network of Model 1 (4) and

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i vjwij + 2b∗i vi)−G(vi)

}

(19)

for the network of Model 2 (5).

Remark: 1: Sin
e the o
tonions are non-asso
iative on

multipli
ation, the order of the multipli
ations of v∗i wijvj
in (18) (v∗i vjwij in (19)) should be spe
i�ed: v∗i (wijvj)
or (v∗i wij)vj (v∗i (vjwij) or (v∗i vj)wij ). However it 
an be

shown that the equality Re(v∗i (wijvj)) = Re((v∗i wij)vj)
(Re(v∗i (vjwij)) = Re((v∗i vj)wij)) holds, and hen
e the order

of the multipli
ations is not spe
i�ed in (18) (in (19)).

Proof: First we prove the existen
e of the energy fun
tion

for the network of Model 1 (4) by showing that the fun
tion

given by (18) satis�es the de�nition of the energy fun
tion

(De�nition 1). Let us de�ne the gradient operator in the

o
tonion domain as:

∇vi =
d

dv
(0)
i

+

7
∑

j=1

ej
d

dv
(j)
i

. (20)

Let v̂i be v̂i = [v
(0)
i , v

(1)
i , · · · , v

(7)
i ]t ∈ R8

. Under the

assumption (17) on the weight 
oef�
ients wij , the gradient

of the energy fun
tion E given by (18) with respe
t to v̂i,

denoted by ∇v̂i
E(v), 
an be 
al
ulated as follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
1
ij v̂j + b̂i)

= −τi
dûi

dt
(21)

where ûi = [u
(0)
i , u

(1)
i , · · · , u

(7)
i ]t ∈ R8

, b̂i =



[b
(0)
i , b

(1)
i , · · · , b

(7)
i ]t ∈ R8

and

Ŵ
1
ij =





































w
(0)
ij −w

(1)
ij −w

(2)
ij −w

(3)
ij −w

(4)
ij −w

(5)
ij −w

(6)
ij −w

(7)
ij

w
(1)
ij w

(0)
ij −w

(4)
ij −w

(7)
ij w

(2)
ij −w

(6)
ij w

(5)
ij w

(3)
ij

w
(2)
ij w

(4)
ij w

(0)
ij −w

(5)
ij −w

(1)
ij w

(3)
ij −w

(7)
ij w

(6)
ij

w
(3)
ij w

(7)
ij w

(5)
ij w

(0)
ij −w

(6)
ij −w

(2)
ij w

(4)
ij −w

(1)
ij

w
(4)
ij −w

(2)
ij w

(1)
ij w

(6)
ij w

(0)
ij −w

(7)
ij −w

(3)
ij w

(5)
ij

w
(5)
ij w

(6)
ij −w

(3)
ij w

(2)
ij w

(7)
ij w

(0)
ij −w

(1)
ij −w

(4)
ij

w
(6)
ij −w

(5)
ij w

(7)
ij −w

(4)
ij w

(3)
ij w

(1)
ij w

(0)
ij −w

(2)
ij

w
(7)
ij −w

(3)
ij −w

(6)
ij w

(1)
ij −w

(5)
ij w

(4)
ij w

(2)
ij w

(0)
ij





































.

Thus the gradient of the fun
tion E given by (18), ∇viE(v),
is obtained as follows.

∇viE(v) = −(−ui +

n
∑

j=1

wijvj + b)

= −τi
dui

dt
. (22)

By using (22) the derivative of the energy fun
tion E given

by (18) along the traje
tories of the network of Model 1 (4)
is 
al
ulated as follows.

dE(v)

dt

∣

∣

∣

∣

(4)

=

n
∑

i=1

7
∑

l=0

dE

dv
(l)
i

dv
(l)
i

dt

= Re{
n
∑

i=1

∇viE(v)∗
dvi
dt

}. (23)

Substituting (22) into the right side of the above equation, we

have

dE(v)

dt

∣

∣

∣

∣

(4)

=−
n
∑

i=1

(
du

(0)
i

dt
τi
dv

(0)
i

dt
+

du
(1)
i

dt
τi
dv

(1)
i

dt
+ · · ·

+
du

(6)
i

dt
τi
dv

(6)
i

dt
+

du
(7)
i

dt
τi
dv

(7)
i

dt
)

=−
n
∑

i=1

((

7
∑

m=0

dg(0)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(0)
i

dt

+ (

7
∑

m=0

dg(1)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(1)
i

dt

+ . . .

+ (
6

∑

m=0

dg(6)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(6)
i

dt

+ (

7
∑

m=0

dg(7)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(7)
i

dt
)

=−
n
∑

i=1

(
dv̂i

dt
)tτiJg(vi)

t(
dv̂i

dt
) (24)

where Jg(vi) is the Ja
obian matrix of the fun
tion g(·) with
respe
t to vi.

Sin
e τi > 0 for all i and Jg(vi) is positive de�nite for

any vi (i = 1, 2, · · · , n), the 
ondition

dE
dt

∣

∣

(4)
≤ 0 holds, and

furthermore

dE
dt

∣

∣

(4)
= 0 if and only if

dv̂
dt

= 0 ⇔ dvi
dt

= 0.

Hen
e the fun
tion E satis�es the de�nition of energy fun
-

tions (De�nition 1).

The existen
e of the energy fun
tion for the network of

Model 2 (5) 
an be proved as follows. Under the assumption

(17) on the weight 
oef�
ients wij , the gradient of the fun
tion

E given by (19) with respe
t to v̂i 
an be 
al
ulated as

follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
2
ij v̂j + b̂i)

= −τi
dûi

dt
(25)

where
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.

Note that the equation (25) be
omes equal to (21) by repla
ing

Ŵ
2
ij in (25) by Ŵ

1
ij in (21). By using the fa
t the existen
e


ondition of the energy fun
tions for Model 2 
an be proved

in the similar way to that for Model 1.

The following theorem holds for the o
tonion neural net-

works of Model 3 (6) and Model 4 (7).

Theorem 2: Consider the o
tonion neural networks of Model

3 (6) and Model 4 (7). Assume that the weight 
oef�
ients wℓ
ij

and wr
ij satisfy wℓ

ij

∗
= wr

ij and we rewrite them as

wij := wℓ
ij

∗
= wr

ij .

If the weight 
oef�
ients wij satisfy the 
ondition (17) and

the a
tivation fun
tion f satis�es Assumption 1, then there

exist the energy fun
tions for them. The energy fun
tions are


onstru
ted as:

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i (w

∗
ij(vjwij)) + 2b∗i vi)−G(vi)

}

(26)

for the network of Model 3 (6) and

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i ((w

∗
ijvj)wij) + 2b∗i vi)−G(vi)

}

(27)

for the network of Model 4 (7).



Proof: The existen
e of the energy fun
tion for the

network of Model 3 (6) 
an be proved as follows. Under the

assumption (17) on the weight 
oef�
ients wij := wℓ
ij

∗
= wr

ij ,

the gradient of the fun
tion E given by (26) with respe
t to

v̂i 
an be 
al
ulated as follows:

∇v̂i
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n
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.

Note that the equation (28) be
omes equal to (21) by

repla
ing Ŵ
3
ijŴ

2
ij by Ŵ

1
ij in (21). It 
an be shown that the

produ
t of the matri
es Ŵ
3
ij and Ŵ

2
ij is 
ommutative, that

is, Ŵ
3
ijŴ

2
ij = Ŵ

2
ijŴ

3
ij . By using these fa
ts the existen
e


ondition of the energy fun
tions for Model 3 
an be proved

in the similar way to that for Model 1.

The existen
e of the energy fun
tion for the network of

Model 4 (7) 
an be proved as follows. Under the assumption

(17) on the weight 
oef�
ients wij := wℓ
ij

∗
= wr

ij , the

gradient of the fun
tion E given by (27) with respe
t to v̂i


an be 
al
ulated as follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
2
ijŴ

3
ij v̂j + b̂i)

= −τi
dûi

dt
. (29)

Note that the equation (29) be
omes equal to (21) by repla
ing

Ŵ
2
ijŴ

3
ij by Ŵ

1
ij in (21). By using the fa
t the existen
e


ondition of the energy fun
tions for Model 4 
an be proved

in the similar way to that for Model 1.

Remark: 2: It 
an be shown that the relation (b∗a)b =
b∗(ab) holds for any o
tonion a ∈ O and b ∈ O. Therefore

the term w∗
ij(vjwij) in the energy fun
tion (26) of Model 3

and the term (w∗
ijvj)wij in the energy fun
tion (27) of Model

4 are identi
al and they are same energy fun
tions.

The existen
e 
onditions of energy fun
tions thus obtained

are ones on the 
onne
tion weight 
oef�
ients wij and the

a
tivation fun
tion f(·). As examples of the fun
tions whi
h

satisfy Assumption 1,

f(u) =
u

1 + |u|
(30)

f(u) = tanh(u(0)) +

7
∑

i=1

ei tanh(u
(i)) (31)


an be 
onsidered. Equation (30) has the same form as that

of the 
omplex-valued fun
tion whi
h is often used in the


omplex-valued neural networks [10℄, [11℄. The fun
tion (31)

is a split a
tivation fun
tion, that is, ea
h 
omponent of its

argument is transformed separately.

It is expe
ted that the energy fun
tions (18), (19), (26) and

(27) 
an be applied to various problems. In the real valued

neural networks energy fun
tions have been applied to various

problems su
h as qualitative analysis of neural networks,

synthesis of asso
iative memories and optimization problems.

In [10℄ and [12℄, qualitative analysis of the 
omplex valued and

quaternion valued networks is performed by utilizing energy

fun
tions and some results are obtained. The similar results


an be obtained for the o
tonion neural networks (4), (5), (6)

and (7) by utilizing the energy fun
tions (18), (19), (26) and

(27).

VI. CONCLUSION

Re
ently models of neural networks in the real domain

have been extended into the high dimensional domain su
h

as the 
omplex number and quaternion domain. In this paper

we extended 
onventional real-valued models of re
urrent

neural networks into the o
tonion domain and dis
ussed their

dynami
s. Sin
e the o
tonions are non-
ommutative and non-

asso
iative on multipli
ation, a 
ouple of different models of

o
tonion neural networks 
an be 
onsidered. We proposed four

models of fully 
onne
ted re
urrent o
tonion neural network,

whi
h are extensions of the real-valued Hop�eld type neural

networks to the o
tonion domain. We also studied dynami
s

of the proposed models from the point view of existen
e 
on-

ditions of energy fun
tions. We derive the existen
e 
onditions

of energy fun
tions for ea
h of them and 
onstru
t an energy

fun
tion for ea
h model. It is expe
ted that those energy

fun
tions are applied to various problems su
h as qualitative

analysis of neural networks, synthesis of asso
iative memories,

optimization problems and so on. Note also that, although we

treat 
ontinuous-time models of Hop�eld type neural networks

in this paper, dis
rete-time ones 
an be 
onsidered and are of

interest and useful espe
ially from implementation viewpoint.

It 
an be 
onsidered the similar dis
ussions 
an be done

on dis
rete-time models of Hop�eld type o
tonion neural

networks.
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