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Abstract—Recently, models of neural networks in the real
domain have been extended into the high dimensional domain
such as the complex number and quaternion domain, and several
high-dimensional models have been proposed. These extensions
are generalized by introducing Clifford algebra (geometric alge-
bra). In this paper we extend conventional real-valued Hopfield-
type neural networks into the octonion domain and discuss their
dynamics. The octonions represent a particular extension of the
quaternions which also represent a particular extension of the
complex numbers and have 7 imaginary parts. They are non-
commutative and non-associative on multiplication and do not
belong to Clifford algebra due to the latter fact. With this in
mind we propose four models of octonion Hopfield-type neural
networks. We derive existence conditions of an energy function
and construct energy function for each model.

Index Terms—Hopfield neural network, octonion neural net-
work, energy function, existing condition

I. INTRODUCTION

In recent years, there have been increasing research interests
of artificial neural networks and many efforts have been
made on applications of neural networks to various fields.
As applications of the neural networks spread more widely,
developing neural network models which can directly deal
with complex numbers is desired in various fields. Several
models of complex-valued neural networks have been pro-
posed and their abilities of information processing have been
investigated [1], [2]. Furthermore those studies are extended
into the quaternion numbers domain, and models of quaternion
neural networks are proposed and actively studied [2], [12].
These extensions are generalized [3] by introducing Clifford
algebra (also called geometric algebra) [4]-[6].

It is well known that one of the pioneering works that
triggered the research interests of neural networks in the last
three decades is a proposal of models for neural networks
by Hopfield [7]-[9]. He introduced the idea of an energy
function to formulate a way of understanding the computation
performed by fully connected recurrent neural networks and
showed that a combinatorial optimization problem can be
solved by them. The energy functions have been applied to var-
ious problems such as qualitative analysis of neural networks,
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synthesis of associative memories, optimization problems and
$O on ever since.

The extensions of the Hopfield-type neural networks to the
complex domain and the quaternion domain have been studied.
The existence condition of an energy function was derived
for the complex-valued Hopfield-type neural networks [10],
[11] and for quaternion Hopfield-type neural networks [12].
Those studies were also extended into the domains of the dual
numbers and the hyperbolic numbers [13]. In all those studies
the application of the energy functions to qualitative analysis
of the Hopfield-type neural networks was also discussed. All
the domains into which the real valued Hopfield-type neural
networks were extended so far, that is, the complex, dual,
hyperbolic numbers and the quaternions belong to Clifford
algebra [4]-[6], [14].

In this paper we extend conventional real-valued neural
networks into the octonion domain. The octonions represent
a particular extension of the quaternions which also rep-
resent a particular extension of the complex numbers, and
have 7 imaginary parts. They are non-commutative and non-
associative on multiplication and do not belong to Clifford
algebra due to the latter fact. There have been various attempts
to find applications for the octonions mainly in geometry and
physics [15]-[17] and they are expected to be applicable to
high dimensional signal processing. Some studies on octonion
neural networks, whose inputs, outputs, weights and biases
are all octonions, also have been done [18]-[20]. C.-A. Popa
presented the gradient descent algorithm for training octonion
feedforward neural networks [19]. In [20] C.-A. Popa studied
the stability analysis of neutral-type octonion neural networks
with time varying delays.

This paper presents models of fully connected recurrent
neural networks, which are extensions of the real-valued
Hopfield-type neural networks to the octonions and discuss
dynamics of those models from the point view of existence
of an energy function. We have already proposed a model
of Hopfield-type octonion neural networks and derived the
existing condition of energy functions for it [18]. Due to
the fact that the octonions are non-commutative and non-



associative on multiplication, a couple of different models can
be considered. In this paper, with this in mind, we propose
four models of Hopfield-type octonion neural networks. We
also derive the existence conditions of energy functions for
each of them and construct an energy function for each model.
Similar to the real-valued ones, the energy functions enable
us to analyze qualitative behaviors of the recurrent octonion
neural networks and to apply to various problems such as
synthesis of associative memories, optimization problems and
SO on.

II. OCTONIONS
The octonions, which we denote by O, are an 8-dimensional
algebra with basis
{17 €1,e2,e3, €y, €5, €, 97}

and their multiplication is given in Table I, which describes
the result of multiplying the element in the ith row by the
element in the jth column [15]. An octonion number x € O
is described by

=z 4+ elx(l) + GQ.I(Q) + egI(B)
+ esz® +e52® + egz® + eqa(? (1)
where (0, (1) 22 2G) 21 205) 206 2() are real num-

bers. It is found from Table I that the octonions are non-

TABLE 1
OCTONION MULTIPLICATION TABLE

[ L] e | e [ es | es [ es [ e [ er
1 1 e ez es3 eq es eg er
e e -1 e4 er —es eg —es —e3
e e —ey -1 es eq —e3 er —eg
e3 || e3 | —e7r | —es -1 e e —ey el
ey ey es —e1 —eg -1 er es —es
es es —eg es —e2 —er7 -1 e e4
ep ep es —ery ey —e3 —e1 -1 es
er er es ep —e1 es —eq4 | —e2 -1

commutative on multiplication:
€;6; = —€;€; }é €;€;

for ¢ # j, non-associative on multiplication:
(eiej)er = —e;(ejer) # ei(ejex)

for ¢ # j # k, and the octonion @ does not belong to the
Clifford algebra because of the latter fact.

2(©) of (1) is called real part, and is represented by Re(x).
An octonion whose real part is equal to zero is called pure

octonion. The octonion conjugate x* is defined by
2" =20 — ez — eyz? — 32

—eqr™® —es2® — egr'® — era(™. 2)

The norm of an octonion number |z| is defined by

7
|z)? = ¥z = Zx(i)z. 3)
i=0

III. FOUR MODELS OF HOPFIELD-TYPE OCTONION
NEURAL NETWORKS

In this section we propose models of fully connected
recurrent neural networks, which are extensions of real valued
continuous-time Hopfield neural networks into the octonion
domain. Since the octonions are non-commutative and non-
associative on multiplication, a couple of different models
can be considered. We present four models of Hopfield type
octonion neural networks.

The first model is a direct extension of the Hopfield neural
networks, described by differential equations of the form [18]:
Model 1:

dui o
Ti% = —ui—l—j;wijvj—i-bi (4)
vi = f(u;) (=1,2,..,n)

where n is the number of neurons, 7; is the time constant of
the ¢th neuron, u; and v; are the state and the output of the ith
neuron at time ¢, respectively, b; is the threshold value, w;; is
the connection weight coefficient from the jth neuron to the
ith one, and f() is the activation function of the neurons. In
the model u;, v;, b; and w;; are all octonions: u; € O, v; € O,
b; € O and w;; € O. The time constant 7; is a positive real
number: 7; € R, > 0. The product w;jv; is performed
according to the octonion multiplication table shown in Table
I. The activation function f(-) is a nonlinear function which
maps from an octonion to an octonion: f : O — O, and

7
dui _ d (o) d 4
T at +;eﬂdt“i '

Note that the neural network described by (4) is a direct
octonion-domain extension of the real-valued continuous-time
neural network of Hopfield type.

Since the octonions are non-commutative on multiplication,
the model in which the product w;;v; in the model (4) is
replaced by vjw;; is a different model. As the second model
we consider the model which is described by differential
equations of the form:

Model 2:
dui 2
Ti% = —u; + ;ijij +b; 5)
vi =f(u;) (i=1,2,...,n)

Noting that in Model 1 (4) the signal v; is weighted from
the left hand side and in Model 2 (5) the signal v; is weighted
from the right side, the other models in which the signal
v; is weighted from both sides can be considered. Letting
the weight by which v; is multiplied from the left be wfj
and from the right be wy;, such models are obtained by
replacing w;;v; in (4) or vjw;; in (5) by wfjvjwirj. Note
that, since the octonions are non-associative on multiplication,
wi;(v;wy;) and (w;v;)wy; are different. We consider the
additional following two models.



Model 3

Ti% = —u; + lefj (vjwi;) + b - ©)
v; = f(u;) J(izl,Q,...,n)
Model 4:
du; " y ”
i + Zl(wijvj)wij + b; ™
v; = f(uy) J(izl,Q,...,n)

IV. DEFINITION OF ENERGY FUNCTIONS

We are now in the position to give the definition of energy
functions for the octonion neural networks Model 1 (4), Model
2 (5), Model 3 (6) and Model 4 (7). If the neural network of
Model 1 (4) is real valued, that is, u;, v, b; and w;; are all real,
u; € R,v; € R, b; € R, w;; € R and the activation function is
a real nonlinear function f : R — R, the existence condition
of an energy function which Hopfield et al. obtained is that
the weight matrix W = {w;;} is a symmetric matrix (w;; =
wj;) and the activation function is continuously differentiable,
bounded and monotonically increasing. The following function
FE : R" — R was proposed as an energy function for the
network.

1 n n
E(v 522 Wi ViV — Zb v;
D A ®
where v = [v1,v9,---,v,]T € R™ and f~! is the inverse

function of f. Hopfield et al. showed that, if the existence
conditions hold, the network (4) has the function F(v) and
it has the following property; the time derivative of F along
the trajectories of (4), denoted by & & | ()R is less or equal to

0, ( e < 0, and furthermore ‘Z—ﬂ( DR = 0 if and only if
CS;’ =0(i=1,2,---,n).

We define an energy function for the octonion neural
networks of Model 1 (4), Model 2 (5), Model 3 (6) and Model
4 (7), by the analogy to that for Hopfield type real-valued
neural networks as follows.

Definition 1: Consider the octonion neural network (N)
where N is the equation number, 4, 5, 6 or 7. F is an energy
function of the octonion neural network (N), if the following
conditions are satisfied.

(i) E()is a mapping £ : O — R.
(i) The derivative of E along the trajectories of the
network (), denoted by 42 |(/\/ satisfies 22 |(/\/ <0.

Furthermore, = 0 if and only if dvl =0(i=
1,2,---,n).

@l =

V. EXISTENCE CONDITIONS OF ENERGY FUNCTIONS
A. Octonion Activation Function

One of the important factors to characterize dynamics of
recurrent neural networks is their activation functions which

are nonlinear functions. It is therefore, important to discuss
which type of nonlinear functions is chosen as activation
functions for the octonion neural networks of Model 1 (4),
Model 2 (5), Model 3 (6) and Model 4 (7). In the real-
valued neural networks, the activation is usually chosen to be
a smooth and bounded function such as a sigmoidal function.
Recall that, in the complex domain, the Liouvill’s theorem
says that ‘if f(-) is analytic at all points of the complex
plane and bounded, then f(-) is constant’. Since a suitable
f () should be bounded, it follows from the theorem that if
we choose an analytic function for f(-), it is constant over
the entire complex plane, which is clearly not suitable. In
the complex-valued neural networks in [10], [11], in place of
analytic function, a function whose real and imaginary parts
are continuously differentiable with respect to the real and
imaginary variables of its argument, respectively, is chosen
for the activation function and the existence conditions of an
energy function are derived.

In this paper, according to the discussion on the activation
function of the complex-valued neural networks [10], [11], we
choose a function which satisfies the following conditions as
the activation function for the octonion neural networks of
Model 1 (4), Model 2 (5), Model 3 (6) and Model 4 (7).

Let us express the nonlinear octonion function f(u): O —
O as:

flu) = f<°< @ D, ) ©)
+ Zeif(i)(u(0)7u(1)7... ,u(7)) (10
i=1
where -
© 4+ " eul® (11)
i=1
and f@, i = 0,1,2,3,4,5,6,7 is a real function: f(*

R® — R. We assume the following conditions on the activation
function f(u) : @ — O of the octonion neural networks of
Model 1 (4), Model 2 (5), Model 3 (6) and Model 4 (7).
i fO),(1 = 0,1,---,7) are continuously differen-
tiable with respect to u(™), (m =0,1,---,7).
(ii) f(-) is a bounded function, that is, there exists some
M > 0 such that |f(-)] < M.
From this assumption, we can define the Jacobian matrix of
the activation function f at a point u, denoted by J¢(u) =
{am (u)} € R®¥*8 where

af®
Ou(m)

am (u) = (12)

B. Derivation of Existence Conditions

We now discuss existence conditions of the energy functions
for the octonion neural networks of Model 1 (4), Model 2
(5), Model 3 (6) and Model 4 (7). We need the following
assumptions on the activation function.

Assumption 1: The activation function f satisfies

(i)  f is an injective function,



(ii) J#(u) is a symmetric matrix for all u € O,
(iil) J¢(u) is positive definite for all v € O.
Because of the condition (i) of Assumption 1 and bound-
edness of f, there exists the inverse function of f, denoted by
g=f"1. We express g as u = g(v):

g(l}) = g(O)(v(O)vv(l)a"' ,1)(7))

7
3 gD, 00,
i=1

where g@) : R® - R (I =
lemma holds.
Lemma 1: If f satisfies Assumption 1, there exists a scalar
function G(v) : O — R such that
oG
ov®
Proof: We define the Jacobian matrix of g at v by
J,(v) = {Bim} € R¥® where By, = 0dgU/ov™
By partially differentiating both sides of the equations
u® = gO O M ... »() with respect to u(™ (I,m =
0,1,---,7), the relation I = J4(v)J f(u) is obtained for all
u, where I € R3%® is identity matrix. From this relation

and the conditions (ii) and (iii) of Assumption 1, the fact
Jy(v) = {Jf(u)"1} = J,(v)? holds. Therefore we have

g g™
dum) } ~ 0

for all v € O. Let us define a function G by

@) a3

0,1,---,7). Then, the following

=gV O M . (M) (1=0,1,---,7). (14

} (lamzoalv"'a’?) (15)

9(p,0,0,0,0,0,0,0)dp

+/ g(l)(v(o),p,070,070,070)dp
0
0@
+/ g@ @ M 0,0,0,0,0)dp
0
e
_|_/ 9@ @@ 0™ @ 5 0,0,0,0)dp
0
o @
_|_/ g(4)(v(0),v(l),v(2),v(3),0a070aO)d/’
0
o
+/ 9(5)(’1}(0),’U(l),’U(2)7U(3)7U(4)7p7070)dp
0
o(®
+ / d©O @O x® @ @ 4@ ©) 5 0)dp
0
oD
-|—/ 9(7)(1}(0),U(1)7U(2),v(3),v(4),v(5),v(ﬁ),p)dp.
0

(16)

It can be easily shown by using (15) that the function G
satisfies the equations (14). [ |

In the followings we derive the existing conditions of energy
functions of the octonion neural networks and construct energy
functions by using the function G.

The following theorem holds for the octonion neural net-
works of Model 1 (4) and Model 2 (5).

Theorem 1: Consider the octonion neural networks of Model
1 (4) and Model 2 (5). If the weight coefficients w;; satisfy

(17]:1527

;n), (17)

. *
Wji = Wi

and the activation function f satisfies Assumption 1, then there
exist the energy functions for them. The energy functions are
constructed as:

n n

== {%Re(vi‘ww + 2bjvi) — G('Ui)} (18)

i=1 j=1

<.

for the network of Model 1 (4) and

_ Z Z {%Re(vajwij +2bv;) — G(Ui)} (19)
i=1 j=1

for the network of Model 2 (5).

Remark: 1: Since the octonions are non-associative on
multiplication, the order of the multiplications of v} w;;v;
in (18) (vivjw;; in (19)) should be specified: v} (w;;v;)
or (viwg;)v; (f(vjws;) or (vivj)w;;). However it can be
shown that the equality Re(v](w;;v;)) = Re((viwij)vy)
(Re(v} (vjwsj)) = Re((v}vj)w;;)) holds, and hence the order
of the multiplications is not specified in (18) (in (19)).

Proof: First we prove the existence of the energy function
for the network of Model 1 (4) by showing that the function
given by (18) satisfies the definition of the energy function
(Definition 1). Let us define the gradient operator in the
octonion domain as:

7

d d
Vy, = —= + e;i——. (20)
dvfo) ; Jdvzw

Let ¥; be v; = [vfo),vgl),~-~ ,vzm]t € R8. Under the
assumption (17) on the weight coefficients w;;, the gradient
of the energy function E given by (18) with respect to v;,
denoted by V¢, E(v), can be calculated as follows:

Vo, E(v) = ul—l—z V]-i-b
du;
-0 21
Tig 2D
where 0; = [ul(-o), 51), ,u£7)]t € RS b, =



B, M . b7t € R® and

WL =

0® —u —u® —w® —w® @ ® D]
wy wf —wp —wp) wf e ) w)
wy wp wg el —wp) wf) el e
o 0@ w® w® —w® W® P )
w® w0 w® w® @ WD @ O
o oyl ol W) ) )
W —w® W~ W w§j> wl —w?
wi) —wly —w) wy) —wp) wp e w) |

Thus the gradient of the function E given by (18), V,, E(v),
is obtained as follows.

Vo, E(v)

—U; + Z wijvj + b)
j=1
dui
= —T—. 22
iy (22)
By using (22) the derivative of the energy function E' given
by (18) along the trajectories of the network of Model 1 (4)

is calculated as follows.

dE(v) e

dt

n 7 dE d
zz—<
= Re{z

Substituting (22) into the right side of the above equation, we
have

dE(v)

(4)
dvZ

} (23)

24

where J,(v;) is the Jacobian matrix of the function ¢(-) with
respect to v;.

Since 7; > 0 for all ¢ and J4(v;) is positive definite for

any v; (i =1,2,---,n), the condition il—t‘( 4 < 0 holds, and
furthermore Cfi—lf’( 4 = 0 if and only if L —0e =9

Hence the function E satisfies the definition of energy func-
tions (Definition 1).

The existence of the energy function for the network of
Model 2 (5) can be proved as follows. Under the assumption
(17) on the weight coefficients w;;, the gradient of the function
E given by (19) with respect to v; can be calculated as
follows:

Vo.E(v) = —(-;+Y W}v;+b)
j=1
da;
= —nt 25)

where

W2, —

'wz(?) l(Jl) wz(j) wl(J3) Z(;l) wl(j) Z(]6) wg)'
wz(]l) wz(;)) wl(;l) wz(;) wz(j) wz(f) wz(]5) wl(J3)
wl(?) wE;l) wS)) wl(?) ngl) _wz(j_) wg) —wff)
wl(?) wg) wl(;?) wl(?) U’EJG) wl(?) _wl(;_l) 1(J1)
ng) wz(j) —wg;) —wz(f) wl(JO) wz(;) w(3) wl(j)
wz(]5) wl(f) wl(JB) _wg) wz(j) wg)) wz(;) wz(;l)
wg_i) wl(?) _wg) wl(;l) _wl(?) _ngl) wg_)) 1(32)
b o u ) o o

Note that the equation (25) becomes equal to (21) by replacing
ij in (25) by Wilj in (21). By using the fact the existence
condition of the energy functions for Model 2 can be proved
in the similar way to that for Model 1. [ |

The following theorem holds for the octonion neural net-
works of Model 3 (6) and Model 4 (7).

Theorem 2: Consider the octonion neural networks of Model
3 (6) and Model 4 (7). Assume that the weight coefficients wfj

and wy; satisfy wfj = wy; and we rewrite them as

*

. r
= w;;-

Wij = U}fj
If the weight coefficients w;; satisfy the condition (17) and
the activation function f satisfies Assumption 1, then there
exist the energy functions for them. The energy functions are
constructed as:

-3 et

5 (wyuig)) + 2650;) — G(v»}

=1 j=1
(26)
for the network of Model 3 (6) and
- - 1 * * *
E(w) =— Z Z{ﬁRe(Ui (wivj)wiz) + 2bjv;) — G(vi)}
i=1 j=1
27)

for the network of Model 4 (7).



Proof: The existence of the energy function for the
network of Model 3 (6) can be proved as follows. Under the
assumption (17) on the weight coefficients w;; := wfj* = wy;,
the gradient of the function E given by (26) with respect to
v; can be calculated as follows:

Ve E(v) = —(—ﬁi+ZW?jW?j‘A’j+6i)
j=1
du;
= 0 28
i (23)
where
.
Wi =
M, (0) (1) (2) (3) (4) (5) (6) (77
T N R S PR
1 0 4 7 2 6 5 3
;SR P S A S N S A
2 4 0 5 1 3 7 6
l(J) ?) ”() wij) ij) _u(}w) wij( ) _u(}w)
3 7 5 0 6 2 4 1
BT A P
4 2 1 6 0 7 3 5
Wi Wiy~ =Wy —Wiw Wit Wiy Wyt — Wy
—w —w® W ) —w? W Wl Wl
(6) , (5 (7)) , (4) (3) (1) , (0) (2)
S e -
7 3 6 1 5 4 2 0
"W~ Wy Wyyo —Wi Wiyt —Wiy" — Wy Wy |

Note that the equation (28) becomes equal to (21) by
replacing W, W%, by W in (21). It can be shown that the
product of the matrices ij and ij is commutative, that
is, W} W2, = W2 W3, By using these facts the existence
condition of the energy functions for Model 3 can be proved
in the similar way to that for Model 1.

The existence of the energy function for the network of
Model 4 (7) can be proved as follows. Under the assumption
(17) on the weight coefficients w;; := wfj* = wy;, the
gradient of the function F given by (27) with respect to v;
can be calculated as follows:

V;,iE(v) = —(—fli + ZW%W%\A’]‘ + ]:A)l)
J=1
_dﬁi

—Ti——. 2
T 29)

Note that the equation (29) becomes equal to (21) by replacing
W2 W? by WL in (21). By using the fact the existence
condition of the energy functions for Model 4 can be proved
in the similar way to that for Model 1. ]

Remark: 2: Tt can be shown that the relation (b*a)b =
b*(ab) holds for any octonion @ € O and b € O. Therefore
the term w;; (vjw;;) in the energy function (26) of Model 3
and the term (w;;v;)w;; in the energy function (27) of Model
4 are identical and they are same energy functions.

The existence conditions of energy functions thus obtained
are ones on the connection weight coefficients w;; and the

activation function f(-). As examples of the functions which
satisfy Assumption 1,

u

flu) = T+ 4] (30)
7

flu) = tanh(u(o))—i—Zei tanh(u() (3D

i=1
can be considered. Equation (30) has the same form as that
of the complex-valued function which is often used in the
complex-valued neural networks [10], [11]. The function (31)
is a split activation function, that is, each component of its
argument is transformed separately.

It is expected that the energy functions (18), (19), (26) and
(27) can be applied to various problems. In the real valued
neural networks energy functions have been applied to various
problems such as qualitative analysis of neural networks,
synthesis of associative memories and optimization problems.
In [10] and [12], qualitative analysis of the complex valued and
quaternion valued networks is performed by utilizing energy
functions and some results are obtained. The similar results
can be obtained for the octonion neural networks (4), (5), (6)
and (7) by utilizing the energy functions (18), (19), (26) and
27).

V1. CONCLUSION

Recently models of neural networks in the real domain
have been extended into the high dimensional domain such
as the complex number and quaternion domain. In this paper
we extended conventional real-valued models of recurrent
neural networks into the octonion domain and discussed their
dynamics. Since the octonions are non-commutative and non-
associative on multiplication, a couple of different models of
octonion neural networks can be considered. We proposed four
models of fully connected recurrent octonion neural network,
which are extensions of the real-valued Hopfield type neural
networks to the octonion domain. We also studied dynamics
of the proposed models from the point view of existence con-
ditions of energy functions. We derive the existence conditions
of energy functions for each of them and construct an energy
function for each model. It is expected that those energy
functions are applied to various problems such as qualitative
analysis of neural networks, synthesis of associative memories,
optimization problems and so on. Note also that, although we
treat continuous-time models of Hopfield type neural networks
in this paper, discrete-time ones can be considered and are of
interest and useful especially from implementation viewpoint.
It can be considered the similar discussions can be done
on discrete-time models of Hopfield type octonion neural
networks.
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