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Abstract—Nyström method is widely used for spectral clus-
tering to obtain low-rank approximations of a large matrix.
Sampling is crucial to Nyström method, since selecting the
representative sample points that can reflect the data structure is
important for obtaining good approximation results. To improve
the performance of Nyström based spectral clustering, in this
paper, we propose a new sampling method by considering
the hubness score of sample points. The data points with the
high hubness scores, i.e., appearing frequently in the nearest
neighbor lists of other data points, have high probabilities to be
selected as the sample points. Taking advantage of the topological
property of hubs (i.e., data points with high hubness score), the
selected sampling points have close relationships with other data
points, thus the proposed method is able to achieve scalable and
accurate clustering results. We further design fast computation
methods, i.e., local hubness approximated methods, to speed up
the sampling process. Experimental results on both synthetic and
real-world data sets show that the proposed method not only
achieves good performance, but also outperforms other sampling
methods for Nyström based spectral clustering.

Index Terms—Spectral clustering, Sampling methods, Nyström
method, Hubness score

I. INTRODUCTION

Clustering is one of the fundamental problems in machine
learning fields [1]. The objective of clustering is to divide
unlabeled data into some groups such that the data in the
same group are more similar than those in other groups [2].
Spectral clustering is a powerful clustering method, which has
superior performance compared to the traditional clustering
methods such as k-means [3], [4]. However, the applicability
of spectral clustering is limited when the number of data points
becomes large [5]. For large-scale data sets, spectral clustering
has two bottlenecks, i.e., constructing a large similarity matrix
and calculating the eigen-decomposition of the corresponding
Laplacian matrix. The computational complexities in the above
two steps are O(n2) and O(n3), respectively, with n being the
number of data points.

Applying spectral clustering to large-scale data has attracted
increasing attention in recent years [6]. Several accelerated
spectral clustering methods have been proposed. The K-means
based approximate spectral clustering (KASP) method has
been proposed to reduce the data size beforehand to construct
the similarity matrix [7]. The sparse coding technique has been
applied to construct a sparse similarity matrix [8]. Nyström

method has been used to obtain low-rank approximations of
large similarity matrix [9].

Nyström method is efficient and commonly used for spectral
clustering to overcome the scalability problem by generating
low-rank matrix approximation [9]. Nyström method selects l
(l� n) landmark points (i.e., sample points) from the n data
points and uses a small l× l matrix to approximate the n×n
matrix for eigen-decomposition. As a result, the computational
complexity of eigen-decomposition is reduced to O(l3 + nq).
An important issue of Nyström method is sampling, i.e., how
to select the landmark points to construct the small matrix
for a good approximation. Uniform sampling is widely used
for Nyström method to select the landmark points. However,
uniform sampling does not provide a deterministic guarantee
on the clustering performance.

Many sampling methods have been proposed to improve the
Nyström method. Zhang et al. [10] propose a k-means based
sampling method that uses the centers obtained from k-means
as the landmark points. Kumar et al. [11] compare the uniform
and non-uniform sampling methods and provide a performance
bound for the Nyström method with uniform sampling without
replacement. Musco et al. [12] propose a recursive sampling
method based on ridge leverage scores without assumption
on coherence or regularity. These methods aim to reduce the
matrix approximation error. However, for spectral clustering,
better matrix approximation does not always lead to a better
clustering result. The matrix approximation error is not a good
criterion to guide the selection of landmark points for Nyström
based spectral clustering.

Instead of reducing the matrix approximation error, some
sampling methods select the landmark points based on the
criterion of clustering performance. Jia et al. [13] propose
a probability incremental sampling method, in which more
meaningful landmark points are selected by literately updating
the sampling probabilities of data points. Similarly, Zhang
et al. [14] design an incremental sampling framework for
Nyström based spectral clustering, where the landmark points
are selected one by one, and each next point with minimum
variance is selected as the landmark point. Compared with
the methods reducing the matrix approximation error, these
methods are more effective for Nyström based spectral cluster-
ing. However, these methods mainly consider the relationships
among landmark points, which may lose information on the
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data structure and incur incorrectly clustering results.
In this paper, to improve the performance of Nyström based

spectral clustering, we propose a new sampling method to
select the landmark points by considering the hubness score
of data points. In the proposed method, the data points with
high hubness scores, i.e., appearing frequently in the nearest
neighbor lists of other data points, are selected as the landmark
points. The hubness score is an important topological property
of data, especially for high-dimensional data, which can better
reflect the structure of data points [15]. The data points with
high hubness scores have a close relationship with other data
points, since they are the nearest neighbors of most of the
data points. Hubness based clustering methods have been
reported to be effective for clustering accuracy improvement
[16]. The proposed sampling method takes advantage of the
topological property of hubs to find the representative land-
mark points, which is able to achieve scalable and accurate
clustering results. We further design fast computation methods,
i.e., local hubness approximated methods, to speed up the
sampling process. Experimental results show that the proposed
method makes a balance between efficiency and effectiveness,
and outperforms other sampling methods for Nyström based
spectral clustering.

The rest of the paper is organized as follows. Section 2
introduces the background knowledge of spectral clustering
and Nyström spectral clustering. In Section 3, we propose
two versions of hubness-based sampling for Nyström spec-
tral clustering and analysis of their complexities. Section 4
compares the proposed methods with other algorithms in the
experiments. Finally, we give a summary of this paper in
Section 5.

II. PRELIMINARIES

A. Spectral Clustering

Given a set of n data points x1, . . . , xn, spectral clustering
algorithm first constructs a similarity matrix S = (sij) ∈
Rn×n, where sij ≥ 0 indicates the relationship between xi
and xj . The normalized Laplacian matrix is then computed
based on S as

L = I −D−1/2SD−1/2, (1)

where D is a diagonal matrix and its diagonal element dii is
the sum of each rows of similarity matrix, i.e.,

dii =

n∑
j=1

sij . (2)

The top c eigenvectors of L are computed and the matrix
H ∈ Rn×c with these eigenvectors as columns is formed. Let
each row of H represent a data point in Rc and cluster these
points by k-means. Each original data point xi is mapped to
the data point represented in row i of H and assigned to the
same cluster.

Due to the high computational cost in similarity matrix com-
putation and eigen-decomposition, spectral clustering is diffi-
cult to directly apply to large-scale clustering tasks. Nyström

method is widely used for accelerating spectral clustering by
obtaining low-rank approximations of a large similarity matrix.

B. Nyström Spectral Clustering

We show how to apply Nyström method to accelerate
spectral clustering. Nyström method finds approximate eigen-
vectors of a large similarity matrix by conducting eigen-
decomposition for a small sub-matrix of the original matrix
and employing the Nyström extension to fill in the rest.

Let S again be the similarity matrix of n data points. Denote
l (l << n) as the number of landmark points and A ∈ Rl×l as
the similarity matrix constructed from the l landmark points.
Denote B ∈ Rl×(n−l) as the similarity matrix constructed
from the l landmark points and the (n− l) remaining points.
Denote C as the similarity matrix constructed from all (n− l)
remaining points. Thus, the similarity matrix S can be rear-
ranged as

S =

[
A B
BT C

]
. (3)

The Nyström method uses A and B to approximate S by
replacing C with BTA−1B. That is

S =

[
A B
BT BTA−1B

]
. (4)

For spectral clustering, to calculate the normalized Lapla-
cian matrix in equation (1), Fowlkes et al. [9] propose an effi-
cient approach without a direct calculation of BTA−1B in S.
In [9], D−1/2SD−1/2 is calculated based on D−1/2A AD

−1/2
A

and D−1/2A BD
−1/2
B , where DA and DB are diagonal matrices

and the diagonal elements are the sum of rows from A

and B, respectively. Let Â = D
−1/2
A AD

−1/2
A and B̂ =

D
−1/2
A BD

−1/2
B , then D−1/2SD−1/2 can be represented as

D−1/2SD−1/2 =

[
Â B̂

B̂T B̂T Â−1B̂

]
. (5)

Thus, the top c eigenvectors of L can be approximately
obtained based on Â and B̂. Assume the eigen-decomposition
of Â takes the form Â = V̂AΣ̂AV̂

T
A , where Σ̂A contains the

eigenvalues of Â and V̂A are the corresponding eigenvectors.
The eigenvectors of L can be approximated as

V =

√
l

n

[
Â

B̂T

]
V̂AΣ̂−1A . (6)

Finally, k-means is performed on low dimensional space
constructed based on the top c eigenvectors obtained from
equation (6).

In this paper, our objective is selecting the representative
sample points (i.e., landmark points) to construct A and B in
equation (4) for obtaining good approximation results.

III. THE PROPOSED HUBNESS-BASED SAMPLING FOR
NYSTRÖM SPECTRAL CLUSTERING

In this section, we introduce the proposed hubness-based
sampling method for Nyström spectral clustering.
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Fig. 1. Uniform sampling is extremely uncertain sampling for data set with
uneven distribution. A better sampling method should select points that more
equally cover the relevant data.

A. Hubness Scores

Generally, Nyström method uses uniform sampling to select
landmark points from data sets, which often fails for many
data sets with uneven distribution. Figure 1 shows an example
that the uniform sample is more possible oversampling in the
bigger clusters for a dataset with different densities of clusters.
As a result, the smaller but still important clusters are missed
for sampling. Uniform sampling is observed that shows the
limited clustering quality for Nyström spectral clustering.

To address this problem, we introduce the hubness score
as a measure of point importance to select landmarks for
Nyström spectral clustering. The hubness score that indicates
the number of k-occurrences of a point in k-nearest-neighbor
lists is defined as

Definition 1: Hubness score [15]. For any integer k > 0,
the hubness score of data points xi is defined as

Nk
i

def
=

n∑
j=1

tij , (7)

where

tij =

{
1, xi is among the k nearest neighbors of xj ,
0, otherwise.

Let T k be the binary adjacency matrix of k-nearest-
neighbors graph, we can also write the matrix form as

Nk = T k1n. (8)

The data points with largest hubness scores are referred to as
hubs.

It has been discussed in [16] that hubness does not depend
on scale. In other words, for a point with a high hubness score,
its density can be a low value.

B. Local Hubness based Sampling

Computing the hubness scores naively requires a costly
matrix inversion, which can be prohibitive for large-scale data
sets. It will be O(n2) computational complexity to directly
calculate the hubness score which is very time-consuming for
large-scale data sets. To avoid the high computational cost, we
consider an alternative scheme which computes local hubness
score in the local partition. That is, first dividing the data points
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Fig. 2. Comparision between local hubenss sampling (10 pre-partitions
created by random partition) and global hubness sampling on data set USPS:
clustering accuracy of different methods are very close while local hubness
sampling consume less time.

into some partitions, then computing hubness score based on
the data points in local partitions.

As shown in Figure 2, global hubness-based sampling often
achieves better clustering accuracy but consumes much more
time. In this paper, we utilize two pre-partition methods:
random and k-means partition.

1) Hubness-based Sampling using Random Partition: Ran-
dom partition randomly divides the data points into some
partitions. We suppose that all the data points are divided
into m rep-partitions P1, P2, . . . , Pm at random. To better
distinguish, we let P indicate rep-partition and p indicates
the probability. Thus, we can write the approximated form of
equation (8) as

N̂k ≈

T
k
1

. . .
T k
m

1n, (9)

where T k
i is thebinary adjacency matrix of k-nearest-neighbor

in the Pi local partition.
Instead of directly selecting the data points with the highest

hubness scores, we select data points based on the following
probability

pi = N̂k
i /

n∑
j=1

N̂k
j . (10)

That is, the data points with higher hubness scores have higher
probabilities to be selected. The hubness-based sampling
method using a random partition is summarized in Algorithm
1.

Obversely, there are two conditions for better approxima-
tion: (1) maintaining a similar size |Pi| between each part;
(2) xj should have neighbor xv in the same part Pi as
many as possible. The random partition can easily provide
a similar size of parts to satisfy the first condition. Although
the second condition is hard to satisfy by the random partition,
the data points with the largest hubness scores still have higher
possibilities to become hubs. To illustrate this idea, consider a
simple example in Figure 3 which supposes the pre-partition
is in a bad situation where data points in different clusters are
randomly mix up into pre-partitions, but that approximated
hubs still have reasonable distribution.
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Fig. 3. Illustrative example of computation of local hubness: In worst case, different clusters are mixed in the pre-partition while we still have a reasonable
set of hubs computed by N1.

Algorithm 1 Local Hubness Sampling using random partition
Input:

X = x1, x2, . . . , xn: datasets
l: number of landmark points
k: hubness parameter
m: number of pre-partitions;

Output:
I = i1, i2, . . . , il: the indices of the sampled points

1: Obtain initial m pre-partitions Ci, . . . , Cm via random
partition;

2: for all pre-partition Pi do
3: Uniformly obtain m pre-partitions from X;
4: end for
5: Compute approximate hubness scores N̂k by equation (9);
6: Obtain I by selecting data points with highest hubness

score as landmark;
7: return I .

2) Hubness-based Sampling using k-means partition: Be-
sides random partition, we also apply the k-means algorithm
to obtain partitions and then compute the local hubness score
to select landmark points.

Different from random partition, in k-means partition, the
data points in the same part are more similar than those in
others and the number of groups varies greatly. The value
of the hubness score in different parts can be varied. Thus,
we decide the number of selected landmark points ni in a
local partition Pi based on |Pi| (the number of data points in
partition Pi) as

ni =
|Pi|
n
l. (11)

It maybe necessary to modify ni to satisfy the equation∑m
i=1 ni = l where ni is an integer. In each local partition Pi,

a data point is selected as the landmark with the probability
according to equation (10).

The hubness-based sampling method using k-means parti-
tion is summarized as Algorithm 2.

Algorithm 2 Local Hubness Sampling using k-means partition
Input:

X = x1, x2, . . . , xn: datasets
l: number of landmark points
k: hubness parameter
m: number of pre-partition;

Output:
I = i1, i2, . . . , il: the indices of the sampled points

1: Obtain initial m pre-partitions Ci, . . . Cm via k-means
partition;

2: Set ni = |Pi|
n l, and modify ni to satisfy

∑m
i=1 ni = l

where ni is an integer;
3: for all pre-partition Pi do
4: Construct the local adjacency matrix T k

i of k-nearest-
neighbors graph of Pi;

5: Set Nk
i = T k

i 1 and pij = Nk
ij
/
∑|Pi|

j=1N
k
ij

;
6: Sample ni indices of Ci according to the probability

vector pi, and add them into I;
7: end for
8: return I .

C. Applying Landmark Points to Nyström Spectral Clustering

The Nyström spectral clustering using the proposed sam-
pling method can be summarized as follows.

1) Obtain landmark points by Algorithm 1 or 2.
2) Compute similarity matrix A between landmark points

and similarity matrix B between landmark points and
remaining data points. A common measure of similarity
Sij is Gaussian kernel function:

Sij = exp

(
−‖xi − xj‖2

2σ2

)
(12)



where σ is a scaling kernel parameter that determine how
fast the similarity decrease with the Euclidean distance
between data points xi and xj .

3) Calculate D by Eq. (2) and construct R = Â +
Â−1/2B̂B̂T Â−1/2.

4) Calculate DA and DB by Eq. (2), Let Â =

D
−1/2
A AD

−1/2
A and B̂ = D

−1/2
A BD

−1/2
B .

5) Compute the approximate eigenvectors V̂ by equation
(6).

6) Normalize the top c eigenvectors of V̂ as U .
7) Apply k-means clustering to n rows of U into c clusters.

D. Complexity Analysis

The total time complexity of Nyström method is O(l3) +
O(nl2), where O(l3) presents the eigen-decomposition and
O(nl2) presents the orthogonalizing of eigenvectors. In Algo-
rithm 1 and 2, the sampling schemes are based on random
partition and k-means partition, respectively. In the case of k-
means local partition, the time complexity is O(tmn), where
t indicates the number of iterations. While, if we use the
random local partition, this time complexity can be ignored.
The computation of hubness score is happened in each local
partition. Thus, the time complexity of computing hubness
score is O(s2 + ks), where s = max|Pi|, i = 1, 2, . . . ,m.
Because of the partition approximation, we can simply adjust
the computational complexity by setting a reasonable value of
m.

IV. EXPERIMENTS

In this section, we conduct several experiments based on
both synthetic and real-world data sets to evaluate the perfor-
mance of two proposed methods.

A. Experimental Settings

There are four parameters in our method: m, i.e., the number
of pre-partition; k, i.e., the number of nearest landmarks; l,
i.e., the number of landmarks; σ, i.e., the scale parameter of
Gassain kernel equation in equation (12). For each data set,
we employ grid search to search for the possibly best param-
eters and execute experiments. m is searched in the set of
{10, 20, . . . , 100}. k is searched in the set of {5, 10, . . . , 30}.
σ is set by the mean distance value between xi and xj in the
equation (12). We also range l in {100, 200, . . . , 700} in the
experiments. We repeat each method 10 times and report the
average value as the final result.

All experiments were run in MATLAB 9.4.0 (R2018a) on
Ubuntu 16.04.5 LTS with Intel CPU E5-1650 v4 @ 3.60GHz
(6Core/12Thread, Broadwell) and 16GB x4 = 64GB ram.

B. Evaluation Metric

To evaluate the clustering performance, we adopt one widely
used evaluation metric, i.e., Accuracy (ACC), to evaluate the
clustering results. Let X = [x1, x2, . . . , xn] be the data matrix.
For each data point xi, denote ti and ci as the cluster label

of ground truth and obtained cluster label from clustering
algorithms, respectively. The ACC is defined as:

ACC =

∑n
i=1 δ(ti,map(ci))

n
, (13)

where n is the number of data and δ(t, c) is a function to
check t and c are equal or not, returning 1 if equals otherwise
returning 0. The map(c) is a best mapping function that maps
each predicted label to the most possibly true cluster label
by permuting operations. The map function can be found by
Kuhn-Munkres algorithm [17]. As the name implies, a better
clustering result will provide a more significant value of ACC
in the range of [0, 1].

C. Compared methods

We compare the proposed sampling methods with other
sampling methods for Nyström spectral clustering. There are
several versions of Nyström spectral clustering, we use a
Matlab version according to [8] in our experiments. The
compared methods are

1) US: Short for uniform sampling. As we mentioned in
section 2.2, Nyström often use random sampling in
practice. We compare the uniform sampling scheme as
baseline landmark selection methods.

2) KS: Short for k-means sampling proposed by [10].
3) RS: Short for recursive sampling for the Nyström

method by [12]. The Authors have provided their Matlab
code on their GitHub 1.

For our algorithm, there are two versions:

1) HRS: Short for hubness-based sampling using the ran-
dom partition.

2) HKS: Short for hubness-based sampling using k-means
partition.

D. Clustering Results on Synthetic Data sets

In this experiment, we evaluate the clustering performance
of compared methods on three synthetic data sets, as shown
in Figure 4.

Figure 5 shows the clustering accuracies by varying number
of landmarks for all methods. In most cases, the accuracy
increases as the number of landmark points increases. It
can be seen that both the proposed HRS and HKS methods
significantly improve the clustering result from baseline (US)
and obtain better results than other Nyström based sampling
methods.

The US method provides the shortest clustering time and the
KS method spends the most time. The proposed HRS method
consumes the 2nd shortest time while HKS spend more time
because the k-means partition leads to imbalance number of
elements in local parts. Overall, the two proposed HRS and
HKS methods achieve better clustering results on the there
synthetic data sets with reasonable clustering time.

1https://github.com/cnmusco/recursive-nystrom
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Fig. 4. Synthetic data sets
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Fig. 5. Accuracy by varying number of landmarks on synthetic data sets

TABLE I
PROPERTIES OF DATA SETS

data set # of samples # of Features # of Clusters
PenDigits 10,992 16 10

USPS 9,298 256 10
RCV1 4Class 9,625 29,992 4

TDT2 9,394 36,772 30
Letter 20,000 16 26

E. Clustering Results on Real-world Data Sets

In this experiment, we evaluate the clustering performance
of compared methods on five real-world data sets. The prop-
erties of the five real-world data sets are summarized in Table
I and introduced as follows.

USPS: A data set of handwritten image data within 10
clusters from 0 to 9 digit. Each column represents an image
that has 256 dimensions [18].

PenDigits: As the name suggests, it is handwriting image
data set [19].

RCV1 4Class: A subset of the test benchmark data collec-
tion for machine learning research [20].

TDT2: A subset of the document data set TDT2 which
consists of articles from 6 media sets [21].

Letter: A letters recognition data set that consists of 26
English capital letters (from A to Z) [22].

We show the clustering accuracy of different methods on
all data set in Figure 6 and report the best accuracy for

each method in Table II. To show how spectral clustering is
accelerated in large-scale data sets, we also report the results of
the Normalized Spectral Clustering (SC) with sparse similarity
which is popular in practice. As shown in Figure 6, the accu-
racy of different methods increases generally when the number
of landmark points increases. On two handwriting digits data
sets, the result is somewhat counter-intuitive where accuracy
does not progressively increase. The proposed HRS and HKS
methods significantly improve the clustering accuracy from the
baseline US and outperform other compared methods.

For a fair comparison, we report the maximum clustering
time of different methods on all data set in Table III. The
original spectral clustering method consumes the most time
and the US method consumes the least time on all data
sets. The proposed HRS and HKS methods have good speed
comparing with KS and RS.

Overall, the two proposed HRS and HKS methods achieve
better clustering results on four real-world data sets with
reasonable clustering time. However, HKS often consumes
more runtime than HRS because of using k-means partition.
Note that all clustering methods reduce the runtime from the
original spectral clustering. For the data set TDT2 with the
largest feature size and the data set Letter with the largest
sample size, the speedups are more remarkable.

We compare the parameters, i.e., the number of nearest-
neighbor k and the number of pre-partition m, regarding
clustering accuracy and time on PenDigits data set and report



TABLE II
ACCURACY OF DIFFERENT SAMPLING METHODS FOR NYSTRÖM SPECTRAL CLUSTERING

Data sets SC US RS KS HRS HKS
PenDigits 0.6400.000 0.7180.042 0.7050.034 0.7210.033 0.7360.035 0.7350.040
USPS 0.6660.001 0.6340.031 0.6360.041 0.6430.014 0.6520.028 0.6400.035
RCV1 4Class 0.3050.000 0.6330.066 0.6160.037 0.6510.053 0.6640.069 0.6420.055
TDT2 0.7620.012 0.3980.039 0.4100.023 0.4000.027 0.4170.040 0.4500.040
Letter 0.3120.017 0.2920.034 0.3020.022 0.3030.026 0.3140.026 0.3150.027

TABLE III
CLUSTERING TIME OF DIFFERENT SAMPLING METHODS FOR NYSTRÖM SPECTRAL CLUSTERING (SECOND)

Data sets SC US RS KS HRS HKS
PenDigits 1.5180.291 0.0290.001 2.3100.021 0.5720.021 0.0690.037 0.6600.006
USPS 2.3210.051 0.6020.001 2.4510.031 0.8840.027 0.6730.029 0.6960.008
RCV1 4Class 20.5890.501 0.1920.002 3.5800.020 0.4830.017 0.8470.008 1.2430.000
TDT2 57.7450.149 0.2770.002 6.8360.011 2.8670.030 0.6490.033 1.8910.017
Letter 15.5711.130 0.4510.014 1.5620.002 3.4430.521 0.6940.026 0.8110.022

100 200 300 400 500 600 700

Number of landmarks

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

A
c
c
u
ra

c
y

US

RS

KS

HRS

HKS

(a) PenDigits

100 200 300 400 500 600 700

Number of landmarks

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

A
c
c
u
ra

c
y

US

RS

KS

HRS

HKS

(b) USPS

100 200 300 400 500 600 700

Number of landmarks

0.5

0.55

0.6

0.65

0.7

A
c
c
u
ra

c
y

US

RS

KS

HRS

HKS

(c) RCV1 4Class

100 200 300 400 500 600 700

Number of landmarks

0.25

0.3

0.35

0.4

0.45

A
c
c
u
ra

c
y US

RS

KS

HRS

HKS

(d) TDT2

0 200 400 600 800 1000

Number of landmarks

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

A
c
c
u
ra

c
y

US

RS

KS

HRS

HKS

(e) Letter

Fig. 6. Accuracy by varying number of landmarks on real-world data sets
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Fig. 7. Clustering time by varying number of landmarks on real-world data
sets
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Fig. 8. Accuracy and clustering time by varying parameters on PenDigits
data set

the results in Figure 8. The parameters are set as m = 50
and l = 700 in Figures 8(a) and 8(c); k = 15 and l = 700
in Figures 8(b) and 8(d). When the two parameters are
changed within a certain range, the performance also changes
within a certain range. Both the proposed methods show low
dependency on parameters and robust for clustering accuracy.
On the other hand, the clustering time highly depends on the
number of pre-partition m.

V. CONCLUSION

In this paper, we propose a new sampling method for
Nyström spectral clustering based on the hubness score of
data points. The data points with high hubness scores have
high probabilities to be selected as the landmark points. We
further design fast computation methods, i.e., local hubness
approximated methods, to speed up the sampling process.
We propose two versions of local hubness-based sampling
methods and evaluate the performance of the proposed meth-
ods by comparing them with three related methods as well
as the original spectral clustering. The experimental results
on both synthetic and real-world data sets demonstrate the
effectiveness of the proposed methods in comparison to other
sampling methods for Nyström spectral clustering.
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