
Quantum ensemble of trained classifiers
Ismael C. S. Araujo

Departamento de Computação
Universidade Federal Rural de Pernambuco

Recife, Pernambuco, Brazil
ismael.cesar@ufrpe.br

Adenilton J. da Silva
Centro de informática

Universidade Federal de Pernambuco
Recife, Pernambuco, Brazil

ajsilva@cin.ufpe.br

Abstract—Through superposition, a quantum computer is
capable of representing an exponentially large set of states,
according to the number of qubits available. Quantum machine
learning is a subfield of quantum computing that explores the
potential of quantum computing to enhance machine learning
algorithms. An approach of quantum machine learning named
quantum ensembles of quantum classifiers consists of using su-
perposition to build an exponentially large ensemble of classifiers
to be trained with an optimization-free learning algorithm. In
this work, we investigate how the quantum ensemble works
with the addition of an optimization method. Experiments using
benchmark datasets show the improvements obtained with the
addition of the optimization step.

Index Terms—quantum computing, quantum machine learn-
ing, quantum ensemble of classifiers.

I. INTRODUCTION

Artificial intelligence (AI) is a field of computer science that
studies the creation of programs designed to act as intelligent
agents, created to evaluate and automatically make decisions
based on the inputs [1]. Machine learning (ML) is a subfield
of AI that studies the creation of algorithms and programs that
are capable of not only make decisions based on the inputs
but also learn with it to improve performance [2]–[4]. In this
work, we name the programs and algorithms that involve some
ML method as ML models, or only models.

Quantum computing is a field of computer science that
studies the codification and processing of information in quan-
tum systems [5]. The smallest unit that represents information
in a quantum computer is a quantum bit or qubit. Unlike
a classical bit, which can only assume one state at a time,
either 0 or 1 exclusively, a qubit has the property of being
in both states 0 and 1 at the same time. This superposition
of information means that a quantum computer with multiple
qubits is capable of representing an exponentially large number
of states, according to the number of qubits available.

ML models usually have to process feature vectors with
large dimensions, which can impact the cost of processing time
and memory consumption. The power of state representation
makes quantum computing a candidate for the improvement
of ML models. Quantum Machine Learning (QML) is the
subfield of quantum computing where researchers have been
studying how to explore the potential of quantum computing
to enhance ML [6], [7].

In [8], a QML approach named quantum ensemble of
quantum classifiers is proposed. Classifier outputs weigh the

degree of influence of each classifier in the final answer. In
[8], the accuracy of each classifier weighs its significance, and
bad performing classifiers would have a small impact on the
final output.

In a quantum version of this kind of ensemble, it would be
possible to use superposition to create an exponentially large
set of classifiers, with the accuracy codified in the probability
amplitude of the state. We could use this quantum ensemble
as an optimization free model, with the supposition that an
exponentially large ensemble of classifiers weighed by its
accuracy would return good classifications [8].

In this work, we explore the idea of using quantum comput-
ers to efficiently create an ensemble of classifiers and perform
experiments based on simulations using benchmark datasets.
We propose a quantum ensemble strategy based on [8] with
a training phase. We show the differences between quantum
ensembles with optimized and unoptimized classifiers. The
ML model used in the simulations was ANNs, so as for the
therms optimized and unoptimized were taken as trained and
untrained ANNs.

The rest of this work is organized as follows: Section II
contains some introductory explanations concerning quantum
computing. Section III introduces a more detailed description
of quantum ensembles mentioned in the introduction, as well
as replications of numerical analysis made in [8]. Section
IV presents the main contribution, describes the simulations,
presents metrics used to evaluate the model, and shows the
results concerning the presented methodology. Finally, Section
V contains some remarks about the results presented, as well
as possible future works.

II. QUANTUM COMPUTING

The base unit of information used in a quantum computer
is called a quantum bit or qubit. Mathematically a qubit can
be represented in the form of a column vector, however, for
simplicity and convenience, many works in the literature rather
use the Dirac’s notation [5], [9]. The symbol |·〉 is called “ket”
and the equivalence between Dirac’s notation and column
vector notation is made in the following equation:[

1 0
]T

= |0〉[
0 1

]T
= |1〉

(1)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

A qubit has the property to be in a state of superposition,
that is, to assume more than one state at the same time. The
superposition can be mathematically represented by a linear
combination of the basis states. The coefficients in the linear
combination would represent the amplitude probability of the
system state to assume a specific state. More specifically, Let
the state |ψ〉 in Eq. (2) be an arbitrary state of a single qubit.

The coefficients α and β are complex numbers representing
the amplitude probability of |ψ〉.

|ψ〉 = α|0〉+ β|1〉 (2)

A quantum state can also be composed of multiple qubits.
We use tensor products to represent multiple qubits. For

instance, the two-qubit state |0〉 ⊗ |1〉 = |01〉. Similarly to a
single qubit state, the multiqubit state can be in superposition.
Let x ∈ {0, 1}n be a binary string, where n is the number
of qubits in the string, and |ψ′〉 a multiqubit in superposition.
Eq. (3) describes the multiqubit |ψ〉.

|ψ〉 =
∑

x∈{0,1}n
αx|x〉 (3)

To extract useful information from a superposed state,
we need to perform a measurement operation. However, it
is impossible to measure each component of a superposed
state without affecting the entire system. That is because
when we apply a measurement operation is applied to the
system, the superposition of the system collapses, and the
system assumes a specific state. The information contained
in other components of the superposition is lost or changed.
For example, if the qubit |ψ〉 in Eq. (2) is measured, |ψ〉 will
collapse to the state |0〉 with |α|2 probability and |1〉 with |β|2
probability, where |α|2 + |β|2 = 1.

Another case to be analyzed is when a multiqubit system
is partially measured. Suppose the two last qubits of the state
in Eq.(3) are being measured. And let x̄ ∈ {{0, 1}n−2 + 01}
be the regular expression that represents the binary strings of
size n that end with 01. After the measurement of the two
last qubits is performed, the system would return |01〉 with a
probability p =

∑
x̄ |αx̄|2. And the state |ψ′〉 would collapse

to the state |ψ′′〉, as shown in Eq.(4)

|ψ′′〉 =
∑

x̄∈{{0,1}n−2+01}

αx̄|x̄〉√∑
x̄ |αx̄|2

(4)

Quantum operators, or quantum gates, are used to oper-
ate and manipulate the states and amplitude probabilities of
quantum systems. Let N = 2n be the number of states that
can be represented with n qubits. Given a fixed basis, an
CN×N unitary matrix represents a quantum gate over n qubits.
Quantum gates can also be combined using tensor products to
perform multiqubit operations. For instance, I⊗X⊗I , where
I is the single-qubit identity gate and X the not gate.

Since quantum gates work as linear operators, these op-
erators can modify different components of a superposition
linearly, this property is known as quantum parallelism [5],

[9], [10]. In Equation (5) an application of the gates I⊗X⊗I
on a superposed three-qubit state is exemplified.

(I ⊗X ⊗ I) (γ|010〉+ φ|110〉)→ γ|000〉+ φ|100〉 (5)

A quantum computer can theoretically simulate any binary
function of a classical computer [5]. Let A be a quantum
operator that implements a classical function f(x), such that
A|x〉|0〉 = |x〉|f(x)〉. Eq. (6) shows an example of the action
of the A operator in a superposed state.
A is a linear operator and can be applied to each component

of the superposition thanks to quantum parallelism. With
superposition and quantum parallelism, it is possible to apply
a function in an exponentially large number of states at the
same time. ∑

x∈{0,1}n
αxA|x〉|0〉 =

∑
x∈{0,1}n

αx|x〉|f(x)〉 (6)

III. QUANTUM ENSEMBLES

A classifier can be described as a function that maps features
into the classes: f : X → Y , where X is the space of features
and Y is the space of classes. A parameterized classifier makes
the mapping of features according to the parameters that were
set, such as the mapping f : X × Θ → Y where Θ is the
space of the parameters. However in this work a parameter
θ ∈ Θ shall be referred to as the classifier itself. Given that
in order to improve a classification model’s performance, one
can optimize its parameters θ, which is the case with artificial
neural networks (ANNs) [4], [11].

Thus, an ensemble of classifiers is a classification method in
which the output of different classifiers is combined to obtain
a final answer. For example, given a binary classification
problem where the set of classes is Y = {−1, 1}. Let the
set of classifiers be E = {θ0, θ1, . . . , θn−1}. Given an unseen
data sample x̃, the output of each classifier is combined in
a sum in order to obtain the ensemble’s final answer as it is
shown in Eq. (7).

ỹ = sign

(∑
θ∈E

wθf(x̃, θ)

)
(7)

Where sign is the sign function and ỹ is the answer (class)
returned by the ensemble. Where the output of each classifier
is pondered by a factor wθ, which represents its desired degree
of influence in the sum. A way to determine the value of the
factor wθ is by using the classifier’s accuracy, which can be
obtained by measuring the performance of each classifier in the
dataset before using the ensemble to label new data [8]. This
way, bad performing classifiers would have little influence in
the sum.

A. Quantum ensemble described in quantum states

In order to implement a quantum version of an ensemble
such as in Eq. (7), the system would have to be divided
into five quantum registers. Taking into consideration the data

would be encoded in the qubits, the first register would be
dedicated do store the data |x〉. The data can be processed in
the system sample by sample, or it can be stored in superpo-
sition using a storing procedure from some kind probabilistic,
or associative quantum memory [12]–[14]. For simplicity, a
sample by sample approach will be considered.

The second register would be used for storing the classifiers
|θ〉. The third and fourth register would be used for storing
the answer of each classifier |ŷθ〉 and the correct answer
|y〉 respectively. And the fifth register would be a one qubit
register used as ancilla.

For the initial state of the ensemble, all the classifiers would
have to be stored in superposition. And the ancillary register
would be initialized in superposition as well. Let x be one
data sample from a dataset D with its label being y. Both the
data sample and its label would be stored in their respective
registers and the answer register |ŷθ〉 would be initialized in
the state |0〉. Therefore, the initial state for the ensemble would
be as in Eq. (8).

|x〉 1√
|E|

∑
θ∈E

|θ〉|0〉|y〉
(
|0〉+ |1〉√

2

)
(8)

Implementing a quantum equivalent of a classifier such as
a neural network requires a sequence of unitary operators of
different types that combined form the quantum operator that
implements it, such as in [15]. To simplify our examples, let
F be a unitary operator that implements the function f(x, θ),
which is the function that returns the label given by the
classifier, or the classifier’s answer to input x. Applying F
to the system, the result would be as in equation (9).

F|x〉 1√
|E|

∑
θ∈E |θ〉|0〉|y〉

(
|0〉+|1〉√

2

)
↓

|x〉 1√
|E|

∑
θ∈E |θ〉|ŷθ〉|y〉

(
|0〉+|1〉√

2

) (9)

The application of F would have to be repeated for every
x ∈ D. Where, everytime |ŷθ〉 = |y〉 the ancilary qubit would
be rotated towards |0〉. Thus, the degree of influence of each
classifier would be decoded on the phase of the quantum state,
as in (10).

1√
|E|

∑
θ∈E

|θ〉
(√
aθ|0〉+

√
1− aθ|1〉

)
(10)

Afterward, the ancillary qubit has to be measured. If after
the measurement the qubit assumes the state |1〉 the whole
process of building the ensemble has to be made again.
However, if after the measurement the qubit assumes the state
|0〉 the ensemble is ready to classify data samples from the
validation set or any other unseen data. The resulting state of
the ensemble would be as in (11).

∑
θ∈E

√
aθ√
X|E|

|θ〉 (11)

Where X is a normalization factor resulting from the mea-
surement of the ancillary qubit. Let x̃ be an unseen datasample.
In order to obtain the ensemble’s answer, one would only need
to add the data sample into the state, apply the F operator and
measure the answer qubit in (12).

F|x̃〉
∑
θ∈E

√
aθ√
X|E|

|θ〉|0〉 → |x̃〉
∑
θ∈E

√
aθ√
X|E|

|θ〉|ŷθ〉 (12)

However, by measuring the answer qubit the superposition
of the ensemble would collapse, so the whole process of
building the quantum ensemble would have to be repeated.

B. Replicating results from numerical analysis

In [8] the authors analyze the use of an exponentially large
quantum ensemble using quantum classifiers. Presenting the
idea of using such a quantum ensemble inspired in Bayesian
learning, proposing a quantum classification method to be
used as optimization free (or untrained) type of learning. With
the premiss that a reasonably large ensemble with weak but
accurate classifiers would still return good classifications [16],
[17].

A numerical analysis is presented further in [8] showing
how such kind of ensemble would behave. The analysis was
presented using simplified toy examples in a classical com-
puter. The classes used in the examples were Y = {−1, 1}.

Where two binary classification problems were used, with
the first case being an uni-dimensional case, where the
function f is to perform mappings of one-dimensional data
points from both classes randomly generated with a normal
distribution. Where the hyperparameters relative to each class
will be referred to using a plus or minus signals, such as σ+

and µ+ for the class 1 and σ− and µ− for class −1.

f(x) =
1

σ±
√

2π
e

(
− x−µ±√

2σ±

)2

(13)

Fig. 1: Decision region defined by expectatios value of the
data points of the unidimentional case.

Fig. 1 shows some results of the replications concerning
the calculation of the decision region for the one-dimensional
case. The data points to be classified were randomly generated

with the parameter σ± = 0.4, and with µ− = −1 and µ+ =
1. It can be seen that the decision boundary region can be
found on the intersection of the distributions p(x̃, y = −1) and
p(x̃, y = 1) from data points with class −1 and 1 respectively.
However, if the variance of one of the classes’ distribution is
changed, the decision boundary is shifted towards one of the
classes’ distribution as shown in Fig. 2. Where the variance
was changed from σ+ = 0.4 to σ+ = 0.9. Showing how this
optimization free kind of classification is dependent on how
well distributed are the data points for each class.

Fig. 2: Shifting decision boundary by changing the distribtu-
ions’ variance of data points with class 1 .

The second classification case was also a binary classifi-
cation problem but, with bi-dimensional data points. Where
the data points used in the replication of this case were
randomly generated using scikit-learn’s [18] blob function.
With parameters used to generate the data points for each
class being µ− = [−1, 1] and µ+ = [1,−1]. With a standard
deviation of 0.5 for data points in both classes. As in [8],
8000 perceptrons were created to classify the data points, with
weights and biases in the interval [−1, 1]. Fig. 3 shows the
results of the replication of the bi-dimensional case for both
trained and untrained perceptrons. And as can be seen, the
decision boundary finds in the center of both sets in the case
using trained perceptrons.

We went a bit further with the replications and executed a bi-
dimensional case, where the data points from both classes are
distributed differently. Fig. 4 shows the new decision region
dividing the two newly generated sets. A difference in the
definition of the decision boundary can be remarked between
the cases using trained and untrained perceptrons. Where the
difference becomes less subtle when taking to account the
outliers, or the points located further away from the center
of each of their respective classes.

The replications presented in this work were made with
the purpose to show how dependant an optimization free
kind of ensemble would be to the data points distribution
for each class. However, those are but replications of toy
examples of numerical analysis made in a classical manner,
where the differences between trained and untrained models
can be subtle.

(a)

(b)

Fig. 3: Computing decision region for bi-dimensional data
points. 3a Decision boundary computed using 8000 untrained
perceptrons. 3b Decision boundary computed using 8000
trained perceptrons.

IV. QUANTUM ENSEMBLE OF TRAINED CLASSIFIERS

Taking into consideration how a quantum ensemble of
quantum classifiers work. We decided to evaluate what would
be the results of such a quantum ensemble using benchmark
datasets. The datasets used in this approach were the sets made
available by the scikit-learn’s [18] library: iris, breast-cancer,
and wine.

Unfortunately, quantum computers made available today are
still very limited to perform this kind of experiment. Therefore,
we decided to make a simulation-based on calculations of the
probability amplitudes in the system. The type of classifier
used in the simulations was the multilayer perceptron (MLP).
All of them with 1 hidden layer with 10 neurons. The
models were implemented using with the python programming
language, using the pytorch library [19].

The cross-validation methodology used was hold-out. Being
70% of the data points used for training and 30% of the data
points used for validation. Whose accuracy values shall be
referred to as training and validation respectively.

Two experiments were executed for the simulations and two
metrics were used to evaluate both experiments. The First
metric was the Mean Probability Per Sample of the ensemble
to return the correct label or MPPShit. A quantum circuit

(a)

(b)

Fig. 4: Computing decision region for bi-dimensional data
points, with standard deviation of the distribution of data
points with class −1 changed to 0.3. 3a Decision boundary
computed using 8000 untrained perceptrons. 3b Decision
boundary computed using 8000 trained perceptrons.

returns its answer in a probabilistic way. So, to compute the
MPPShit we first computed the probability of the system
to return the correct label for each sample, a Probability
Per Sample (or PPShit). Then, the arithmetic mean was
calculated to obtain the MPPShit.

Another metric taken into account was the ensemble’s
overall accuracy, that is, the accuracy of the answers given
by the set of classifiers. Let px to be the probability of the
ensemble to answer a datapoint correctly. In order to measure
the ensemble’s overall accuracy, a threshold probability (pt)
was used, so that when px ≥ pt a correct answer would be
computed to the ensemble’s overall accuracy.

The threshold probability value chosen for the experiments
was 0.7. This value was chosen after a series of trials and
errors, in order to define a threshold that was not too low
valued, lest bad performing ensemble would have a great
influence on the final results. And to define not a too much
high valued threshold, lest it would be too prohibitive for
reasonable performing ensembles to be computed in the final
results.

During the execution of the experiments, the number of
members in the ensemble was variated in the set |E| ∈

Algorithm 1 Pseudocode of the simulations were performed

1: procedure QUANTUM ENSEMBLE(D,|E|)
2: for Each data set D ∈ D do
3: Create ensemble of classifiers E = {θ1, . . . , θ|E|}
4: Divide D into training (Dt) and validation (Dv)

sets
5: Initialize the array PPShit ← ∅
6: if Use the training step then
7: for Each training epoch T do
8: for Each classifier θi ∈ {θ1, . . . , θ|E|} do
9: Train θi

10: Calculate the accuracy aθ using Dt

11: end for
12: end for
13: else
14: for Each classifier θi ∈ {θ1, . . . , θ|E|} do
15: Calculate the accuracy aθ using Dt

16: end for
17: end if
18: Create the array of probability amplitudes[√

aθ1
X|E| , . . . ,

√
aθ|E|
X|E|

]
19: Process Dv with classifiers {θ1, . . . , θ|E|}
20: for Each datapoint (x, y) ∈ Dv do
21: Calculate phit =

∑
θ∈E

√
aθ|E|
X|E| for each clas-

sifier θ ∈ E that hits y
22: if phit >= pt then
23: Increment overall accuracy of the ensemble
24: end if
25: Save phit into the array PPShit
26: end for
27: Compute the MPPShit using the data from array

PPShit
28: end for
29: end procedure

{100, 200, 300, 400, 500}.
From the experiments executed, the first was to perform

classification using untrained classifiers to verify the results
of an optimization free learning over the benchmark datasets.
And the second kind of experiment was to perform classifi-
cation using trained models to verify if by adding a training
step in the system it is possible to improve the ensemble’s
performance, or if it remains unchanged. Algorithm 1 con-
tains pseudocode with a high-level explanation of how the
experiments were executed.

A. Simulating a quantum ensemble with untrained classifiers

In the simulations, the overall accuracy of a quantum
ensemble using untrained classifiers was 0.0 for all ensemble
sizes defined, using a threshold of 0.7. Table I shows the results
concerning the MPPShit and its standard deviation (StdD)
from quantum ensembles of different sizes using untrained
classifiers. It can be observed that for all ensemble sizes the

MPPShit remained below 0.5 which explains the overall
accuracy of 0.0.

TABLE I: Results from a quantum ensemble with untrained
classifiers on the Iris dataset.

|E| MPPShit StdD
100 0.37 0.053
200 0.37 0.084
300 0.38 0.042
400 0.39 0.059
500 0.39 0.043

Tables II and III show the results concerning MPPShit and
its StdD on the Wine and Breast-Cancer dataset. From those
results, slightly better performance of the quantum ensemble
with untrained classifiers on the Breast-Cancer dataset can be
observed relative to the Iris dataset, according to the values
of MPPShit. And slightly worse results are obtained with
untrained classifiers on the Wine dataset. The results from
both datasets toghether with the Iris dataset’s results show that
the overall MPPShit on all the datasets remained below the
threshold value of 0.7, thus resulting in an overall accuracy of
0.0 for all ensemble sizes on all the datasets.

TABLE II: Results from a quantum ensemble with untrained
classifiers on the Wine dataset.

|E| MPPShit StdD
100 0.37 0.086
200 0.37 0.04
300 0.38 0.03
400 0.36 0.028
500 0.35 0.041

TABLE III: Results from a quantum ensemble with untrained
classifiers on the Breast-Cancer dataset.

|E| MPPShit StdD
100 0.54 0.034
200 0.55 0.038
300 0.54 0.036
400 0.52 0.047
500 0.53 0.029

These results show that the optimization free approach is not
a good option for a quantum ensemble when using real-life
datasets. To improve the ensemble’s performance we decided
to add a training (optimization) step, right after the creation
of the models, as it is shown in Algorithm 1.

B. Simulating a quantum ensemble with trained classifiers

In the simulations the models were trained with different
training epochs, variating in the set {5, 10, 15}. In all training
epochs for all values in |E|, the optimization method used in
the training step as Stochastic Gradient Descent (SGD) [20].
With a learning rate of 1.2 and a momentum of 0.9 and a
batch size of 10 datapoints. The values concerning the number
of training epochs, batch size, learning rate, and momentum
values were defined after a series of tests that involved trial
and error. Tables IV, V and VI show the overall accuracy
for every ensemble size in |E| according to each of the tree
training epochs number aforementioned. As in the untrained

case, the results are according to the Iris, Wine and Breast-
Cancer datasets respectively.

The best results for the Iris dataset in Table IV were the
quantum ensemble with 200 and 300 ensemble members, both
having an overall accuracy of 0.97. With the classifiers in the
ensemble of size 200 trained with 10 training epochs. Where
the MPPShit in this case was 0.97, with StdD of 0.051. And
the classifiers trained in the ensemble of size 300 trained with
5 and 15 training epochs. Which for those cases the MPPShit
were both 0.96, with StdD of 0.083 and 0.146 respective to
each case of training epochs presented.

TABLE IV: Overall accuracies of a quantum ensemble with
different number of ensemble members over the Iris dataset

|E| No. of epochs overall accuracy

100
5 0.93
10 0.95
15 0.95

200
5 0.95
10 0.97
15 0.93

300
5 0.97
10 0.95
15 0.97

400
5 0.88
10 0.95
15 0.95

500
5 0.93
10 0.95
15 0.93

The best results for the Wine dataset in Table V were
from the quantum ensemble with 100, 300 and 400 ensemble
members, all three ensemble sizes containing results with an
overall accuracy of 1.0. With the ensemble size of 100 and 300
with models trained with 15 epochs, and the ensemble size of
400 with models trained with 10 epochs. The MPPShit for
the quantum ensemble with 100 and 300 models was 0.98,
with a StdD of 0.042 and 0.032 respectively.

And MPPShit for the quantum ensemble with 400 models
was 0.98, with a StdD of 0.018.

TABLE V: Overall accuracies of a quantum ensemble with
different number of ensemble members over the Wine dataset

|E| No. of epochs overall accuracy

100
5 0.96
10 0.96
15 1.00

200
5 0.98
10 0.96
15 0.96

300
5 0.96
10 0.98
15 1.00

400
5 0.96
10 1.00
15 0.96

500
5 0.98
10 0.92
15 0.98

The best results for the Breast Cancer dataset in Table VI
were from quantum ensembles with 300 and 500 ensemble

Fig. 5: PPShit of an ensemble with 300 classifiers untrained and trained with 15 epochs on all the detasets mentioned.

members, trained with 5 and 15 training epochs respectively.
Where the MPPShit for the quantum ensemble with 300
members of 0.98, with StdD of 0.077. And the MPPShit
for the quantum ensemble with 500 members of 0.98, with
StdD of 0.07.

TABLE VI: Overall Accuracies of a Quantum Ensemble With
Different Number of Ensemble Members Over the Breast-
Cancer Dataset

|E| No. of epochs overall accuracy

100
5 0.95
10 0.97
15 0.95

200
5 0.95
10 0.95
15 0.95

300
5 0.99
10 0.95
15 0.95

400
5 0.97
10 0.95
15 0.96

500
5 0.97
10 0.95
15 0.98

By presenting these results we intend to show the advantage
of using the training step in an ensemble quantum ensemble.
Fig. 5 presents a summary of the PPShit for an ensemble
of 300 classifiers with the training and the optimization free
strategy (untrained). In the trained case the classifiers were
trained with 15 epochs.

V. CONCLUSIONS

From the results presented we can infer that using a quantum
ensemble of quantum classifiers as a form of optimization
free learning is not a good approach to perform classification
in a quantum computer. Mainly because by simply adding
a training step it was possible to significantly improve the
performance of the ensemble relative to the overall accuracy
and the mean probability of obtaining the correct answer.

Because of the hardware limitations concerning the recent
quantum computers, it was not possible to perform an experi-
ment by using an exponentially large quantum ensemble, as it
would be theoretically possible on an actual general-purpose
quantum computer.

Despite the fact the results in this work were obtained
from simulations by calculating the probability amplitudes of
the system, they serve as experimental evidence of the great
advantage of still using a training step, or optimization step,
in a quantum ensemble of quantum classifiers, which is the
main contribution of this work. Even if adding the optimization
step means increasing the cost relative to gate application in
building the quantum circuit.

The models used in the simulations were artificial neu-
ral networks. Other works investigating the codification and
training of neural networks can be found in literature [15],
[21], [22]. This work investigates the training of a quantum
ensemble of quantum classifiers using neural networks with
a fixed architecture. A future work might be the addition of
architecture selection of neural networks [23].

Some quantum processors were made available, which can
be accessed through the cloud. However, Noisy Intermediate
Scale Quantum processors are still limited in the number of
qubits. Another possible future work might be to make a
reduced case scenario to be used in those currently small scale
quantum processors.

ACKNOWLEDGEMENT

This work was supported by CNPq, CAPES and FACEPE
(Brazilian research agencies).

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[2] K. Faceli, A. C. Lorena, J. Gama, A. C. P. d. L. Carvalho et al.,
“Inteligência artificial: Uma abordagem de aprendizado de máquina,”
2011.

[3] T. M. Mitchell, “Machine learning,” 1997.
[4] C. M. Bishop, Pattern recognition and machine learning. springer,

2006.
[5] M. A. Nielsen and I. L. Chuang, Quantum computation and Quantum

information. Cambridge University Press India, 2000.
[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and

S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, p.
195, 2017.

[7] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum
machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185,
2015.

[8] M. Schuld and F. Petruccione, “Quantum ensembles of quantum classi-
fiers,” Scientific reports, vol. 8, no. 1, p. 2772, 2018.

[9] D. McMahon, Quantum computing explained. John Wiley & Sons,
2007.

[10] N. S. Yanofsky, M. A. Mannucci, and M. A. Mannucci, Quantum com-
puting for computer scientists. Cambridge University Press Cambridge,
2008, vol. 20.

[11] S. Haykin, “Neural networks: principles and practice,” Bookman, 2001.
[12] D. Ventura, “Artificial associative memory using quantum processes,” in

Proceedings of the International Conference on Computational Intelli-
gence and Neuroscience, vol. 2, 1998, pp. 218–221.

[13] D. Ventura and T. Martinez, “A quantum associative memory based on
grover’s algorithm,” in Artificial Neural Nets and Genetic Algorithms,
1999, pp. 22–27.

[14] C. A. Trugenberger, “Quantum pattern recognition,” Quantum Informa-
tion Processing, vol. 1, no. 6, pp. 471–493, 2002.

[15] A. Fawaz, P. Klein, S. Piat, S. Severini, and P. Mountney, “Training
and meta-training binary neural networks with quantum computing,” in
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2019, pp. 1674–1681.

[16] M. Kearns and L. Valiant, “Learning boolean formulae or finite automata
is as hard as factoring. harvard university,” Center for Research in
Computing Technology, Aiken Computation Laboratory, 1988.

[17] R. E. Schapire, “The strength of weak learnability,” Machine learning,
vol. 5, no. 2, pp. 197–227, 1990.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS Autodiff Workshop, 2017.

[20] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[21] B. Ricks and D. Ventura, “Training a quantum neural network,” in
Advances in neural information processing systems, 2004, pp. 1019–
1026.

[22] A. J. da Silva, T. B. Ludermir, and W. R. de Oliveira, “Quantum
perceptron over a field and neural network architecture selection in a
quantum computer,” Neural Networks, vol. 76, pp. 55–64, 2016.

[23] P. G. Dos Santos, R. S. Sousa, I. C. Araujo, and A. J. da Silva,
“Quantum enhanced cross-validation for near-optimal neural networks
architecture selection,” International Journal of Quantum Information,
vol. 16, no. 08, p. 1840005, 2018.

