
Cascade modeling with multihead self-attention
1st Chaochao Liu

College of Intelligence and Computing
Tianjin University

Tianjin, 300350, China
chaochaoliu@tju.edu.cn

2th Wenjun Wang
College of Intelligence and Computing

Tianjin University
Tianjin, 300350, China

wjwang@tju.edu.cn

3nd Pengfei Jiao
Center of Biosafety Research and Strategy

Tianjin University
Tianjin, 300072, China

pjiao@tju.edu.cn

4rd Xue Chen
Law School

Tianjin University
Tianjin 300054, China

xuechen@tju.edu.cn

5th Yueheng Sun*
College of Intelligence and Computing

Tianjin University
Tianjin, 300350, China

* Corresponding Author
yhs@tju.edu.cn

Abstract—Modeling how information diffuses across social
network platforms can be widely used. Recently, researchers have
used deep learning methods to model information cascades and
forecast their progression without dependence on the hypothesis
of the underlying diffusion model. Most of these studies use
sequential models (e.g., recurrent neural networks, RNNs) and
model cascades of information spread without using the network
structure information. However, the network structure informa-
tion substantially affects information spread, cross-dependence
should be considered in cascade modeling, and recurrent neural
networks produce poor results on long sequence modeling. To
solve these issues, in this paper, we present a new cascade
modeling method with the multihead self-attention mechanism.
We design an encoder that combines network structure informa-
tion with multihead self-attention to learn the representations of
cascades and consider diverse user dependencies on the network.
Experiments are conducted on both synthetic and real-world
datasets. The results show that the proposed method performs
better on the long sequence cascade prediction than the state-of-
the-art methods.

Index Terms—cascade prediction, deep learning, network
structure information, self-attention, multihead

I. INTRODUCTION

A series of online social networks, such as Twitter and
Facebook, make information sharing and dissemination con-
venient. If people want to share interesting information with
others, they will re-edit or copy the information from one of
their neighbors and then send it to their other neighbors [1].
Information cascades are generated when one person posts
information on the social network, and the others re-post it.

Information cascades are important factors in most social
media information dissemination phenomena, ranging from
viral marketing, crowdsourcing, rumor spreading, cyber vio-
lence, and various types of persuasion campaigns [2]. There
has been considerable research on information cascade mod-
eling and prediction. The classical cascade models in this
field are derived from epidemiological literature such as the
independent cascading model (IC) [3] and the linear threshold
model (LT) [4]. These models are used to model propagation
dynamics; specifically, they estimate the interpersonal influ-

ence or parameters used to characterize the influence and
susceptibility of individuals.

Recent research [5]–[7] has shown that deep learning meth-
ods can circumvent the cascade prediction problem without
requiring an explicit underlying diffusion model. This charac-
teristic makes deep learning-based models better suited for
practical applications. These models are mostly based on
the recurrent neural network, which is a sequential model.
They focus on modeling how the historical sequence data
can affect future sharing behavior. Moreover, this inherent
sequence of features makes training parallelization difficult;
however, processing long sequence data requires paralleliza-
tion to increase computational efficiency and reduce com-
putational space [8]. Additionally, the retrievable diffusion
data are normally chronological, and the social network is
unknown [9]. This feature makes it difficult to model the
information spread of long sequence data produced from a
social network structure.

Social network structure information is critical to under-
standing diffusion dynamics and cascading predictions [10]–
[12]. Network structure information has not or has only
partially been used in deep learning models for cascade re-
sharing prediction tasks. Wang et al. [6] proposed an attention-
based recurrent neural network model to capture the cross-
dependence in cascades, but the network structure information
is not used in the model. Wang et al. [9] developed a
sequential neural information diffusion model with structure
attention to incorporate the structural diffusion context into
the cascade prediction of resharing, but they considered only
nodes’ neighborhood information. Liu et al. [13] proposed a
cascade prediction model with enhanced community structure,
but their model only focused on the community structure
information and was hardly able to process the long cascade
sequence data.

Long sequence data modeling is confronted with two chal-
lenges to be solved: how to process the long sequence data
parallelized for handling the large datasets and how to cap-
ture the long-range dependencies of sequence data. The self-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

attention mechanism proposed by Vaswani et al [8] can more
easily solve the issue than can the recurrent neural network.
Devlin et al [14] proposed a pretrained BERT model based
on the self-attention mechanism for the long sequence data
processing of the language representation task. Al-Rfou et al
proposed a model based on the self-attention mechanism, and
the results of experiments were shown to outperform recurrent
neural network variants [15]. However, these works mostly
focus on the natural language processing tasks, and they do
not need to consider the task for combinations of the social
network structure information with the dynamic information
spread of cascade sequence data.

In our work, we propose a model based on multihead
self-attention for cascade prediction with network structure
attention called CPMHSA. The method utilizes a self-attention
mechanism to capture the dependence of the spreading nodes,
which performs better than the recurrent neural network model
when processing the long sequence data. Since the network
structure substantially affects the spread of information, we
use the network information to restrict and regulate the node’s
dependence.

The main contributions of the proposed CPMHSA model
are summarized as follows:

1) CPMHSA considers network structure information,
which makes it more reasonable for handling the cascade
prediction task.

2) CPMHSA is based on a self-attention mechanism that
can learn long sequence dependence more effectively
than can the RNN.

3) CPMHSA considers a multihead mechanism that can
learn the complex dependence between nodes involved
in the cascade.

4) CPMHSA achieves better performance than other com-
pared algorithms.

II. RELATED WORK

We introduce the existing literature related to our work in
this section. One related field is the empirical research on
the effect of the network structure on spreading behavior.
Considerable research on cascade modeling is underway. The
work on self-attention is also related to this research.

Many studies have shown that the network structure strongly
affects the spread of information. Lerman et al [16] analyzed
the spread data of two social news sites and found that the
structure of social networks affects information dissemination.
Liu et al compared the epidemic propagation of the network
that contains community structure to that of the random net-
work. They found that the network with a community structure
had a a smaller threshold for an epidemic outbreak and a
greater prevalence to maintain the outbreak epidemic [17].
Pastor-Satorras et al conducted a theoretical study and found
that the network topology affects the spread of epidemics [18].
Huang et al [19] compared two types of scale-free networks,
with and without a community structure, and found that
epidemic prevalence is reduced in networks with a strong
community structure. However, minimal work has considered

the network structure information in the cascade prediction
task. Thus, in this paper, we include a network structure
information constraint to model the information cascade.

Currently, many efforts have been carried out to solve
the cascade behaivor predicton task by using deep learning
frameworks. These models can capture complex relationships
between activated nodes. Xiao et al [7] used two RNNs to
model the time and the nodes’ sequence. Zhang et al [5]
proposed a model based on deep learning to capture the
content of tweets, user interests and so on. Wang et al [6]
used an attention mechanism to model the cross-dependence
of the spreading nodes in the information cascades, but they
did not actually use the network structure information. Most
of these deep learning studies did not consider the social
network structure information, and most of them were based
on recurrent neural networks, which cannot capture the long
dependence as well as self-attention. Thus, in this paper,
we extend self-attention and consider the network structure
information.

Self-attention has been widely used in many fields since
Vaswani el at proposed the transformer [8]. Ma et al extended
the transformer for language modeling [20] based on the ideas
of tensor decomposition and parameter sharing, which largely
compress the model parameters. Devlin et al [14] used self-
attention and proposed a representation model to solve the
language task. In this paper, we extend self-attention to the
field of information cascade prediction.

III. PROPOSED METHOD

A. Problem definition

In our paper, we define the information cascade prediction
task as predicting further activated nodes given the historical
sequence of activated nodes and the network structure infor-
mation. We first give some definitions used in this paper in
the following.

Definition 1. Network. A network is denoted as G =
(V,E), where V is a set of nodes and E is a set of edges
between the nodes.

Definition 2. Cascade. A cascade S = {vi|vi ∈ V, 1 ≤ i ≤
N} is a nodes’ sequence set of information spreading starting
from an original post and ordered by time, where N represents
the frequency of information spreading behavior. The i − th
behavior refers to node vi resharing the information at time
ti.

Given a network G = (V,E) and a collection of F cascade
sets Q = {Sf}Ff=1, our task is to construct a model to fit
the data. Once an observed cascade is received, the model
can be used to predict the probability of the next activated
node. We denote the observed cascade that contains a list of
nodes up to the k − th spreading behavior as S≤k. Thus, the
probability of the next activated node vk+1 can be represented
as p(vk+1|S≤k).

B. Model framework

In our work, we solve the cascade prediction problem
by proposing a multihead self-attention deep learning model

Network
Embedding

Cascade Sequence

Spread Node
Embedding

Position
Embedding

Embedding
representation

+

Representation
of Nodes

Multi-head
Self-attention

Rrepresentation
of Cascade

+

+

+

Sigmoid

Sigmoid

Cosine

Rrepresentation of the
Next Infected Node

Linear
Layer

Probability Distribution of
the Next Activated Nodes

Fig. 1. The structure of the proposed method. Cascade sequence data are
transformed to low-dimensional representations by using network embedding,
spread node embedding, and position embedding. They are concatenated as
the representation of nodes and converted as the representation of cascade
by using multihead self-attention. The results are calculated for the cosine
similarity with the cascade’s embedding values. Thus, we can obtain the rep-
resentation of the next infected node. Additionally, the probability distribution
of the next activated nodes can be produced by using a linear layer.

that is network structure-aware, named CPMHSA. The model
uses self-attention to capture the long sequence dependence
between active nodes in a cascade. Since the dependencies
are complex, we utilize the multihead mechanism to learn
the complex relationship. Since the network structure has a
substantial effect on the spread of information, we use network
information to restrict and regulate the nodes’ dependence.
The structure of the method is shown in Figure 1, which can
be trained end-to-end. For the inputs, the spreading nodes
are transformed to the low-dimensional vectors by using a
node embedding layer, which then adds with the spread node
embedding. The nodes’ embedding vectors can be obtained via
SDNE [21]. Then, the positional encoding is concatenated. The
cascade’s representation can be produced by using multihead
self-attention. The results concatenate the positional encoding
and calculate the similarity with the summation of the network
embedding and spread node embedding. After transformation
by a linear layer, we can obtain the probability distribution of
the next activated nodes.

1) Representation of Nodes: We model the input as the fu-
sion of network structure embedding, spread node embedding,
and positional encoding. Since the network embedding method
SDNE [21] utilizes the first- and second-order proximity of
nodes that can capture the local and global network structure
information, we use SDNE to transform the sparse network
matrix into low-dimension vectors. We represent the embed-
ding matrix of nodes as WM ∈ R|V |×dm , where dm represents
the dimension of the embedding. WP ∈ R|V |×dp represents
the spread node embedding matrix, where dp is the dimension
of the embedding. In our model, we use positional encodings
to capture the relative or absolute position of the tokens in the
sequence following [8]. We represent the position embedding
matrix of nodes as WQ ∈ RN×dq , where N represents
the maximum length of the cascades and dq represents the
dimension of the embedding. Thus, the representation of nodes
at step i is ri = (f(vi)W

M + f(vi)W
P) ⊕ viWQ), where

f(·) represents the mapping from the nodes at step i to the
node labels and ⊕ represents the concatenate operation.

2) Multihead Network-Structure-Aware Self-Attention: We
propose a multihead self-attention module with the network
structure of spreading nodes considered. Since the relation
between activated nodes in a cascade is complex, we employ
h attention heads to fit this situation. The results of each head
are concatenated, and we use a linear layer to transform the
concatentated value to the output of the self-attention. The
structure of the multihead self-attention module is shown in
Figure 2.

All the attentions of the multihead operate on an input
sequence embedding r = (r1, ..., rn) of n elements and output
the new sequence z = (z1, ..., zn), where zi ∈ Rdz . Each
output element, zi, is computed as the weighted sum of the
linearly transformed input elements:

zi =

n∑
j=1

αij(rjW
V) (1)

where αij is the attention coefficient and WV represents the
parameters of the model.

Each attention coefficient, αij , is computed using a softmax
function with a network structure constraint:

αij =
exp(eij)∑n
y=1 exp(eiy)

aij (2)

where aij represents the distance between node i and node
j computed as the dot product between the network structure
embeddings of nodes vi and vj :

aij = (f(vi)W
M) · (f(vj)WM)T (3)

eij is computed using a compatibility function that compares
two input elements:

eij =
(riW

Q)(rjW
K)T√

dz
(4)

where WQ and WK are the parameter matrices, and dz
represents the dissemination size of the self-attention output

Representation
of Nodes

Linear
Layer

Linear
Layer

Linear
Layer

Quary Key Value

Matmul

Standardized

Softmax

Distance
Calculate

Distance of
Nodes

Matmul
Network
Structure
Constant

Matmul

h Parallel A
ttentions

Concat

Linear Layer

Fig. 2. The structure of the proposed multihead self-attention module.
Representations of nodes are transformed as queries, keys, and values by using
a linear layer. We use the network structure embeddings of nodes to calculate
the distance between nodes and use the distance to constrain the attention
coefficient.

zi. The query, key, and value of the self-attention are, re-
spectively, riWQ, riW

K , and riWV . To make the multihead
self-attention capture the complex relation between nodes, we
make these parameters to be different in each attention head.

The scaled dot product, which enables efficient computation,
was chosen as the compatibility function. Furthermore, the
linear transformation layer of the inputs is also evolved to
ensure sufficient expressive power.

Our model uses a multihead mechanism to model dif-
ferent relations among nodes. Thus, the output of sequence
r = (r1, · · · , rn) is z′i = Aggregate(Head

(1)
i , · · · ,Head(c)i ,

· · · ,Head(C)
i), where 1 ≤ c ≤ C, C is the number of single

attentions and Head
(c)
i =

∑n
j=1 softmax(

(riW
Q
c)(rjW

K
c)T√

dz
) ·

(f(vi)W
M) · (f(vj)WM)T · (rjWV

c). We set Aggregate(·)
to be an average operation following [8].

C. Output Layer

The model incorporates z′i and position encoding viWQ to
obtain the representation of node i in the cascade as follows:

hcas
i = sigmoid(z′i ⊕ viWQ) (5)

where sigmoid(·) represents the sigmoid function.
We calculate the cosine similarities between hcas

i and in-
corporate the network structure embedding and spread nodes.

Thus, we can obtain the hidden representation of the next
activated node:

hnext
i = cosine(hcas

i , sigmoid((WM ⊕WP)T)) (6)

Finally, we can predict the next activated node by using the
probability distribution as follows:

pnext
i = sigmoid(hnext

i WE + b) (7)

where WE and b are parameters.

IV. OPTIMIZATION

To train the model on a set of cascades Q = {Sf}Ff=1, we
first treat all the data as independent and identically distributed.
Then, the loss of the observed dataset can be represented by
equation 8 in the following.

Loss(Q) =

F∑
f

Nf−1∑
i=1

log p(vk+1|cvk , S≤k) (8)

The equation is obtained by summing the logarithmic likeli-
hood for all the individual cascade data. The parameters of the
model can be trained by minimizing the negative loss of the
model.

We use the back propagation through time (BPTT) method
to train our deep learning model and use the stochastic
optimization method Adam [22] to update the parameters of
the model. The clip gradient norm is used in the training
process to prevent the parameters from overfitting.

V. EXPERIMENTAL SETUP

To illustrate the highlights of our proposed model, we
conduct two types of datasets: synthetic datasets and a real-
world dataset. Experiments are run on the models based on a
deep learning framework and are presented in the section V-B.
The evaluation metrics are shown in the section V-C.

A. Datasets

We use synthetic datasets to verify the good performance
of our model when modeling and predicting the sequence
cascade data produced on the network with community struc-
ture. Moreover, the real-world dataset is used to verify the
good performance of our model in the real situation. The
descriptions of all the datasets are shown in Table I.

The degree distributions of all the datasets’ networks are
shown in Figure 3. The x-axes are the degrees of the nodes,
and the y-axes are the frequencies of the degrees. We use the
logarithmic coordinates to show the datasets.

1) Synthetic Datasets: We perform dataset generation in
two parts following the previous work, which contains the
network generation part and the cascade generation part [6].

The Network Generation Part. In this part, we use the
two popular types of network generation tools, which are the
Kronecker graph model [23] and the LFR benchmark [24],
to generate two types of networks. We generate a random
network (RD) with parameters [0.5 0.5; 0.5 0.5] [6] using
the Kronecker graph model. The size of the network is 1024,

TABLE I
THE DESCRIPTION OF ALL THE DATASETS.

500,Exp 500,Ray 1000,Exp 1000,Ray Rd,Exp Rd,Ray Digg
Nodes 500 500 1000 1000 1024 1024 139,409
Edges 5847 5847 12,285 12,285 2048 2048 1,731,658

Cascades 10,000 10,000 20,000 20,000 20,480 20,480 3553
Avg. cascade length 173 166 257 252 62 53 350

2 × 101 3 × 101 4 × 101

(a) Degree Distribution of the 500 Nodes Network

100

101

2 × 101 3 × 101 4 × 101

(b) Degree Distribution of the 1000 Nodes Network

100

101

100 101

(c) Degree Distribution of the Random Network

101

102

100 101 102 103 104

(d) Degree Distribution of the Digg Network

100

101

102

103

104

Fig. 3. The degree distribution of all the datasets’ networks. The x-axes are the degrees of the nodes, and the y-axes are the frequencies of the degrees.
We use the logarithmic coordinates to show the datasets.

and the average degree is 20. The LFR benchmark is used
to generate the networks with heterogeneous community sizes
and heterogeneous degree distributions. We set the parameters
as the following: the average degree of nodes is 20, the
maximum degree of nodes is 50, the power-law exponent for
the degree distribution is 2, and the power-law exponent for
the community size distribution is 1. We set the size of the
network nodes to 500 and 1000 to generate two networks.

The Cascade Generation Part. We generate a cascades
dataset by using the breadth-first search method to obtain the
spreading nodes’ sequences. Two types of time distributions
for the node sampling method are used following Wang’s
setup [6]. One is the mixed exponential (Exp) distribution,
whose parameters are scaled by [0.01, 10], and the other is
the mixed Rayleigh (Ray) distribution, whose parameteres are
scaled by [0.01,10]. The cascade sequence dataset generation
progress will continue until the parameters of the time reach
the maximum number ω or when no node is activated, follow-
ing [6]. In this paper, ω is set as 100. For the each node, we

generate the cascades 20 times.
Thus, we can obtain six synthetic datasets represented by:

(500 Exp), (500, Ray), (1000, Exp), (1000, Ray), (Rd, Exp),
and (Rd, Ray). Finally, for each dataset, we randomly select
80% as the training set, 10% as the validation set, and 10%
as the testing set, following [6].

2) Real-world Dataset: We use the the Digg dataset, which
is proposed by Nathan et al [25], to evaluate all the models.
The dataset contains diffusions of stories as voted by users,
along with the friendship networks of the users [26]. We
drop the cascades with a size of less than 50 to verify the
effectiveness of the long sequence modeling of our model.
We randomly select 80% of the cascades for training, 10%
for validation and 10% for testing.

B. Comparison Methods

Since our model is based on deep learning, we compare
our proposed model with the current models based on deep
learning models. All the compared models are shown in the
following.

RNNPP [7]: This model extends the recurrent neural net-
work(RNN) to model the point process. In this paper, we take
the cascade sequence of the spreading nodes as the input, and
the probability of the next activated node is obtained from the
main-types event prediction layer.

Recurrent Marked Temporal Point Processes
(RMTPP) [27]: This model is also based on the RNN
model, and it models the intensity function of the temporal
point process as a nonlinear function and can be used to
predict the next activated nodes for an information cascade.

Sequential Neural Network with Structure Attention
(SNNSA) [9]: The SNNSA is a recently proposed method for
modeling information diffusion that can capture the structural
dependency among users via an attention mechanism. The
model is based on the RNN and only considers the local
network structure information.

C. Performance Measures

We focus on the task to present the probability of the next
activated node given the cascade sequence and the network
structure. Since the result field is so large, we take the task
as a users’ ranking problem based on the users’ transition
probabilities [6]. Each model presents the activated probability
distribution of all the nodes, and we take the node that has
the highest probability as the next activated node [9]. In this
situation, we use the popular metrics:
• ACC@k: The accuracy value of the top-k ranked pre-

diction nodes. In this paper, we just use ACC@5 and
ACC@10 metrics to evaluate the models.

• MRR: The mean reciprocal rank value of the ranked
prediction nodes.

VI. EXPERIMENTAL RESULTS

We use the PyTorch1 library to train and evaluate our model
and the compared baseline methods. We run all the models on
a GPU server, which contains a V100 32 GB NVIDIA Tesla
GPU, a Intel Xeon E5 CPU, and a 512 GB memory. The
model is trained in the multibatch model and stopped when
convergence is reached. To ensure reasonable results, we train
each model 20 times on every dataset and report the average
values of all training times as the final results. The training
cost time (second) of the next activated node prediction task
in each epoch on all the datasets is presented in Table II. We
can see that our proposed model runs faster than the SNNSA
model and that the SNNSA model runs out of memory on
the Digg dataset. The results of the synthetic datasets and the
real-world dataset are shown in the following.

A. Synthetic data results

We use the ACC@5, ACC@10, and MRR metrics to
evaluate all the models on the prediction of the next activated
node task, and the compared results are shown in Table III,
Table IV, and Table V, respectively. The results show that the
proposed CPMHSA method performs consistently and signif-
icantly better than the state-of-the-art models with respect to

1The PyTorch library is available at https://pytorch.org

Acc@5, Acc@10, and MRR metrics on all of the datasets.
Since our synthetic datasets are the cascade data generated
from the random network or the network that contains the
community structure, it illustrates that our proposed model can
capture the network structure information from the dataset and
achieve more accurate prediction results than the other models.
The compared model performs better on the (Rd,Exp) and
(Rd,Ray) datasets than the others, while our proposed model
performs equally well. Importantly, the (Rd,Exp) and (Rd,Ray)
datasets are known to have a shorter cascade length than the
other datasets. This phenomenon shows that our proposed
model is robust to the length of cascade.

B. Real data results

We show the prediction results of the next activated node in
the Table VI for all the models on the Digg dataset. We can
see that our proposed method achieves good performance on
all the metrics, which verifies the effectiveness of our model.
Moreover, the SNNSA model runs out of memory during
the training process, which is interpretable. SNNSA uses the
whole adjacency matrix of the network, whereas our model
uses the result of the network embedding. The dimension
of the network embedding is far less than the dimension of
the network adjacency matrix; thus, the space complexity of
SNNSA is much larger than that of our model. This feature
makes the SNNSA model hardly capable of handling large-
scale cascade datasets, while our model can solve the issue
easily.

VII. CONCLUSION

In this paper, we propose a new model based on the
multihead self-attention mechanism for the cascade modeling
and prediction task. The proposed model can deal with the
long cascade sequence easily because of the self-attention
mechanism used. Since the network structure information
considerably affects the spread of information, we considered
it in the proposed model. We also use the multihead atten-
tion mechanism to capture diverse user dependencies on the
network.

As evaluated by the experiments on both synthetic and
real datasets, we find that our model can achieve better
performance than the other models in the next activated node
prediction task. Additionally, although the SNNSA model
involves the network structure information, the model can
hardly process the long cascade sequence and requires more
time than our model.

ACKNOWLEDGMENT

This research is partly supported by the Chinese Na-
tional Funding of Social Sciences 15BTQ056, the National
Key Research and Development Program of China (No.
2018YFC0832101), and the Major Judicial Studies of the
Supreme People’s Court (ZGFYZDKT2019-01).

TABLE II
TRAINING COST TIME(SECOND) OF THE NEXT ACTIVATED NODE PREDICTION TASK IN EACH EPOCH ON ALL THE DATASETS.

Method 500,Exp 500,Ray 1000,Exp 1000,Ray Rd,Exp Rd,Ray Digg
RNNPP 8 8 23 23 11 11 87
RMTPP 6 6 17 17 7 7 58
SNNSA 72 72 221 221 210 210 -

CPMHSA 31 31 130 130 53 53 159

TABLE III
PREDICTIVE PERFORMANCE (ACC@5) FOR THE NEXT ACTIVATED NODE OF THE BASELINES AND OUR PROPOSED MODEL CPMHSA.

Method 500,Exp 500,Ray 1000,Exp 1000,Ray Rd,Exp Rd,Ray
RNNPP 0.0793 0.1796 0.0756 0.1388 0.0800 0.1337
RMTPP 0.3486 0.3308 0.3443 0.3094 0.6807 0.7144
SNNSA 0.3466 0.2851 0.2835 0.2357 0.7135 0.6566

CPMHSA 0.8377 0.8124 0.9121 0.9114 0.7568 0.8635

TABLE IV
PREDICTIVE PERFORMANCE (ACC@10) FOR THE NEXT ACTIVATED NODE OF THE BASELINES AND OUR PROPOSED MODEL CPMHSA.

Method 500,Exp 500,Ray 1000,Exp 1000,Ray Rd,Exp Rd,Ray
RNNPP 0.1253 0.2142 0.0937 0.1604 0.0395 0.1389
RMTPP 0.4600 0.4508 0.4533 0.4117 0.7208 0.7925
SNNSA 0.4790 0.4217 0.4090 0.3515 0.8116 0.7792

CPMHSA 0.8534 0.8379 0.9245 0.9301 0.8204 0.8986

TABLE V
PREDICTIVE PERFORMANCE (MRR) FOR THE NEXT ACTIVATED NODE OF THE BASELINES AND OUR PROPOSED MODEL CPMHSA.

Method 500,Exp 500,Ray 1000,Exp 1000,Ray Rd,Exp Rd,Ray
RNNPP 0.0768 0.1566 0.0757 0.1215 0.0254 0.1312
RMTPP 0.2303 0.2208 0.2263 0.2063 0.4982 0.4736
SNNSA 0.2339 0.1960 0.1910 0.1579 0.4764 0.4309

CPMHSA 0.8342 0.8014 0.9021 0.8942 0.7114 0.8521

TABLE VI
PREDICTIVE PERFORMANCE OF THE NEXT ACTIVATED NODE ON THE

DIGG DATASET.

Method ACC@5 ACC@10 MRR
RNNPP 0.0054 0.0093 0.0064
RMTPP 0.0154 0.0236 0.0147
SNNSA - - -

CPMHSA 0.7846 0.7958 0.7544

REFERENCES

[1] Z.-K. Zhang, C. Liu, X.-X. Zhan, X. Lu, C.-X. Zhang, and Y.-C. Zhang,
“Dynamics of information diffusion and its applications on complex
networks,” Physics Reports, vol. 651, pp. 1–34, 2016.

[2] C. Li, J. Ma, X. Guo, and Q. Mei, “Deepcas: An end-to-end predictor
of information cascades,” in Proceedings of the 26th international
conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 577–586.

[3] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering
the temporal dynamics of diffusion networks,” in Proceedings of the
28th International Conference on International Conference on Machine
Learning. Omnipress, 2011, pp. 561–568.

[4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2003, pp. 137–146.

[5] Q. Zhang, Y. Gong, J. Wu, H. Huang, and X. Huang, “Retweet predic-
tion with attention-based deep neural network,” in Proceedings of the
25th ACM international on conference on information and knowledge
management. ACM, 2016, pp. 75–84.

[6] Y. Wang, H. Shen, S. Liu, J. Gao, and X. Cheng, “Cascade dynamics
modeling with attention-based recurrent neural network.” in IJCAI, 2017,
pp. 2985–2991.

[7] S. Xiao, J. Yan, X. Yang, H. Zha, and S. M. Chu, “Modeling the intensity
function of point process via recurrent neural networks,” in Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[9] Z. Wang, C. Chen, and W. Li, “A sequential neural information diffusion
model with structure attention,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management.
ACM, 2018, pp. 1795–1798.

[10] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec,
“Can cascades be predicted?” in Proceedings of the 23rd international
conference on World wide web. ACM, 2014, pp. 925–936.

[11] M. G. Rodriguez, D. Balduzzi, and B. S. lkopf, “Uncovering the
temporal dynamics of diffusion networks,” international conference on
machine learning, pp. 561–568, 2011.

[12] K. Saito, M. Kimura, K. Ohara, and H. Motoda, “Learning continuous-
time information diffusion model for social behavioral data analysis,” in
Asian Conference on Machine Learning. Springer, 2009, pp. 322–337.

[13] C. Liu, W. Wang, and Y. Sun, “Community structure enhanced cascade
prediction,” Neurocomputing, vol. 359, pp. 276–284, 2019. [Online].
Available: https://academic.microsoft.com/paper/2951595213

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” in
NAACL-HLT 2019: Annual Conference of the North American Chapter
of the Association for Computational Linguistics, 2019, pp. 4171–4186.
[Online]. Available: https://academic.microsoft.com/paper/2963341956

[15] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, “Character-
level language modeling with deeper self-attention,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3159–
3166.

[16] K. Lerman and R. Ghosh, “Information contagion: An empirical study
of the spread of news on digg and twitter social networks,” in Fourth
International AAAI Conference on Weblogs and Social Media, 2010.

[17] Z. Liu and B. Hu, “Epidemic spreading in community networks,” EPL
(Europhysics Letters), vol. 72, no. 2, p. 315, 2005.

[18] R. Pastor-Satorras and C. Castellano, “Distinct types of eigenvector
localization in networks,” Scientific reports, vol. 6, p. 18847, 2016.

[19] W. Huang and C. Li, “Epidemic spreading in scale-free networks with
community structure,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2007, no. 01, p. P01014, 2007.

[20] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou,
and D. Song, “A tensorized transformer for language
modeling,” in NeurIPS 2019 : Thirty-third Conference on
Neural Information Processing Systems, 2019. [Online]. Available:
https://academic.microsoft.com/paper/2970213198

[21] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2016, pp. 1225–1234.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Journal
of Machine Learning Research, vol. 11, no. Feb, pp. 985–1042, 2010.

[24] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical review E, vol. 78,
no. 4, p. 046110, 2008.

[25] N. O. Hodas and K. Lerman, “The simple rules of social contagion,”
Scientific reports, vol. 4, p. 4343, 2014.

[26] T. Hogg and K. Lerman, “Social dynamics of digg,” EPJ Data Science,
vol. 1, no. 1, p. 5, 2012.

[27] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song, “Recurrent marked temporal point processes: Embedding
event history to vector,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 1555–1564.

