Automated Design of Neuromorphic Networks for
Scientific Applications at the Edge

Catherine D. Schuman
Computational Data Analytics

Oak Ridge, TN, USA
schumancd @ornl.gov

Garrett S. Rose
Department of EECS
University of Tennessee
Knoxville, TN, USA

garose @utk.edu

Samuel D. Brown
Department of EECS
University of Tennessee
Knoxville, TN, USA

sbrow109 @utk.edu

Abstract—Designing spiking neural networks for neuromor-
phic deployment is a non-trivial task. It is further complicated
when there are resource constraints for the neuromorphic im-
plementation, such as size or power constraints, that may be
present in edge applications. In this work, we utilize a previously
presented approach, EONS, to design spiking neural networks
for a memristive neuromorphic implementation for scientific
data applications. We specifically use a multi-objective approach
in EONS to maximize network accuracy on the scientific data
application task, but also to minimize network size and energy.
We illustrate that EONS determines both the network structure
and the parameters, removing the burden from the user on
determining the appropriate spiking neural network structure,
and we show that the resulting networks are very different
from the layered structure of typical neural networks. Finally,
we show that the multi-objective approach produces smaller,
more energy efficient networks than the original EONS approach
and produces comparable accuracy to a back-propagation style
training approach.

I. INTRODUCTION

Neuromorphic computing systems offer the opportunity for
energy efficient implementations for machine learning applica-
tions [1]. One of the key features for neuromorphic computing
systems is that they are low power, energy efficient hardware
implementations that can perform machine learning tasks such
as data analysis. As such, there has been an increased interest
in utilizing neuromorphic systems for applications at the edge
in order to implement intelligent data processing in these
resource-constrained environments.

Notice: This manuscript has been authored in part by UT-Battelle, LLC
under Contract No. DE-ACO05-000R22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

J. Parker Mitchell
Computational Data Analytics
Oak Ridge National Laboratory Oak Ridge National Laboratory — West Lafayette, IN, USA
Oak Ridge, TN, USA
mitchelljpl @ornl.gov

Robert M. Patton
Computational Data Analytics
Oak Ridge National Laboratory Oak Ridge National Laboratory

Oak Ridge, TN, USA
pattonrm @ornl.gov

James S. Plank
Department of EECS
University of Tennessee
Knoxville, TN, USA

jplank @utk.edu

Maryam Parsa
Purdue University

mparsa@purdue.edu

Thomas E. Potok
Computational Data Analytics

Oak Ridge, TN, USA
potokte @ornl.gov

However, an open question in the field of neuromorphic
computing is how to best define the appropriate spiking neural
network (SNN) for a given task and a given neuromorphic
implementation. Though there are a variety of training ap-
proaches for SNNSs, those approaches do not necessarily create
SNNs that are directly amenable for deployment into SNN
hardware. In particular, many training approaches for SNNs
do not take into account the restricted weight resolution that is
typical in neuromorphic implementations, especially those that
are implemented using emerging devices such as memristors.

Moreover, many of the existing approaches for training
neuromorphic systems produce very large SNNs. For example,
back-propagation-like training approaches can easily result in
SNNss that are on the order of at least hundreds of neurons and
thousands to millions of synapses. For a resource-constrained
environment, it may not be reasonable to expect that there is
either the physical area available nor the power required in
order to implement these types of SNNs on a neuromorphic
system.

Finally, many of the existing training approaches require
a pre-defined network structure to be determined before the
algorithm can be used. For example, back-propagation-like
algorithms may require the user to define the number of
layers and number of neurons per layer or reservoir computing
approaches may require the user to define the appropriate
reservoir structure. It is non-trivial to determine the appropriate
network structure for these tasks and often requires significant
human effort to tune these algorithmic hyperparameters before
they can be used effectively.

An approach called Evolutionary Optimization for Neuro-
morphic Systems (EONS) [2] has been previously introduced.
EONS addresses some of these issues in that it tailors SNNs
directly for the hardware implementation at hand and it designs
both the structure and the parameters of the SNN, requiring
less human effort in hand-tuning the hyperparameters of
the system. EONS also tends to produce smaller networks

than those required for back-propagation-like approaches or
reservoir computing [3]. An approach that uses EONS to pro-
duce even smaller networks by explicitly adding minimizing
network size as an objective to the optimization algorithm has
previously been presented [4]. We extend that approach here
by demonstrating the approach specifically for the automated
design of small, energy efficient SNNs for a memristive
neuromorphic system for scientific data classification tasks,
with an edge deployment scenario specifically in mind. We
show that the new approach produces networks that perform
equivalently on accuracy, but are significantly smaller and
significantly more energy efficient than the networks trained
by the original EONS algorithm and networks trained using a
back-propagation-based algorithm.

II. BACKGROUND AND RELATED WORK

This work proposes an approach for designing neuromor-
phic networks for a particular neuromorphic hardware system,
using evolutionary optimization. There are many algorithms
for training SNNs, including those that use variations of
back-propagation or gradient descent [5], [6], [7], [8]. A
few approaches target designing for neuromorphic systems
specifically, by taking into account constraints such as reduced
weight precision [9], [10]. However, as noted above, these
approaches can result in very large networks and do not neces-
sarily take into account all of the behaviors of a neuromorphic
system based on emerging devices.

For more emerging technologies such as memristors, there
are other approaches to deal with training for neural net-
works that will be deployed onto those types of devices.
For example, some issues have been previously addressed
by implementing training on-the-chip [11]. Others use noise
eliminating training processes [12], variation aware training
[13], or training that incorporates the non-idealities of the
devices into the training procedure [14]. Other challenges
associated with implementing neural networks onto hardware,
including maximum fan-in/fan-out of a neuron or limited
precision, have been addressed by transforming and retraining
under the hardware restrictions [15].

Finally, to help address issues associated with large net-
works requiring too large of a footprint or too much energy
in the physical implementation, a variety of approaches have
been tried, including pruning specifically for deployment onto
a memristor crossbar array [16], [17], [18], or hyperparameter
optimization for co-designing software and hardware [19].
Other approaches include weight pruning and quantization to
reduce the size of the network [20]. These types of approaches
are post-processing techniques that may have a detrimental
effect on the accuracy of the network.

III. METHOD

In this work we use EONS to train SNNs for a memristive
neuromorphic hardware implementation and that perform sci-
entific data classification tasks. In the following subsections,
we describe the hardware implementation and the datasets
used in our experiments. We also briefly describe the EONS

=3
=)
A—— ¢ &
58
°35
e neural neural neural
PRl oo
—l£5 o—m— “._core core core
= <
5 PN
neural neural . e e neural
core core core
=3
Au—— £ &
" e - 2
"‘ 59 . Ve 4 ® \ 4
33 /
45 y /
88 b 1]
5 ° P
/o
/.
T y » - i
neuron, A
neural neural e e e neural
core core core

Fig. 1. MrDANNA structure, with neural cores made up of a single neuron
and 8 twin-memristor synapses [21].

approach, as well the broader neuromorphic software frame-
work in which it operates.

A. Hardware: MrDANNA

The hardware implementation used in this work is the
memristive DANNA or mrDANNA system [21]. It utilizes an
integrate-and-fire neuron model that accepts analog weighted
current inputs and accumulates charge until an analog ref-
erence threshold voltage is achieved, at which point the
neuron produces a digital output spike. Each synapse has
two memristors connected with opposite polarity such that
the effective conductance of the pair can represent positive
and negative weights. The memristive devices used in this
system are HfO,, with high-resistance states (HRS) of 300
k2 and low-resistance states (LRS) of 30 k2. The synapse
delay in this system implementation is capped at a maximum
of 7 cycles, and the neuron refractory period is fixed at 1
cycle. We assume a network frequency of 20 MHz. The overall
mrDANNA system is made up of tiled neural cores, where
each mrDANNA core has a single neuron and eight synapses.
The organization of mrDANNA is shown in Figure 1.

To estimate the power consumption of this system, we
performed circuit-level simulations of the individual com-
ponents using 65 nm technology models. Energy estimates
were collected for each component in all possible phases of
operation. An overall energy estimate was constructed from
these numbers based on each network’s topology and the time
each component spent in its separate operational phases. For
the energy estimates used in this work, we use the neuron
estimates from [21] and the synapse estimates from [22]. The
energy estimates also assume a custom-fabricated circuit for
each network.

B. Data

In this work, we use two datasets from the UCI Machine
Learning repository [23], the MAGIC Gamma Telescope data
set (MAGIC) and the Statlog Landsat Satellite (SAT) data set.
Characteristics associated with each of those data are given in
Table I. The MAGIC Gamma Telescope data is data simulated
using Monte Carlo generation to simulate registration of

TABLE I
DATASET CHARACTERISTICS
MAGIC | SAT
Training 4755 4435
Testing 14265 2000
Attributes 10 36
Classes 2 6

high energy gamma particles in a ground-based Cherenkov
gamma telescope. The classification task for that dataset is
to distinguish between gamma rays and hadron (background)
rays. The second task is to, given a 3x3 pixel neighborhood
of a satellite image, to predict the classification of the center
pixel as one of red soil, cotton crop, grey soil, damp grey soil,
soil with vegetation stubble, or very damp grey soil. We chose
these datasets because they would both potentially benefit from
a deployed, low-power neuromorphic solution, for example, at
a telescope or on a satellite.

C. Software and Training

We use Evolutionary Optimization for Neuromorphic Sys-
tems (EONS) to define the SNNs for the mrDANNA hardware
system to solve the two classification tasks described in
the previous section. EONS is an evolutionary optimization
based approach, described in [2]. To enable using EONS
on this task for the mrDANNA hardware system, we utilize
the TENNLab neuromorphic research framework [24]. This
framework enables the use of EONS on mrDANNA through a
common SNN definition and performs conversion on the data
from the application into spikes to be included as input to the
mrDANNA hardware. In this work, we use the binning and
charge injection approaches for input encoding, as described
in [25]. We use voting as the output decoding scheme, where
the output neuron that fires the most corresponds to the
classification. We use eight bins for each input value for each
task. The eight bins correspond to different, non-overlapping
subsets of the range of potential input values for each of the
attributes. When encoding a particular attribute value as input
to the network, the neuron that corresponds to the value that
the attribute is in will spike a single time at the beginning of
network simulation. Each network for the MAGIC task has
80 input neurons (8 bins for each of the 10 attributes) and 2
output neurons (one for each class) and each network for the
SAT task has 288 input neurons (8 bins for each of the 36
attributes) and 6 output neurons (one for each class).

The EONS algorithm operates by first defining a population
of potential SNNs to solve the given task on a given hardware
platform. All of the SNNs in the population have the same
number of inputs and outputs as described above, but also
have some randomly initialized hidden neurons as well as
randomly initialized synapses. The SNNs that make up the
initial population are randomly generated. In order to evaluate
the SNNs, we define a fitness function, which provides a score
for how well the SNN is performing the task at hand on the
hardware. Typically, as part of this fitness function evaluation,
the given SNN is loaded onto either a simulator of the

hardware or the hardware itself, the appropriate input spikes
are applied, and the hardware or hardware simulator is run for
some amount of time. The spikes of the output neurons are
monitored and used to define how well the network performs
on the task. In this case, the spiking outputs correspond to
classification decisions, which are compared with the correct
answers to produce an accuracy score. As noted below, the
fitness function can be made more complicated as well, to
encourage different types of behaviors.

Once all of the networks in the initial population have been
evaluated and scores are assigned, we use a selection algorithm
to select SNNs to serve as parents for the next generation
based on their scores. For this work, EONS uses the selection
algorithm tournament selection. This selection algorithm (like
others in the genetic algorithm literature) does not always
select the best performing networks in the population, but
instead ensures that some diversity remains in the population
of networks. EONS then uses the selected parents to produce
children through the reproduction operations of duplication,
crossover, and/or mutation. Crossover combines multiple par-
ents into multiple children such that each of the children has
some components from each of its parents. Mutation makes
small changes (e.g., adding or deleting a neuron or synapse,
changing a parameter value, etc.) to a given parent network to
produce a child. Once the children networks have been created,
they form the new population and the evaluation, selection,
and reproduction cycle repeats either for a fixed number of
generations or a time limit is reached. In this work, we fix the
number of generations trained to 1000.

As noted above, to utilize EONS to define an SNN for a
hardware platform, we must define a fitness function. Here, we
use a multi-objective optimization based approach inspired by
how EONS was utilized in [4]. In [4], the fitness function
of EONS was expanded to include not only maximizing the
network’s accuracy on the task, but also minimizing network
size and maximizing accuracy of perturbations of the network
to increase resiliency. Moreover, that work demonstrated that
multi-objective optimization approach out-performed a post-
training pruning approach.

Here, we augment the typical accuracy-only EONS function
to include minimizing network size and/or minimizing energy
usage on the task, in addition to accuracy. In particular, we
define the accuracy of the network on the task as a(net) €
[0,1], which is the fraction of correct classifications in the
training set. We define the size of the network as the number of
neurons in the network, n,, (net), and the number of synapses
in the network, ns(net). Finally, an energy estimate of how
the network will perform is defined as e(net).

Here, we evaluate how EONS will perform in designing
mrDANNA networks for scientific applications at the edge by
comparing the following four fitness functions. For brevity,
we abbreviate accuracy as A, network size as S, and energy
as E in the results in Section IV and in the equations below.
The first fitness function just maximizes the accuracy of the
network and does not consider network size or energy usage.

A = fi(net) = a(net) (1)

The second fitness function both encourages maximizing the
accuracy of the network, but also minimizing the network size
(in terms of the number of neurons and number of synapses).

AS = fy(net) = a(net) — a(n,(net) + ns(net)) (2)

The « parameter scales down the penalty associated with
the network size, and in this work is set to @ = 1077,
though it is a hyperparameter for this approach. We include
both the number of neurons and number of synapses in our
calculation of network size and weight them the same way.
However, it is worth noting that the actual impact of the
physical implementations of neurons and synapses may be
very different. As such, it may be appropriate to weight them
differently in future work.

The third fitness function encourages maximizing the ac-
curacy of the network and minimizing the energy required to
evaluate the training instances.

AFE = fs(net) = a(net) — a(e(net)) 3)

Finally, the fourth fitness function encourages maximizing
accuracy, minimizing network size, and minimizing the energy
required.

ASE = fy(net) = a(net) — a(n,(net) + ns(net) + e(net))

“)

It is worth noting that though we produce a single score for

each of these different approaches, this approach is equivalent

to the weighted sum approach in genetic algorithm literature,

which is a common way to perform multi-objective optimiza-
tion in that field [26].

IV. RESULTS

To understand the effect of different fitness functions on the
performance of EONS, we ran 100 EONS tests for each fitness
value, maintaining the same 100 random number seeds to
generate the initial population across all four fitness functions.
Thus, any variation in performance between the different
fitness functions is due to the change in the fitness function and
not due to the differences in the initial populations used. Figure
2 gives the results for these tests for the two datasets, including
the accuracy on the testing set, the number of neurons in the
resulting networks, the number of synapses in the resulting
networks, and estimated energy required to run all of the
testing examples, reported in ulJ.

As can be seen in Figure 2, by including either network size
or energy into the resulting networks, we can see a dramatic
reduction in the number of neurons and synapses required
to complete the task, as well as the amount of energy to
complete the task, with relatively little, if any, impact on the
accuracy of the network. As can be seen in the figures, when
adding minimizing the number of neurons as part of the fitness

SAT

)
TP ® B P | Lo
g 080 > s > .
3 0.80 1
[¥)
<L
o 0.75 1
3 0.75 o
}9 o] o]
0704 o 8 5)
200{ 8 360 1 ’_|’_‘
. | o
§ 150 T °
=
g 320
100 1 300
o) :] — & !) []
° 600
300 A
Baares
4 4 L]
201 o 400 T 8
LR d| T DD
100 - . s .
200 1
o T T T
525
2000 -
= 500
< 2 e
<, 1500 A T 475 4 T
©
g 450
1000
9 o 8 |5 4+ &+ 8
A AS AE ASE A AS AE ASE

Fig. 2. Results for EONS for maximizing accuracy only as the objective
(A), EONS for maximizing accuracy and minimizing network size as the
objectives (AS), EONS for maximizing accuracy and minimizing energy as
the objectives (AE), and EONS for maximizing accuracy, minimizing network
size, and minimizing energy (ASE).

function or minimizing the energy required to perform the
task as part of the fitness function, nearly all of the networks
produced converge to the same number of neurons, which
happens to be the number of input and output neurons in the
network. In other words, by leveraging recurrent connections
between input neurons, EONS is able to discover networks
that solve these tasks with no hidden neurons for each of
the two datasets. These sorts of networks cannot be achieved
using back-propagation-style training algorithms because of
their highly recurrent nature. To illustrate the non-traditional
structure of these networks, the best performing EONS trained
networks for MAGIC and SAT are shown in Figures 3 and 4.
As can be seen in these figures, there are many connections
between input neurons (shown in pink).

To understand how EONS performs as compared with a
back-propagation-like approach, we compare the results of
the best performing EONS network (out of the 100 tests

Fig. 3. Best performing EONS network for the MAGIC dataset, obtained from
one of the AS runs. Input neurons are shown in pink and output neurons are
shown in green.

Fig. 4. Best performing EONS network for the SAT dataset, obtained from
one of the AS runs. Input neurons are shown in pink and output neurons are
shown in green.

TABLE 11
COMPARISON OF EONS AND WHETSTONE ON MAGIC

Approach Testing | Neurons | Synapses | Energy (in uJ)

EONS - A 82.8% 168 257 1766.7

EONS - AS 83.4% 82 128 846.2

EONS - AE 82.6% 82 120 847.2

EONS - ASE | 82.9% 82 108 845.5

Whetstone 83.8% 130 3000 -
TABLE III

COMPARISON OF EONS AND WHETSTONE ON SAT

Approach Testing | Neurons | Synapses | Energy (in uJ)
EONS - A 84.1% 343 381 495.3
EONS - AS 84.2% 294 180 424.6
EONS - AE 83.8% 294 271 424.5
EONS - ASE | 84.2% 294 328 4247
Whetstone 87.0% 196 9600 -

conducted) in Figure 2 for each type of fitness function with
a Whetstone [6] trained network in Tables II and III, for the
MAGIC and SAT datasets, respectively.

Whetstone is a back-propagation-like algorithm that sharp-
ens the activation function of the neurons from a differentiable
function to a non-differentiable binary activation over the
course of training. Thus, the resulting networks produced
by Whetstone use binary, spike-like communication that is
amenable for SNN implementation and can be deployed to
neuromorphic hardware. For Whetstone, we use 100 hidden
neurons and 10-hot encoding for the outputs. Thus, for the
MAGIC dataset, Whetstone has 10 input neurons, 100 hidden
neurons, and 20 output neurons (10 for each output class),
and for the SAT dataset, Whetstone has 36 input neurons,
100 hidden neurons, and 60 output neurons (6 for each output
class). It is non-trivial to map a Whetstone network onto a
neuromorphic implementation because of the input encoding
and restricted weight resolutions in real neuromorphic systems,
so we do not obtain an energy estimate for the Whetstone
approach here for mrDANNA.

As can be seen in these tables, EONS achieves similar
testing performance as Whetstone, but uses dramatically fewer
synapses than the fully-connected networks of Whetstone. In
particular, for the MAGIC dataset, Whetstone requires more
than 20x as many synapses as the EONS approaches that
include network size or energy as a metric. Similarly, for
the SAT dataset, Whetstone requires 30-50x more synapses
than the EONS approaches. The resulting Whetstone networks
deployed on a neuromorphic system would be significantly
larger in area and could have a substantial impact on the energy
required.

It is worth noting that the performance and size of the
networks produced using the AS, AE, and ASE networks
are comparable, indicating that size and energy are highly
correlated for this neuromorphic implementation and these
applications and that in this case, it is sufficient to minimize
network size or energy rather than both.

V. DISCUSSION AND CONCLUSION

In this work, we demonstrate that a training approach called
EONS can be used to produce SNNs for scientific data tasks
for a memristive neuromorphic system. This approach defines
both the structure and parameter of the SNNs. It results in
non-traditional neural network structures that can produce very
small and quite sparse networks. We demonstrate that a multi-
objective optimization approach with EONS can generate even
smaller networks with lower energy consumption than the
original, accuracy only optimization. EONS has been previ-
ously demonstrated on several different types of neuromorphic
implementations, including digital [27], [28], biomimetic [29],
and optoelectronic [30] neuromorphic systems. Moreover, it
has been used for a variety of different types of applications,
including another high energy physics data application [31],
as well different types of control tasks [32]. The approach
demonstrated in this work can be used to produce smaller
and perhaps more energy efficient SNNs for these different
implementations and applications.

The key contributions of this work are:

o A demonstration of a multi-objective optimization ap-
proach for designing neuromorphic SNNs for scientific
data applications that would benefit from an edge de-
ployment.

¢ An illustration of how this multi-objective approach can
produce substantially smaller and more energy efficient
networks for a memristive neuromorphic implementation.

o An illustration of how the training approach EONS pro-
duces non-traditional SNN structures for implementation
on neuromorphic systems.

ACKNOWLEDGMENT

This material is based in part upon work supported by
the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under contract
number DE-AC05-000R22725, in part by the Laboratory
Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC, for the
U. S. Department of Energy., and in part by an Air Force
Research Laboratory Information Directorate grant (FA8750-
16-1-0065).

REFERENCES

[1] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[2] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in 2016 International Joint Conference on Neural Net-
works (IJCNN). 1EEE, 2016, pp. 145-154.

[3] J.J. M. Reynolds, J. S. Plank, C. D. Schuman, G. Bruer, A. W. Disney,
M. Dean, and G. S. Rose, “A comparison of neuromorphic classifica-
tion tasks,” in International Conference on Neuromorphic Computing
Systems. Knoxville, TN: ACM, July 2018.

[4] M. Dimovska, J. T. Johnston, C. D. Schuman, J. P. Mitchell, and
T. E. Potok, “Multi-objective optimization for size and resilience of
spiking neural networks,” in 2019 IEEE Annual Ubiquitous Computing,
Electronics, and Mobile Communication Conference. 1EEE, 2019, p.
In press.

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Training deep neural networks for binary communication with the
whetstone method,” Nature Machine Intelligence, vol. 1, no. 2, p. 86,
2019.

D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic
modelling methods,” Neuroinformatics, pp. 1-18, 2019.

S. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems, 2018, pp.
1412-1421.

P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Con-
version of artificial recurrent neural networks to spiking neural networks
for low-power neuromorphic hardware,” in 2016 IEEE International
Conference on Rebooting Computing (ICRC). 1EEE, 2016, pp. 1-8.
S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in Neural Information Processing Systems, 2015, pp. 1117-
1125.

R. Hasan and T. M. Taha, “Enabling back propagation training of
memristor crossbar neuromorphic processors,” in 2014 International
Joint Conference on Neural Networks (IJCNN). 1EEE, 2014, pp. 21-28.
B. Liu, M. Hu, H. Li, Z-H. Mao, Y. Chen, T. Huang, and
W. Zhang, “Digital-assisted noise-eliminating training for memristor
crossbar-based analog neuromorphic computing engine,” in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC). I1EEE, 2013,
pp. 1-6.

B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: variation-
aware training for memristor x-bar,” in Proceedings of the 52nd Annual
Design Automation Conference. ACM, 2015, p. 15.

I. Chakraborty, D. Roy, and K. Roy, “Technology aware training in
memristive neuromorphic systems for nonideal synaptic crossbars,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 2, no. 5, pp. 335-344, 2018.

Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen, “Neu-
trams: Neural network transformation and co-design under neuromorphic
hardware constraints,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. 1EEE Press, 2016, p. 21.

A. Ankit, A. Sengupta, and K. Roy, “Trannsformer: N eural n etwork
transform ation for memristive crossbar based neuromorphic system de-
sign,” in Proceedings of the 36th International Conference on Computer-
Aided Design. 1EEE Press, 2017, pp. 533-540.

A. Ankit, T. Ibrayev, A. Sengupta, and K. Roy, “Trannsformer: Clustered
pruning on crossbar-based architectures for energy efficient neural
networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2019.

L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, and Y. Xie,
“Crossbar-aware neural network pruning,” IEEE Access, vol. 6, pp.
58324-58337, 2018.

M. Parsa, A. Ankit, A. Ziabari, and K. Roy, “Pabo: Pseudo agent-based
multi-objective bayesian hyperparameter optimization for efficient neural
accelerator design,” arXiv preprint arXiv:1906.08167, 2019.

G. Yuan, X. Ma, C. Ding, S. Lin, T. Zhang, Z. S. Jalali, Y. Zhao,
L. Jiang, S. Soundarajan, and Y. Wang, “An ultra-efficient memristor-
based dnn framework with structured weight pruning and quantization
using admm,” in 2019 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED). 1EEE, 2019, pp. 1-6.

G. Chakma, M. M. Adnan, A. R. Wyer, R. Weiss, C. D. Schuman, and
G. S. Rose, “Memristive mixed-signal neuromorphic systems: Energy-
efficient learning at the circuit-level,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 125-136,
2018.

M. M. Adnan, S. Sayyaparaju, G. S. Rose, C. D. Schuman, B. W. Ku,
and S. K. Lim, “A twin memristor synapse for spike timing dependent
learning in neuromorphic systems,” in 2018 3Ist IEEE International
System-on-Chip Conference (SOCC). 1EEE, 2018, pp. 37-42.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean,
and G. S. Rose, “The TENNLab exploratory neuromorphic
computing framework,” [EEE Letters of the Computer Society,
vol. 1, no. 2, pp. 17-20, July-Dec 2018. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/LOCS.2018.2885976

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

C. D. Schuman, J. S. Plank, G. Bruer, and J. Anantharaj, “Non-traditional
input encoding schemes for spiking neuromorphic systems,” in 2079
International Joint Conference on Neural Networks (IJCNN). 1EEE,
2019, pp. 1-10.

V. Guliashki, H. Toshev, and C. Korsemov, “Survey of evolutionary al-
gorithms used in multiobjective optimization,” Problems of engineering
cybernetics and robotics, vol. 60, no. 1, pp. 42-54, 2009.

A. Disney, J. Reynolds, C. D. Schuman, A. Klibisz, A. Young, and J. S.
Plank, “DANNA: A neuromorphic software ecosystem,” Biologically
Inspired Cognitive Architectures, vol. 9, pp. 49-56, July 2016.

J. P. Mitchell, M. E. Dean, G. R. Bruer, J. S. Plank, and G. S. Rose,
“Danna 2: Dynamic adaptive neural network arrays,” in Proceedings of
the International Conference on Neuromorphic Systems. ACM, 2018,
p. 10.

M. S. Hasan, C. D. Schuman, J. S. Najem, R. Weiss, N. D.
Skuda, A. Belianinov, C. P. Collier, S. A. Sarles, and G. S.
Rose, “Biomimetic, soft-material synapse for neuromorphic computing:
From device to network,” in I[EEE 13th Dallas Circuits and
Systems Conference (DCAS), November 2018. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8620187

S. Buckley, A. N. McCaughan, J. Chiles, R. P. Mirin, S. W. Nam,
J. M. Shainline, G. Bruer, J. S. Plank, and C. D. Schuman, “Design of
superconducting optoelectronic networks for neuromorphic computing,”
in [EEE International Conference on Rebooting Computing, Tysons, VA,
November 2018, pp. 36-42.

C. D. Schuman, T. E. Potok, S. Young, R. Patton, G. Perdue, G. Chakma,
A. Wyer, and G. S. Rose, “Neuromorphic computing for temporal
scientific data classification,” in Neuromorphic Computing Symposium,
ser. NCS ’17. New York, NY, USA: ACM, 2017, pp. 2:1-2:6.
[Online]. Available: http://doi.acm.org/10.1145/3183584.3183612

J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao,
J. Anantharaj, C. D. Schuman, M. E. Dean, G. S. Rose, N. C. Cady,
and J. Van Nostrand, “The TENNLab suite of LIDAR-based control
applications for recurrent, spiking, neuromorphic systems,” in 44th
Annual GOMACTech Conference, Albuquerque, March 2019.

