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Abstrat�Reently, models of neural networks in the real

domain have been extended into the high dimensional domain

suh as the omplex number and quaternion domain, and several

high-dimensional models have been proposed. These extensions

are generalized by introduing Clifford algebra (geometri alge-

bra). In this paper we extend onventional real-valued Hop�eld-

type neural networks into the otonion domain and disuss their

dynamis. The otonions represent a partiular extension of the

quaternions whih also represent a partiular extension of the

omplex numbers and have 7 imaginary parts. They are non-

ommutative and non-assoiative on multipliation and do not

belong to Clifford algebra due to the latter fat. With this in

mind we propose four models of otonion Hop�eld-type neural

networks. We derive existene onditions of an energy funtion

and onstrut energy funtion for eah model.

Index Terms�Hop�eld neural network, otonion neural net-

work, energy funtion, existing ondition

I. INTRODUCTION

In reent years, there have been inreasing researh interests

of arti�ial neural networks and many efforts have been

made on appliations of neural networks to various �elds.

As appliations of the neural networks spread more widely,

developing neural network models whih an diretly deal

with omplex numbers is desired in various �elds. Several

models of omplex-valued neural networks have been pro-

posed and their abilities of information proessing have been

investigated [1℄, [2℄. Furthermore those studies are extended

into the quaternion numbers domain, and models of quaternion

neural networks are proposed and atively studied [2℄, [12℄.

These extensions are generalized [3℄ by introduing Clifford

algebra (also alled geometri algebra) [4℄�[6℄.

It is well known that one of the pioneering works that

triggered the researh interests of neural networks in the last

three deades is a proposal of models for neural networks

by Hop�eld [7℄�[9℄. He introdued the idea of an energy

funtion to formulate a way of understanding the omputation

performed by fully onneted reurrent neural networks and

showed that a ombinatorial optimization problem an be

solved by them. The energy funtions have been applied to var-

ious problems suh as qualitative analysis of neural networks,

synthesis of assoiative memories, optimization problems and

so on ever sine.

The extensions of the Hop�eld-type neural networks to the

omplex domain and the quaternion domain have been studied.

The existene ondition of an energy funtion was derived

for the omplex-valued Hop�eld-type neural networks [10℄,

[11℄ and for quaternion Hop�eld-type neural networks [12℄.

Those studies were also extended into the domains of the dual

numbers and the hyperboli numbers [13℄. In all those studies

the appliation of the energy funtions to qualitative analysis

of the Hop�eld-type neural networks was also disussed. All

the domains into whih the real valued Hop�eld-type neural

networks were extended so far, that is, the omplex, dual,

hyperboli numbers and the quaternions belong to Clifford

algebra [4℄�[6℄, [14℄.

In this paper we extend onventional real-valued neural

networks into the otonion domain. The otonions represent

a partiular extension of the quaternions whih also rep-

resent a partiular extension of the omplex numbers, and

have 7 imaginary parts. They are non-ommutative and non-

assoiative on multipliation and do not belong to Clifford

algebra due to the latter fat. There have been various attempts

to �nd appliations for the otonions mainly in geometry and

physis [15℄�[17℄ and they are expeted to be appliable to

high dimensional signal proessing. Some studies on otonion

neural networks, whose inputs, outputs, weights and biases

are all otonions, also have been done [18℄�[20℄. C.-A. Popa

presented the gradient desent algorithm for training otonion

feedforward neural networks [19℄. In [20℄ C.-A. Popa studied

the stability analysis of neutral-type otonion neural networks

with time varying delays.

This paper presents models of fully onneted reurrent

neural networks, whih are extensions of the real-valued

Hop�eld-type neural networks to the otonions and disuss

dynamis of those models from the point view of existene

of an energy funtion. We have already proposed a model

of Hop�eld-type otonion neural networks and derived the

existing ondition of energy funtions for it [18℄. Due to

the fat that the otonions are non-ommutative and non-
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assoiative on multipliation, a ouple of different models an

be onsidered. In this paper, with this in mind, we propose

four models of Hop�eld-type otonion neural networks. We

also derive the existene onditions of energy funtions for

eah of them and onstrut an energy funtion for eah model.

Similar to the real-valued ones, the energy funtions enable

us to analyze qualitative behaviors of the reurrent otonion

neural networks and to apply to various problems suh as

synthesis of assoiative memories, optimization problems and

so on.

II. OCTONIONS

The otonions, whih we denote by O, are an 8-dimensional

algebra with basis

{1, e1, e2, e3, e4, e5, e6, e7}

and their multipliation is given in Table I, whih desribes

the result of multiplying the element in the ith row by the

element in the jth olumn [15℄. An otonion number x ∈ O

is desribed by

x =x(0) + e1x
(1) + e2x

(2) + e3x
(3)

+ e4x
(4) + e5x

(5) + e6x
(6) + e7x

(7)
(1)

where x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)
are real num-

bers. It is found from Table I that the otonions are non-

TABLE I

OCTONION MULTIPLICATION TABLE

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 -1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 -1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 -1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 -1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 -1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 -1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 -1

ommutative on multipliation:

eiej = −ejei 6= ejei

for i 6= j, non-assoiative on multipliation:

(eiej)ek = −ei(ejek) 6= ei(ejek)

for i 6= j 6= k, and the otonion O does not belong to the

Clifford algebra beause of the latter fat.

x(0)
of (1) is alled real part, and is represented by Re(x).

An otonion whose real part is equal to zero is alled pure

otonion. The otonion onjugate x∗
is de�ned by

x∗ =x(0) − e1x
(1) − e2x

(2) − e3x
(3)

− e4x
(4) − e5x

(5) − e6x
(6) − e7x

(7). (2)

The norm of an otonion number |x| is de�ned by

|x|2 = x∗x =

7
∑

i=0

x(i)2 . (3)

III. FOUR MODELS OF HOPFIELD-TYPE OCTONION

NEURAL NETWORKS

In this setion we propose models of fully onneted

reurrent neural networks, whih are extensions of real valued

ontinuous-time Hop�eld neural networks into the otonion

domain. Sine the otonions are non-ommutative and non-

assoiative on multipliation, a ouple of different models

an be onsidered. We present four models of Hop�eld type

otonion neural networks.

The �rst model is a diret extension of the Hop�eld neural

networks, desribed by differential equations of the form [18℄:

Model 1:











τi
dui

dt
= −ui +

n
∑

j=1

wijvj + bi

vi = f(ui) (i = 1, 2, ..., n)

(4)

where n is the number of neurons, τi is the time onstant of

the ith neuron, ui and vi are the state and the output of the ith
neuron at time t, respetively, bi is the threshold value, wij is

the onnetion weight oef�ient from the jth neuron to the

ith one, and f(·) is the ativation funtion of the neurons. In

the model ui, vi, bi and wij are all otonions: ui ∈ O, vi ∈ O,

bi ∈ O and wij ∈ O. The time onstant τi is a positive real

number: τi ∈ R, τi > 0. The produt wijvj is performed

aording to the otonion multipliation table shown in Table

I. The ativation funtion f(·) is a nonlinear funtion whih

maps from an otonion to an otonion: f : O → O, and

dui

dt
:=

d

dt
u
(0)
i +

7
∑

j=1

ej
d

dt
u
(j)
i .

Note that the neural network desribed by (4) is a diret

otonion-domain extension of the real-valued ontinuous-time

neural network of Hop�eld type.

Sine the otonions are non-ommutative on multipliation,

the model in whih the produt wijvj in the model (4) is

replaed by vjwij is a different model. As the seond model

we onsider the model whih is desribed by differential

equations of the form:

Model 2:











τi
dui

dt
= −ui +

n
∑

j=1

vjwij + bi

vi = f(ui) (i = 1, 2, ..., n)

. (5)

Noting that in Model 1 (4) the signal vi is weighted from

the left hand side and in Model 2 (5) the signal vi is weighted
from the right side, the other models in whih the signal

vi is weighted from both sides an be onsidered. Letting

the weight by whih vi is multiplied from the left be wℓ
ij

and from the right be wr
ij , suh models are obtained by

replaing wijvj in (4) or vjwij in (5) by wℓ
ijvjw

r
ij . Note

that, sine the otonions are non-assoiative on multipliation,

wℓ
ij(vjw

r
ij) and (wℓ

ijvj)w
r
ij are different. We onsider the

additional following two models.



Model 3:











τi
dui

dt
= −ui +

n
∑

j=1

wℓ
ij(vjw

r
ij) + bi

vi = f(ui) (i = 1, 2, ..., n)

. (6)

Model 4:











τi
dui

dt
= −ui +

n
∑

j=1

(wℓ
ijvj)w

r
ij + bi

vi = f(ui) (i = 1, 2, ..., n)

. (7)

IV. DEFINITION OF ENERGY FUNCTIONS

We are now in the position to give the de�nition of energy

funtions for the otonion neural networks Model 1 (4), Model

2 (5), Model 3 (6) and Model 4 (7). If the neural network of

Model 1 (4) is real valued, that is, ui, vi, bi and wij are all real,

ui ∈ R, vi ∈ R, bi ∈ R, wij ∈ R and the ativation funtion is

a real nonlinear funtion f : R → R, the existene ondition

of an energy funtion whih Hop�eld et al. obtained is that

the weight matrix W = {wij} is a symmetri matrix (wij =
wji) and the ativation funtion is ontinuously differentiable,

bounded and monotonially inreasing. The following funtion

E : Rn → R was proposed as an energy funtion for the

network.

E(v) = −
1

2

n
∑

i=1

n
∑

j=1

wijvivj −
n
∑

i=1

bivi

+
n
∑

i=1

∫ vi

0

f−1(ρ)dρ (8)

where v = [v1, v2, · · · , vn]T ∈ Rn
and f−1

is the inverse

funtion of f . Hop�eld et al. showed that, if the existene

onditions hold, the network (4) has the funtion E(v) and

it has the following property; the time derivative of E along

the trajetories of (4), denoted by

dE
dt

∣

∣

(4)R
is less or equal to

0,

dE
dt

∣

∣

(4)R
≤ 0, and furthermore

dE
dt

∣

∣

(4)R
= 0 if and only if

dvi
dt

= 0 ( i = 1, 2, · · · , n ).
We de�ne an energy funtion for the otonion neural

networks of Model 1 (4), Model 2 (5), Model 3 (6) and Model

4 (7), by the analogy to that for Hop�eld type real-valued

neural networks as follows.

De�nition 1: Consider the otonion neural network (N )
where N is the equation number, 4, 5, 6 or 7. E is an energy

funtion of the otonion neural network (N ), if the following
onditions are satis�ed.

(i) E(·) is a mapping E : O → R.

(ii) The derivative of E along the trajetories of the

network (N ), denoted by

dE
dt

∣

∣

(N )
, satis�es

dE
dt

∣

∣

(N )
≤ 0.

Furthermore,

dE
dt

∣

∣

(N )
= 0 if and only if

dvi
dt

= 0 ( i =

1, 2, · · · , n ).

V. EXISTENCE CONDITIONS OF ENERGY FUNCTIONS

A. Otonion Ativation Funtion

One of the important fators to haraterize dynamis of

reurrent neural networks is their ativation funtions whih

are nonlinear funtions. It is therefore, important to disuss

whih type of nonlinear funtions is hosen as ativation

funtions for the otonion neural networks of Model 1 (4),

Model 2 (5), Model 3 (6) and Model 4 (7). In the real-

valued neural networks, the ativation is usually hosen to be

a smooth and bounded funtion suh as a sigmoidal funtion.

Reall that, in the omplex domain, the Liouvill's theorem

says that `if f(·) is analyti at all points of the omplex

plane and bounded, then f(·) is onstant'. Sine a suitable

f(·) should be bounded, it follows from the theorem that if

we hoose an analyti funtion for f(·), it is onstant over

the entire omplex plane, whih is learly not suitable. In

the omplex-valued neural networks in [10℄, [11℄, in plae of

analyti funtion, a funtion whose real and imaginary parts

are ontinuously differentiable with respet to the real and

imaginary variables of its argument, respetively, is hosen

for the ativation funtion and the existene onditions of an

energy funtion are derived.

In this paper, aording to the disussion on the ativation

funtion of the omplex-valued neural networks [10℄, [11℄, we

hoose a funtion whih satis�es the following onditions as

the ativation funtion for the otonion neural networks of

Model 1 (4), Model 2 (5), Model 3 (6) and Model 4 (7).

Let us express the nonlinear otonion funtion f(u) : O →
O as:

f(u) = f (0)(u(0), u(1), · · · , u(7)) (9)

+

7
∑

i=1

eif
(i)(u(0), u(1), · · · , u(7)) (10)

where

u = u(0) +
7

∑

i=1

eiu
(i)

(11)

and f (i), i = 0, 1, 2, 3, 4, 5, 6, 7 is a real funtion: f (i) :
R8 → R. We assume the following onditions on the ativation

funtion f(u) : O → O of the otonion neural networks of

Model 1 (4), Model 2 (5), Model 3 (6) and Model 4 (7).

(i) f (l)(·), (l = 0, 1, · · · , 7) are ontinuously differen-

tiable with respet to u(m), (m = 0, 1, · · · , 7).
(ii) f(·) is a bounded funtion, that is, there exists some

M > 0 suh that |f(·)| ≤ M .

From this assumption, we an de�ne the Jaobian matrix of

the ativation funtion f at a point u, denoted by Jf (u) =
{αlm(u)} ∈ R8×8

where

αlm(u) =
∂f (l)

∂u(m)

∣

∣

∣

∣

u

. (12)

B. Derivation of Existene Conditions

We now disuss existene onditions of the energy funtions

for the otonion neural networks of Model 1 (4), Model 2

(5), Model 3 (6) and Model 4 (7). We need the following

assumptions on the ativation funtion.

Assumption 1: The ativation funtion f satis�es

(i) f is an injetive funtion,



(ii) Jf (u) is a symmetri matrix for all u ∈ O,

(iii) Jf (u) is positive de�nite for all u ∈ O.

Beause of the ondition (i) of Assumption 1 and bound-

edness of f , there exists the inverse funtion of f , denoted by

g = f−1
. We express g as u = g(v):

g(v) = g(0)(v(0), v(1), · · · , v(7))

+

7
∑

i=1

eig
(i)(v(0), v(1), · · · , v(7)) (13)

where g(l) : R8 → R (l = 0, 1, · · · , 7). Then, the following

lemma holds.

Lemma 1: If f satis�es Assumption 1, there exists a salar

funtion G(v) : O → R suh that

∂G

∂v(l)
= g(l)(v(0), v(1), · · · , v(7)) (l = 0, 1, · · · , 7). (14)

Proof: We de�ne the Jaobian matrix of g at v by

Jg(v) = {βlm} ∈ R8×8
where βlm = ∂g(l)/∂v(m)

By partially differentiating both sides of the equations

u(l) = g(l)(v(0), v(1), · · · , v(7)) with respet to u(m) (l,m =
0, 1, · · · , 7), the relation I = Jg(v)Jf (u) is obtained for all

u, where I ∈ R
8×8

is identity matrix. From this relation

and the onditions (ii) and (iii) of Assumption 1, the fat

Jg(v) = {Jf (u)
−1}t = Jg(v)

t
holds. Therefore we have

∂g(l)

∂v(m)

∣

∣

∣

∣

v

=
∂g(m)

∂v(l)

∣

∣

∣

∣

v

(l,m = 0, 1, · · · , 7) (15)

for all v ∈ O. Let us de�ne a funtion G by

G(v) =

∫ v(0)

0

g(0)(ρ, 0, 0, 0, 0, 0, 0, 0)dρ

+

∫ v(1)

0

g(1)(v(0), ρ, 0, 0, 0, 0, 0, 0)dρ

+

∫ v(2)

0

g(2)(v(0), v(1), ρ, 0, 0, 0, 0, 0)dρ

+

∫ v(3)

0

g(3)(v(0), v(1), v(2), ρ, 0, 0, 0, 0)dρ

+

∫ v(4)

0

g(4)(v(0), v(1), v(2), v(3), ρ, 0, 0, 0)dρ

+

∫ v(5)

0

g(5)(v(0), v(1), v(2), v(3), v(4), ρ, 0, 0)dρ

+

∫ v(6)

0

g(6)(v(0), v(1), v(2), v(3), v(4), v(5), ρ, 0)dρ

+

∫ v(7)

0

g(7)(v(0), v(1), v(2), v(3), v(4), v(5), v(6), ρ)dρ.

(16)

It an be easily shown by using (15) that the funtion G
satis�es the equations (14).
In the followings we derive the existing onditions of energy

funtions of the otonion neural networks and onstrut energy

funtions by using the funtion G.

The following theorem holds for the otonion neural net-

works of Model 1 (4) and Model 2 (5).

Theorem 1: Consider the otonion neural networks of Model

1 (4) and Model 2 (5). If the weight oef�ients wij satisfy

wji = w∗
ij (i, j = 1, 2, · · · , n), (17)

and the ativation funtion f satis�es Assumption 1, then there
exist the energy funtions for them. The energy funtions are

onstruted as:

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i wijvj + 2b∗i vi)−G(vi)

}

(18)

for the network of Model 1 (4) and

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i vjwij + 2b∗i vi)−G(vi)

}

(19)

for the network of Model 2 (5).

Remark: 1: Sine the otonions are non-assoiative on

multipliation, the order of the multipliations of v∗i wijvj
in (18) (v∗i vjwij in (19)) should be spei�ed: v∗i (wijvj)
or (v∗i wij)vj (v∗i (vjwij) or (v∗i vj)wij ). However it an be

shown that the equality Re(v∗i (wijvj)) = Re((v∗i wij)vj)
(Re(v∗i (vjwij)) = Re((v∗i vj)wij)) holds, and hene the order

of the multipliations is not spei�ed in (18) (in (19)).

Proof: First we prove the existene of the energy funtion

for the network of Model 1 (4) by showing that the funtion

given by (18) satis�es the de�nition of the energy funtion

(De�nition 1). Let us de�ne the gradient operator in the

otonion domain as:

∇vi =
d

dv
(0)
i

+

7
∑

j=1

ej
d

dv
(j)
i

. (20)

Let v̂i be v̂i = [v
(0)
i , v

(1)
i , · · · , v

(7)
i ]t ∈ R8

. Under the

assumption (17) on the weight oef�ients wij , the gradient

of the energy funtion E given by (18) with respet to v̂i,

denoted by ∇v̂i
E(v), an be alulated as follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
1
ij v̂j + b̂i)

= −τi
dûi

dt
(21)

where ûi = [u
(0)
i , u

(1)
i , · · · , u

(7)
i ]t ∈ R8

, b̂i =



[b
(0)
i , b

(1)
i , · · · , b

(7)
i ]t ∈ R8

and

Ŵ
1
ij =





































w
(0)
ij −w

(1)
ij −w

(2)
ij −w

(3)
ij −w
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ij −w
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ij −w

(6)
ij −w

(7)
ij
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.

Thus the gradient of the funtion E given by (18), ∇viE(v),
is obtained as follows.

∇viE(v) = −(−ui +

n
∑

j=1

wijvj + b)

= −τi
dui

dt
. (22)

By using (22) the derivative of the energy funtion E given

by (18) along the trajetories of the network of Model 1 (4)
is alulated as follows.

dE(v)

dt

∣

∣

∣

∣

(4)

=

n
∑

i=1

7
∑

l=0

dE

dv
(l)
i

dv
(l)
i

dt

= Re{
n
∑

i=1

∇viE(v)∗
dvi
dt

}. (23)

Substituting (22) into the right side of the above equation, we

have

dE(v)

dt

∣

∣

∣

∣

(4)

=−
n
∑

i=1

(
du

(0)
i

dt
τi
dv

(0)
i

dt
+

du
(1)
i

dt
τi
dv

(1)
i

dt
+ · · ·

+
du

(6)
i

dt
τi
dv

(6)
i

dt
+

du
(7)
i

dt
τi
dv

(7)
i

dt
)

=−
n
∑

i=1

((

7
∑

m=0

dg(0)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(0)
i

dt

+ (

7
∑

m=0

dg(1)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(1)
i

dt

+ . . .

+ (
6

∑

m=0

dg(6)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(6)
i

dt

+ (

7
∑

m=0

dg(7)(vi)

dv
(m)
i

dv
(m)
i

dt
)τi

dv
(7)
i

dt
)

=−
n
∑

i=1

(
dv̂i

dt
)tτiJg(vi)

t(
dv̂i

dt
) (24)

where Jg(vi) is the Jaobian matrix of the funtion g(·) with
respet to vi.

Sine τi > 0 for all i and Jg(vi) is positive de�nite for

any vi (i = 1, 2, · · · , n), the ondition

dE
dt

∣

∣

(4)
≤ 0 holds, and

furthermore

dE
dt

∣

∣

(4)
= 0 if and only if

dv̂
dt

= 0 ⇔ dvi
dt

= 0.

Hene the funtion E satis�es the de�nition of energy fun-

tions (De�nition 1).

The existene of the energy funtion for the network of

Model 2 (5) an be proved as follows. Under the assumption

(17) on the weight oef�ients wij , the gradient of the funtion

E given by (19) with respet to v̂i an be alulated as

follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
2
ij v̂j + b̂i)

= −τi
dûi

dt
(25)

where

Ŵ
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Note that the equation (25) beomes equal to (21) by replaing

Ŵ
2
ij in (25) by Ŵ

1
ij in (21). By using the fat the existene

ondition of the energy funtions for Model 2 an be proved

in the similar way to that for Model 1.

The following theorem holds for the otonion neural net-

works of Model 3 (6) and Model 4 (7).

Theorem 2: Consider the otonion neural networks of Model

3 (6) and Model 4 (7). Assume that the weight oef�ients wℓ
ij

and wr
ij satisfy wℓ

ij

∗
= wr

ij and we rewrite them as

wij := wℓ
ij

∗
= wr

ij .

If the weight oef�ients wij satisfy the ondition (17) and

the ativation funtion f satis�es Assumption 1, then there

exist the energy funtions for them. The energy funtions are

onstruted as:

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i (w

∗
ij(vjwij)) + 2b∗i vi)−G(vi)

}

(26)

for the network of Model 3 (6) and

E(v) = −
n
∑

i=1

n
∑

j=1

{

1

2
Re(v∗i ((w

∗
ijvj)wij) + 2b∗i vi)−G(vi)

}

(27)

for the network of Model 4 (7).



Proof: The existene of the energy funtion for the

network of Model 3 (6) an be proved as follows. Under the

assumption (17) on the weight oef�ients wij := wℓ
ij

∗
= wr

ij ,

the gradient of the funtion E given by (26) with respet to

v̂i an be alulated as follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
3
ijŴ

2
ij v̂j + b̂i)

= −τi
dûi

dt
(28)

where

Ŵ
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Note that the equation (28) beomes equal to (21) by

replaing Ŵ
3
ijŴ

2
ij by Ŵ

1
ij in (21). It an be shown that the

produt of the matries Ŵ
3
ij and Ŵ

2
ij is ommutative, that

is, Ŵ
3
ijŴ

2
ij = Ŵ

2
ijŴ

3
ij . By using these fats the existene

ondition of the energy funtions for Model 3 an be proved

in the similar way to that for Model 1.

The existene of the energy funtion for the network of

Model 4 (7) an be proved as follows. Under the assumption

(17) on the weight oef�ients wij := wℓ
ij

∗
= wr

ij , the

gradient of the funtion E given by (27) with respet to v̂i

an be alulated as follows:

∇v̂i
E(v) = −(−ûi +

n
∑

j=1

Ŵ
2
ijŴ

3
ij v̂j + b̂i)

= −τi
dûi

dt
. (29)

Note that the equation (29) beomes equal to (21) by replaing

Ŵ
2
ijŴ

3
ij by Ŵ

1
ij in (21). By using the fat the existene

ondition of the energy funtions for Model 4 an be proved

in the similar way to that for Model 1.

Remark: 2: It an be shown that the relation (b∗a)b =
b∗(ab) holds for any otonion a ∈ O and b ∈ O. Therefore

the term w∗
ij(vjwij) in the energy funtion (26) of Model 3

and the term (w∗
ijvj)wij in the energy funtion (27) of Model

4 are idential and they are same energy funtions.

The existene onditions of energy funtions thus obtained

are ones on the onnetion weight oef�ients wij and the

ativation funtion f(·). As examples of the funtions whih

satisfy Assumption 1,

f(u) =
u

1 + |u|
(30)

f(u) = tanh(u(0)) +

7
∑

i=1

ei tanh(u
(i)) (31)

an be onsidered. Equation (30) has the same form as that

of the omplex-valued funtion whih is often used in the

omplex-valued neural networks [10℄, [11℄. The funtion (31)

is a split ativation funtion, that is, eah omponent of its

argument is transformed separately.

It is expeted that the energy funtions (18), (19), (26) and

(27) an be applied to various problems. In the real valued

neural networks energy funtions have been applied to various

problems suh as qualitative analysis of neural networks,

synthesis of assoiative memories and optimization problems.

In [10℄ and [12℄, qualitative analysis of the omplex valued and

quaternion valued networks is performed by utilizing energy

funtions and some results are obtained. The similar results

an be obtained for the otonion neural networks (4), (5), (6)

and (7) by utilizing the energy funtions (18), (19), (26) and

(27).

VI. CONCLUSION

Reently models of neural networks in the real domain

have been extended into the high dimensional domain suh

as the omplex number and quaternion domain. In this paper

we extended onventional real-valued models of reurrent

neural networks into the otonion domain and disussed their

dynamis. Sine the otonions are non-ommutative and non-

assoiative on multipliation, a ouple of different models of

otonion neural networks an be onsidered. We proposed four

models of fully onneted reurrent otonion neural network,

whih are extensions of the real-valued Hop�eld type neural

networks to the otonion domain. We also studied dynamis

of the proposed models from the point view of existene on-

ditions of energy funtions. We derive the existene onditions

of energy funtions for eah of them and onstrut an energy

funtion for eah model. It is expeted that those energy

funtions are applied to various problems suh as qualitative

analysis of neural networks, synthesis of assoiative memories,

optimization problems and so on. Note also that, although we

treat ontinuous-time models of Hop�eld type neural networks

in this paper, disrete-time ones an be onsidered and are of

interest and useful espeially from implementation viewpoint.

It an be onsidered the similar disussions an be done

on disrete-time models of Hop�eld type otonion neural

networks.
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