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Abstract—Recently, researchers in the field of affective neuro-
science have taken a keen interest in identifying patterns in brain
activities that correspond to specific emotions. The relationship
between music stimuli and brain waves has been of particular
interest due to music’s disputed effects on brain activity. While
music can have an anticonvulsant effect on the brain and act
as a therapeutic stimulus, it can also have proconvulsant effects
such as triggering epileptic seizures. In this paper, we take a
computational approach to understand the effects of different
types of music on the human brain; we analyse the effects of 3
different genres of music in participants electroencephalograms
(EEGs). Brain activity was recorded using a 14-channel headset
from 24 participants while they listened to different music
stimuli. Statistical features were extracted from the signals and
useful features and channels were identified using various feature
selecting techniques. Using these features we built classification
models based on K-nearest Neighbour (KNN), Support Vector
Machine (SVM) and Neural Network (NN). Our analysis shows
that NN, along with Genetic Algorithm (GA) feature selection,
can reach the highest accuracy of 97.5% in classifying the
3 music genres. The model also reaches 98.6% accuracy in
classifying music based on participants’ subjective rating of
emotion. Additionally, the recorded brain waves identify different
gamma wave levels, which are crucial in detecting epileptic
seizures. Our results show that these computational techniques
are effective in distinguishing music genres based on their effects
on human brains.

Index Terms—Brain Activity, Electroencephalogram, Affective
Neuroscience, Feature Extraction, Classification, Music Therapy

I. INTRODUCTION

Music is a powerful and complex medium. It allows us to
express emotions and cultural beliefs, it enhances our focus
and creativity, and it stimulates physical activity. Due to
music’s ability to influence human emotion and physiology,
it is a popular choice of stimulus for researchers in the
field of affective computing and affective neuroscience.
One of the most important research questions in the field
of affective neuroscience is looking for patterns of brain
activities related to specific emotions and investigating if the
patterns are common among people [1]. These questions can
be further differentiated with respect to audio or visual stimuli.

Brain anatomy researchers have highlighted that music
can act as a nonverbal medium that can move through the
auditory cortex directly to the limbic system, which is a

crucial part of the emotional response system [2]. The most
common use of music stimuli has been for therapy to reduce
stress, anxiety and various mental disorders. Certain classical
music pieces have been shown to reduce anxiety and improve
sleep behavior [3], [4]. It has also been used as a potential
way to reduce epileptic seizures, a common neurological
disorder affecting around 50 million people in the world [5].
However, using music in the treatment of epilepsy has been
a controversial topic for many years. There is rare form of
epilepsy called musicogenic epilepsy in which seizures can
be triggered by certain musical experiences [6]. Some papers
in the literature have mentioned that patients reported having
seizures induced by specific types of music, instrument use
or singing style [7], [8]. But no specific patterns have yet
been identified regarding music that can invoke seizures. In
addition, there has been very little research done to understand
this phenomenon at the physiological level. Studies show
that music listening can significantly decrease respiration
rate and heart rate, which correlates with decreased levels of
anxiety [9]. Observing these patterns through computational
models can be highly beneficial for future medical research.
Research questions include: can people’s brain activity be
used to differentiate different types of music; what types of
effect do different types of music have on the brain?

The electroencephalogram (EEG) is the physiological signal
most commonly used to understand brain activity associated
with affective reasoning. It is used to record brain wave
patterns. In the wider context, it is vital in detecting conditions
such as epilepsy, sleep disorders, stroke, stress and anxiety. In
this paper, we explore the impact of 3 different types of music
stimuli on human brain activity using EEG. Several signals
from different brain regions are investigated to identify which
features provide useful information regarding music type and
emotion processing. Three different classifiers are used to
recognize the 3 music genres based on the selected brain
activity features. The subjective responses provided by the
participants related to the music have also been classified using
a similar approach. The rest of the sections of this paper are
organized as follows: Section II describes some relevant back-
ground information and reviews recent related work. Section
III explains the experiment methodology. Section IV describes
the results and discusses some patterns identified through the
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process. Section V concludes the paper by highlighting future
work.

II. BACKGROUND

The data captured by EEG are brain waves which can be
divided into multiple frequency bands. Each of these bands are
associated with different functions in the brain. These brain
waves are:

• Delta (δ) waves – These waves are the slowest, having
the lowest frequency range of 0.5 − 4 Hz. These waves
are not seen in adult brains while they are awake. These
waves are generally associated with deep sleep, as well
as disfunction such as hypoxia and schizophrenia.

• Theta (θ) waves- Having the frequency of 4−8 Hz, theta
waves are produced during sleep and drowsiness.

• Alpha (α) waves – Alpha waves have the frequency of
8–12 Hz, and are found in almost every part of the brain,
but mostly in the occipital lobe. These waves are highly
associated with any relaxed state. Alpha waves are often
boosted during meditation or any other stress relieving
activities.

• Beta (β) waves – Beta waves (12–30 Hz) are the most
frequently seen brain waves that reflect the active state
of the brain. They are mostly associated with increased
attention and alertness.

• Gamma (γ) waves – These are the fastest brain waves (>
30 Hz), which are thought to increase cognitive function
and boost memory and focus. These waves can also be
found in stroke and epileptic patients [10].

EEG is typically recorded by placing electrodes on the
scalp. The number of electrodes and what information they
capture differs based on the device that is used to capture the
signals. The electrodes have distinguishable names, which
reflects the placement location on the head. The name consists
of a letter and a number, where the letter represents the brain
lobe and the number represents the position and hemisphere.
Our experiment uses the popular EEG device - the Emotiv
EPOC headset [11], which is a 14-channel wireless headset
that also has 9-axis motion sensors. Emotive also provides
software that can be used to record raw EEG data, from
which different brain waves and related information can be
extracted. Figure 1 shows the channels’ names and locations
of Emotive EPOC electrodes.

Over the last few years there have been many researchers
who focus on analysing EEG signals from the human brain,
including investigation of the role of music in brain wave
production. Thammasan et. al. [12] used EEG signals to
continuously identify emotion based on valence and arousal
levels in participants while they listen to music. However,
they do not discuss specific emotions and which brain regions
contribute to identifying emotions. Shedeed et. al. [13] col-
lected EEG signals associated with 3 arm movements and
analysed data from 4 channels located in the pre-frontal,
frontal and supplementary motor cortex. Their model, based
on a multi-layer perceptron neural network reaches the highest

accuracy of 91.1%. They did not explain why only those
4 channels were used. In one of the more recent works,
Ieracitano et al [14] collected EEG recordings from patients
with Alzheimer’s disease and healthy controls using a 19-
channel EEG system. They achieved the highest accuracy of
95.76%, using a 1-hidden layer multi-layer perceptron. Some
papers in the literature have discussed identifying brain regions
that provide useful information while participants are engaging
with stimuli. Zheng and Zhu [1] collected EEG signals from
a 62 channel device and selected data from a combination
of 4, 6, 9 and 12 fixed channels to classify 3 categories of
emotions evoked by emotional movie clips. It is not clear
how these channel combinations were derived. Lin et al.
[15] used excerpts from Oscar-winning film soundtracks to
evoke emotions in participants and classify their self-reported
emotions using a support vector machine (SVM). They also
reported useful features to be found in the frontal and parietal
lobes of the brain. However, to the best of our knowledge, there
has not been any work that investigates human brain activity
while participants listen to popular music, or music that is
said to be effective for music therapy. This paper explores
this research area in greater detail.

Fig. 1. Emotiv Headset Channel Location and Names [16]

III. MATERIALS AND METHODS

A. Participants and Stimuli

EEG signals were recorded from 13 male and 11 female
students (total = 24) studying at the Australian National
University. All of the students participated voluntarily and
signed a written consent form before their participation, as
required by our ethics approval. Twelve music pieces were
chosen for this experiment and divided into 3 categories. They
are:

• Classical - These pieces were chosen based on their long
lasting periodicity, a feature that has been useful in music
therapy [17].

• Instrumental - These pieces include jazz, rock and bin-
aural beats. Binaural beats in particular are purported to
enhance specific brainwave patterns [2].

• Pop - We chose these pieces based on the top song of
Billboard Hot 100 year-end chart from year 2014-2017
[18].



B. Methods

Participants were first given a brief description of the
experiment and signed the consent form. Afterward, they
sat in a chair in front of a 17.1 inch monitor and were
fitted with the Emotiv EPOC headset. The headset electrodes
were properly hydrated for good connectivity prior to the
calibration process. Participants were asked to keep their eyes
open for 15 seconds and keep their eyes closed for another 15
seconds to complete the calibration. Then the data collection
process began at the sampling rate of 128 Hz. Participants
also wore a pair of noise cancelling earphones to listen to the
music so that no other sounds distracted them.

The complete experiment was conducted through an interac-
tive website prepared for this purpose. Participants answered
some initial demographic questions after which they started
listening to each music piece. Every participant listened to a
total of 8 pieces of music from the 12 chosen - the music
pieces were order balanced. After participants finished listen-
ing to a music piece they gave ratings to the music based on
their general impression and their feelings while listening. The
ratings were given on a 7-point Likert scale based on 6 emotion
scales [19]. The scales are i) sad → happy ii) disturbing
→ comforting iii) depressing → exciting iv) unpleasant →
pleasant v) irritating → soothing vi) tensing → relaxing. The
scales were chosen according to [20]. Continuous scales were
chosen to reflect the real world, where human emotions are
usually blended and therefore cannot be put in a discrete space.
Figure 2 shows the emotion scales for our experiment in a 2D
emotion model, a conceptual model frequently used in the field
of affective computing [21].
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Fig. 2. Two Dimensional Emotion Model based on Valence and Arousal

The EEG data was collected from all 14 channels of the
headset using EmotivPRO Academic software [16].

Figure 3. shows the overall steps of the experiment. These
are discussed in detail in the following sections.

C. Preprocessing

Raw EEG signals collected from participants can be sen-
sitive to subject movements. In addition, sometimes a few
channels could not receive a good connection and therefore
added noise artefacts to the collected signals. Therefore, we

Fig. 3. Experimental Design

applied a median smoothing filtering to smooth out the noisy
signals [22]. Then the EEG data is band-pass-filtered between
3 to 60 Hz. This is done primarily to separate the band
frequency ranges of our interest, which are: Alpha [8-13 Hz],
Beta [14-30 Hz] and Gamma [31-50 Hz] Band. Then the data
was segmented into the lengths of the music pieces for feature
extraction.

D. Feature Extraction

Raw EEG signals were collected using all 14 channels
at the sampling rate of 128 Hz. This resulted in a large
amount of data from every participant which can be very
hard to analyse due to high computational cost. Therefore,
we extracted a total of 26 linear and non-linear statistical
features from our recorded data. The features were extracted
from the 3 chosen band frequency ranges. Table 1 shows
the 26 linear and non-linear features extracted from every
participant’s music segment. The process was done in the same
manner for all 14 channels. The channel names and locations
are also noted in Table 1. Channel names follow the convention
of the International 10-20 locations system. The features are
chosen from [23]–[26].

E. Feature Selection

In the feature extraction process we extracted 26 features
from each of the 14 channels of the Emotiv for each par-
ticipant’s music listening periods, or 364 features per song
segment for every participant. Thus we end up with a large
number of features, which increases the computation cost of
classification, and importantly, decreases classification models
performance [27]. To address these concerns, we applied a
total of 6 feature selection methods [28], [29] of 2 types:
feature ranking methods and feature subset selection methods:



TABLE I
EMOTIV CHANNEL NAMES AND LOCATIONS AND EXTRACTED FEATURE

LIST

Channels Location Names
Pre-
Frontal
Lobe

AF3, AF4

Frontal
Lobe F3, F4, F7, F8, FC5, FC6

Temporal
Lobe T7, T8, P7, P8

Occipital
Lobe O1, O2

Features Type Names

Linear

Mean, Maximum, Minimum, Standard De-
viation, Interquartile Range, Sum, Variance,
Skewness, Kurtosis, Root Mean Square, Av-
erage of the power of signals, Peaks in
Periodic Signals, Integrated Signals, Simple
Square Integral, Means of the absolute val-
ues of the first and second differences, Log
Detector, Average Amplitude Change, Dif-
ference Absolute Standard Deviation Value

Non-
Linear

Detrended Fluctuation Analysis, Approxi-
mate Entropy, Fuzzy Entropy, Shannon’s
Entropy, Permutation Entropy, Hjorth Pa-
rameters, Hurst Exponent

• Feature Ranking Methods
Statistical Dependency (SD)
Minimal-redundancy-maximal-relevance (MRMR)

• Feature Subset Selection Methods
Genetic Algorithm (GA)
Random Subset Feature Selection (RSFS)
Sequential Forward Selection (SFS)
Sequential Floating Forward Selection (SFFS)

F. Classifiers and Evaluation Measures

The classification was executed using MATLAB® R2018a
software with an Intel® CoreTM i7-5200U processor with
3.60 GHz, 16.00 GB of RAM and Microsoft Windows 10
Enterprise 64-bit operating system. We used 3 different
classification methods for comparing our results. They are:
Neural Network (NN), K-Nearest Neighbor (KNN) and
Support Vector Machine (SVM). For the 2 feature ranking
methods SD and MRMR, we chose the top 150 features to use
in the classification process. This number was chosen because
the feature subset selection methods generally resulted in
around 100-180 features. We chose 150 as an optimum
level to lead to good classification performance and not be
computationally heavy. A leave-one-observer-out process was
performed as the validation approach.

For the neural network, a pattern recognition network was
constructed with one input layer, one hidden layer and one
output layer. The hidden layer consisted of 30 nodes. This
was chosen based on the comparison of different hidden layer
sizes done in our previous study [20]. Other parameters of
the network were: Levenberg—Marquardt method as network
training function and mean squared normalised error as

performance function. The classification process was done
20 times and the average of those results were selected. For
KNN, we performed the process using node sizes 3 to 30
and chose the best results. K = 9 resulted in best outputs for
most cases. We used Minkowski as the distance metric. The
multiclass SVM chosen for this study uses tree learner and
one-versus-all coding design.

For our evaluation measures we report the classification
accuracy of the models in predicting the 3 music genres and
also the subjective ratings given by the participants. While
accuracy is crucial to show the predictive power of the model,
it does not always provide complete information on the value
of the model [30]. Therefore, we report some additional
measures along with the accuracy of our models. These are:

• Precision (Fraction of the predicted labels matched)
• Recall/Sensitivity (True Positive Rate)
• Specificity (True Negative Rate)
• F-measure (Harmonic mean of Precision and Recall)

IV. RESULTS AND DISCUSSION

A. Statistical Analysis

The statistical analysis was conducted using Analysis of
Variance (ANOVA). We analysed the classification accuracy
using NN for all feature selection combinations. The results
show high statistical significance (p < 0.01) across all the
selection methods. However, there is no statistical significance
observed for classifications using KNN and SVM. Thus,
different feature selection methods have significant impacts
just on the NN model in our model. In the later sections we
will discuss optimal feature selection methods further.

B. Best Features

We counted the frequency of every feature chosen by each
feature selection method in all 7 classification processes. Table
2. shows the list of top 25 features in decreasing order of
frequency.

The table gives us two types of useful information. Firstly,
it tells us which extracted features are providing useful
information as derived by a number of feature selection
models. Secondly, it tells us which channels (parts of brain
region) are useful in the classification process. From the top
25 features, 10 come from the channels F3 and F7, both
located in the frontal lobe of the brain. Most of the other
features were also from the channels located in the frontal
and pre-frontal region of the brain (except 4 of them which
were features from the temporal lobe). This shows that the
frontal lobe can reveal important information related to music
processing in the brain. Frontal and pre-frontal lobes are
considered to be the emotional control centre of the brain
[31], [32]. Frontal lobes are also involved in decision making
[33]. Our observations align with the literature where high
activity in the frontal lobe has been seen during various
activities. Khushaba et.al. [34] reported high delta and theta
activity in F3 and F4 region during decision making. This
finding can also be beneficial for future research in making



TABLE II
TOP 25 FEATURES SELECTED BY FEATURE SELECTION METHODS

Channel Feature Name
F3 Standard Deviation
FC5 Permutation Entropy
P8 Permutation Entropy
F3 Maximum
F8 Permutation Entropy
F7 Shannon’s Entropy
AF3 Skewness
AF3 Shannon’s Entropy
P7 Permutation Entropy
F4 Permutation Entropy
FC5 Skewness
T7 Skewness
F3 Mean of the First Difference
F7 Approximate Entropy
T7 Permutation Entropy
F7 Hurst Exponent
AF3 Maximum
F7 Skewness
F7 Kurtosis
FC6 Root Mean Square
P8 Approximate Entropy
FC6 Permutation Entropy
AF4 Permutation Entropy
F3 Hurst Exponent
F3 Mean

wearable devices to capture EEG. One of our observations
while conducting the experiment was that participants often
felt uncomfortable wearing the 14 channel headset for a
longer period. This often hampered their concentration in
listening to the music and answering questions. A comfortable
wearable device which captures data only from the frontal
region of the brain, requiring less points of pressure on the
head, may be beneficial for longer experiments in such cases.

Another observation from this feature list is the usefulness
of the entropy features. From this list we can see that per-
mutation entropy of 8 different channels appeared in the top
features list. Furthermore, entropies cover 12 out of the top
25 features. Entropies in general reflect the randomness and
complexity properties of physiological signals. Permutation
entropy analyses various permutation patterns of these signals
to identify the complexity level [35]. These features highlight
useful properties from non-stationary signals like EEG. En-
tropies have also been shown to be effective features for build-
ing models for epileptic seizure detection [36]. Using these
features and relevant channel data we can significantly reduce
the computational cost of our system without compromising
its predictive power.

C. Classification

We performed the classification using NN, KNN and SVM
based on the labels of music genres and participants’ subjective

rating on 6 emotion scales described in section 3. The ratings
were categorized into positive, neutral and negative ratings.
Thus, all of them were 3 class classification problems to match
the human subjective ratings. This approach allowed us to
tease out human response distinctions not just at the level of
genre, but at the more fragmented level of individual music
pieces. The classification labels are listed below, based on the
music genre and subjective rating on emotion given by the
participants:

• Classical Genre - Instrumental Genre - Pop Genre
• Disturbing - Neutral - Comforting
• Depressing - Neutral - Exciting
• Sad - Neutral - Happy
• Unpleasant - Neutral - Pleasant
• Irritating - Neutral - Soothing
• Tensing - Neutral - Relaxing

In general, for all cases, NN performed significantly better
than KNN and SVM. Figure 4 shows the classification accu-
racy of all 3 models using all 6 feature selection methods based
on the ratings on emotion Tensing → Neutral → Relaxing.

Fig. 4. Classification Results Based on Subjective Rating (Tensing → Neutral
→ Relaxing), Range 40-100 Chosen for Better Visualization

Figure 4 shows that NN can reach the highest accuracy
of 98.6% based on the average of 20 runs, whereas KNN
and SVM reached 73.8% and 58.9% respectively. Similar
patterns are observed in other emotion scales as well across all
evaluation measures. Figure 5 shows the 6 evaluation measures
for classification based on the music genres using NN. We
can observe that NN achieves a high accuracy of 97.5% and
96.3% in F-measure. The F-measure is the harmonic mean
of precision and recall and it is often considered a stronger
measure than arithmetic mean because it reveals more useful
information on groups having different properties [37]. For
KNN and SVM, even though the models achieve reasonable
results in terms of accuracy, it often gets a low score (< 40%)
for F-measure. Therefore, we suggest NN as an effective
model, as it achieves high scores for all evaluation measures.

We wanted to identify which feature selection methods are
most suitable to use for our classification model. Figure 6



Fig. 5. Classification Results Based on 3 Music Genres, Range 75-100 Chosen
for Better Visualization

shows the NN accuracy results of 3 emotion scales using the
SD, GA, RSFS and SFFS. Similar patterns are observed for
other emotion scales as well. It can be seen in Figure 6 that
the feature selection methods achieve very close results in
terms of accuracy. But when comparing other measures we
found that GA and RSFS achieve the highest results in all
evaluation measures for most cases. Table 3 shows the results
of all evaluation measures for the same combinations shown
in Figure 6.

Fig. 6. Classification Accuracy Based on Participants’ Subjective Response
Based on 3 Emotion Scales, Range 85-100 Chosen for Better Visualization

The results are also statistically significant (p < 0.001). It
should also be mentioned that both these methods are feature
subset selection algorithms, and they produced better results
than feature ranking algorithms. Although the feature ranking
algorithms get the highest accuracy in some cases, they do not
consistently achieve high scores in other measures.

D. Observation of Gamma Levels

We further analysed the frequency band data collected
by the EmotivPro Software. We observed the gamma level
of every participant when they listened to different music
pieces. We labelled the songs based on the gamma levels
seen in participants brain activity while they were listening
to a particular music piece. We then divided the pieces into

TABLE III
EVALUATION MEASURES OF PARTICIPANTS’ SUBJECTIVE RESPONSE

BASED ON 3 EMOTION SCALES

SD GA RSFS SFFS
Accuracy 0.972 0.978 0.976 0.928
Precision 0.879 0.899 0.905 0.758

Depressing →
Exciting

Recall 0.968 0.981 0.964 0.865

Specificity 0.973 0.977 0.979 0.941
F-
Measure 0.958 0.938 0.933 0.849

SD GA RSFS SFFS
Accuracy 0.979 0.987 0.981 0.952
Precision 0.911 0.954 0.924 0.824

Sad →
Happy

Recall 0.968 0.967 0.965 0.909

Specificity 0.981 0.991 0.984 0.961
F-
Measure 0.939 0.96 0.944 0.863

SD GA RSFS SFFS
Accuracy 0.951 0.969 0.971 0.963
Precision 0.875 0.918 0.926 0.907

Irritating →
Soothing

Recall 0.915 0.965 0.961 0.948

Specificity 0.963 0.971 0.974 0.967
F-
Measure 0.941 0.941 0.943 0.927

high, mid and low gamma levels. We made this division by
averaging the gamma level score for every participant listening
to every piece of music. This procedure was repeated for all
14 channels’ gamma level information. We performed a voting
among all channel data to finally label the music piece. The
results were the following:

• Low Gamma - Music pieces no. 5, 7, 9, 11, 12 (mostly
pop)

• Mid Gamma - Music pieces no. 1, 2, 3, 4 (all classical)
• High Gamma - Music pieces no. 6, 8, 10 (mostly instru-

mental)
This division was very closely aligned to our different

genres with some interesting differences. It also poses
some questions for future research and confirms some other
assumptions we had about the music pieces. For instance, we
picked music pieces 5 and 6 (both are binaural beats) from
Youtube and they were said to be inducing alpha waves and
gamma waves in the brain respectively. Our gamma level
observation confirms this fact as music piece 5 appears in
the low gamma category (the piece was meant to be used for
relaxation so low gamma level would be expected). Music
piece 6 appears in the high gamma category which also
matches the description of the music. Both the binaural beats
were able to induce the specific brain waves we expected.
Another observation was that all 4 of the classical music
pieces appeared in the mid gamma level category. These
music pieces are frequently used in music therapy as classical
music pieces are said to be beneficial to reduce stress,
anxiety and improving sleep patterns [38]–[40]. However,
they might not be very relaxing for all people. Pieces like
binaural beats that induce more alpha waves can be of higher
benefit in these cases. On the other hand, binaural beats that



increase gamma levels can contribute to epileptiform activity.
A detailed review on musicogenic epilepsy by Maguire [7]
mentioned that it has been hard to understand why neutral
music like a specific sound triggers seizures, reported by some
clinical studies [8]. Our research findings may contribute to
understanding this effect in the future.

Another significant observation relates to the pop music
pieces we chose for this experiment. Out of the 4 pop music,
only 1 appeared in the high gamma category and the other
3 appeared in the low gamma category. Our assumption was
that all of them would be in the mid or high gamma range
as these music pieces contain a lot of lyrics and instrument
usage and thus would require more concentration (usage of
beta and gamma waves) while listening. One possibility might
be the fact that these music pieces were all very popular in
recent times, and most of the participants had listened to
these pieces before (as reported in the questionnaire). The fact
that these pieces were already in their memory might have
caused them to not concentrate as much while listening to the
pieces. It has been reported before that there is correlation
between high gamma activity and memory in the temporal
locations of the brain [41]. We tested this by observing the
gamma activity in the temporal locations (Channel P7, P8,
T7 and T8). The results align with the literature (e.g. all 4
pop songs induce high gamma activity in P7 and mid gamma
activity in P8). However, channels in the other locations do
not follow the same patterns. It should also be noted that both
temporal and frontal lobes have been shown to be regions
where most epileptic seizures occur, especially in children
[42], [43]. Thus any music that reflects or induces these
patterns in the brain of epileptic patients should be avoided.
Further analysis using features from these regions can reveal
the potential of identifying brain regions and music pieces
that contribute to musicogenic epilepsy. We can also compare
brain activity with other physiological signals to identify if
there is correlation among them.

To observe if the division of the music pieces based on
participants brain wave level can be reflected computationally,
we performed classification using NN using all 26 features
from every channel. The labels were given according to the
gamma levels of the music pieces. The model achieves the
highest accuracy of 91.4% using the features from channel
F3. This also aligns with our observation in section 4(B)
where some of the features extracted from channel F3 data
were chosen a high number of times by all feature selection
methods. We also compared these results based on all 6
evaluation measures from all channels using ANOVA test and
the results show very high statistical significance (p < 0.001).
Therefore, it can be concluded that signals obtained from
specific channels have significant impact on the system.

V. CONCLUSION AND FUTURE WORK

In this paper, we conducted a study that collects partici-
pants’ brain activity via EEG signals while they listened to

3 different categories of music. Signals were collected using
a 14-channel wearable headset Emotiv EPOC. Signals were
first pre-processed by filtering them and dividing them into
frequency bands alpha, beta and gamma. Then a number
of linear and non-linear features were extracted from the
frequency bands of all channels. A total of 6 feature selection
methods were applied to select a feature set which were then
used in a NN, KNN and SVM classifier. Analysis on the data
showed that, a NN model reached a high accuracy of 97.5%
in classifying the music pieces based on genre and 98.6%
in classifying the pieces based on the subjective rating on
emotions given by the participants. The analysis also reveal
that most of the useful features selected were coming from the
frontal region of the brain. This study has multiple prospects
in future medical and affective computing research such as

• Categorising relaxing music pieces for music therapy.
Music pieces that induce more alpha waves in brain
are more appropriate for music therapy, rather than just
choosing any classical or instrumental piece.

• Categorising music that can potentially trigger seizures
and thus should be avoided by musicogenic epilepsy pa-
tients. Categorising music via genre alone is insufficient
to distinguish the best pieces for music therapy; the brain
wave activity induced by a specific piece of music may
potentially trigger seizures.

• Creating a wearable device using only the regions of
interest (e.g frontal) which can then be worn more
comfortably for longer duration experiments .

There are certain limitations to our work. We applied
generalized methods to pre-process the signals. However, we
did not observe in detail if different participants had different
connectivity levels for the channels. The device is sensitive to
movement and might show poor connections in some channels
during the experiment. These need to be analyzed further.
Furthermore, even though the number of participants for our
experiment can be considered reasonable according to some
literature [44], it is not enough to generalise the brain activity
of humans at scale. A larger number of participants need to
be observed to see if we can identify similar patterns that
we observed in this study. Weight magnitude of the features
will be analysed to compare with the best features found by
frequency. Another element of future work is to investigate
the factor that account for the significantly better performance
of NNs over KNN and SVM. Also, since some of the music
pieces were already in participants’ memory and might have
caused them to not concentrate as much while listening to the
pieces, we need to investigate the relationship of music and
memory in greater detail. Nevertheless, our study uncovers
potential advancement in the field of affective computing and
affective neuroscience.
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