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Abstract—Technological advances in oil and gas reservoir char-
acterization such as 3D seismics and seismic attributes enriched
the subsurface’s description made by specialists. Nevertheless, the
analysis of this now huge volume of data became a complex task.
This work explores the use of 2D orthogonal planes convolutional
neural networks for 3D seismic cube facies classification, one
of the steps of reservoir characterization. Through a sampling
method that captures spatial information of seismic data, the
proposed model were applied in both synthetic data of the
Stanford VI-E reservoir and in a benchmark based on the F3
block, which is part of a real reservoir. Compared to other
models in the same benchmark, the classifiers produced here
had superior results, with over 88% in pixel accuracy and 90%
class accuracy on some instances. The sampling method is also
flexible to use in practical cases.

Index Terms—Convolutional Neural Network, Orthogonal
Planes Model, 3D Segmentation, Seismic Image Processing,
Reservoir Characterization.

I. INTRODUCTION

The process of reservoir characterization is one of the most
important tasks during the study of an oil field. Using data
from different sources, scales and methods, such as seismic
data, well logs, production data, rock physics analysis, etc.
many models of the subsurface can be generated to give
a better understanding of the area under study. From an
economic point of view, an accurate reservoir description
provides better expected return and is a cornerstone for crucial
decision making, such as potential new well locations [1].

One of the steps in this process is the classification of seis-
mic facies. A seismic facies is a three dimensional sedimentary
unit composed by groups of reflection patterns that differ from
those of other adjacent facies and are generally related to
depositional or geological structures, or even with fluid type
changes [2]. This task is performed by specialists analyzing
sections of the seismic data or derived seismic attributes. As
the amount of available data increased and different seismic
attributes appeared, this task grew in complexity and became
intractable for humans to perform. Unsupervised machine
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learning algorithms and statistical methods e.g. self-organizing
maps and PCA became popular tools for the geoscientist
to deal with this large amount of data. Nevertheless, such
methods still required feature extraction to be performed
manually.

Automated detection and classification of geological struc-
ture elements, such as salt domes, channels, faults and folds,
from seismic images provides an important first step towards
new generation of geological interpretation tools [3].

Deep learning algorithms have been proposed as an alterna-
tive to solve the problems presented by manual classification of
seismic facies. Recent research shows that Convolutional neu-
ral networks (CNNs) is one of the most promising techniques
to apply to amplitude data for seismic data classification.
According to [4], the main advantages of CNN over other
supervised classification methods are it’s spatial awareness
and automatic feature extraction. For image classification
problems, other than using the intensity values at each pixel
individually, CNN analyzes the patterns among pixels in an
image, like textures, edges, etc. [4] [5] [6].

While the facies classification is usually done trace-by-trace,
or more commonly on a 2D inline or crossline seismic image,
significant challenges still exist for seismic facies classification
in a 3D seismic volume [7].

As seismic facies are essentially three dimensional geobod-
ies, we believe that volumetric or spatial context processing
tools are a natural way of achieving better results in auto-
matic seismic classification. In this sense, 3D CNNs could
be used to improve the identification of 3D volumes, such
as tomography and seismic images. However, 3D CNNs is
still at an early stage due to their complexity. With the goal
of maintaining simplicity while incorporating 3-dimensional
image processing capability, this paper proposes the use of
Three Orthogonal Planes convolutional neural network model
(TOP-CNN), a model partially inspired by the LBP-TOP and
T-CNN models proposed by [8] and [9] respectively and the
work of [10].

This work uses a patch-based model in which we extract
3 orthogonal cross-sections planes from a 3D sample of the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



seismic cube in order to create a 2D image as input — much
like a RGB image. For training examples, the label for the
whole image is derived from the center where the 3 planes
intersect each other. Applying our model on data from both
Stanford VI-E synthetic model and on a benchmark [11] based
on the F3 block, we concluded that our model achieved better
results when compared with 2D CNN trained with the same
data arranged as sequential slices, without the computational
complexity of using 3D CNN.

II. RELATED WORK

In the petroleum exploration industry, seismic data is one of
the fundamental sources used to interpret subsurface geology
[12]. Classifying and interpreting the depositional patterns that
form the various subsurface structures can provide valuable
clues as to whether the area of interest can contain hydrocar-
bons in a viable way and whether further research is warranted.

A Seismic Facies is a three dimensional seismic unit com-
posed of groups of reflections whose parameters differ from
those of adjacent facies units [13] [2].

Seismic facies classification refers to the interpretation of
facies type from the seismic reflector information [4]. In addi-
tion, the classification of seismic facies can provide important
insights about the various depositional units, such as: grain
size, mineralogy, porosity and permeability.

Automatic classification of seismic facies using machine
learning techniques has been of great interest to researchers
in the last 15 years. The first researches were directed to the
application of supervised and unsupervised methods. Coléou et
al. [14] provides an embracing review on unsupervised meth-
ods. Zhao et al. [15] reviewed and compared six supervised
and unsupervised methods applying them to a 3D seismic data
volume from a turbidite system. They analyzed the importance
of the choice of the correct input attributes.

In recent years, there has been great interest in using
fully-supervised deep learning and CNN models for seismic
facies classification. The main advantages of CNN over other
supervised classification methods are its spatial awareness and
automatic feature extraction [11]. [4], [5], [16] and others
showed application of state-of-the-art image classification and
deep learning algorithms in stacked 2D sections of seismic
data .

From the image processing point of view, seismic facies
classification brings a series of challenges: it can be considered
indeed a segmentation problem as it aims to distinguish
and segment different geological structures within the same
image; training data availability is much sparser comparing
to classical image classification problems, there is a lack of
large publicly-available annotated datasets for seismic inter-
pretation; the annotation process is time-consuming, requires
subject matter expertise, and can be quite subjective; data
is always contaminated by noise and the separation between
different rock bodies are rarely explicitly defined [4] [11].

Zhao [4] describes and compares 2 CNNs models for
seismic facies classification: the patch-based model, in which
the output from the network is a single value representing

the facies label of the seismic sample at the center of the
input patch; and the encoder-decoder fully convoltional neural
network (FCN) model, which classifies all samples in a seismic
line simultaneously. According to him, the encoder-decoder
model provides superior seismic facies classification quality
comparing to the traditional patch-based CNN.

Chevitarese et al. [5] presented deep learning models specif-
ically for the task of classification of seismic facies along with
a detailed discussion on how different parameters may affect
the model’s performance. They proposed many variations of
a fully convolutional neural network model (Danet-FCN) that
can distinguish different seismic facies with resolution equal
to the pixel size.

Alaudah et al. [11] provided a benchmark for comparing
the results of different machine learning approaches for facies
classification. They made available a fully annotated 3D ge-
ological dataset of the Netherlands F3 Block along with two
baseline models that differ in the way they are trained and
the way they are used to label the seismic volume. Their so-
called patch-based model is trained on small patches extracted
from the inlines and crosslines of the training data. The
section-based model is trained on entire inline and crossline
sections. This models were analyzed for facies classification
based on the encoder-decoder FCN architecture they called
deconvolution network. They also proposed many evaluation
metrics as a scheme for evaluating other models on these
datasets.

In all these works, facies segmentation maps are predicted
for a full volume by taking predictions one slice at a time.
This means that they inherently fail to leverage context from
adjacent slices. Voxel information from adjacent slices may be
useful for the prediction of segmentation map [17].

Few studies use 3D convolution in the segmentation of
seismic images. Jiang [18] segments geophysical structures
such as channels and faults in 3D seismic volumes. He
applies CNN as a local classifier to 2D and 3D patches
around every voxel in the seismic volume in order to perform
semantic segmentation. In his experiments, 3D CNN showed
big improvement compared to 2D CNN. Wu et al [19] perform
an efficient image-to-image fault segmentation by using a
supervised 3D convolutional neural network. They claim that
the 3D CNN can predict faults from 3D seismic images much
more accurately and efficiently than conventional methods.

Despite the similarity between seismic image segmentation
and biomedical image segmentation, 3D convolutional net-
works have been more frequently applied in this last type of
application [20] [21] [22].

Three Orthogonal Planes networks appear in some research
as simpler alternatives to 3D fully convolutional networks
in other types of applications. Andrearczyk and Whelan [9]
developed a new approach to Dynamic Texture (DT) analysis
based on a CNN method applied on three orthogonal planes xy,
xt and yt . They trained CNNs on spatial frames and temporal
slices extracted from the DT sequences and combined their
outputs to obtain a competitive DT classifier. Their model is
inspired by the seminal work of Zhao and Pietikäinen [8] in



which a volume Local Binary Patterns (LBP) method was
developed to combine the motion and appearance together.
A simpler LBP-TOP operator based on concatenated LBP
histograms computed from three orthogonal planes was also
presented, making it easy to extract co-occurrence features
from a larger number of neighboring points. Pourtaherian et al.
[10] applied orthogonal-plane convolutional neural networks
for semantic needle detection in a 3D ultrasound volume. The
method was able to accurately detect even very short needles,
ensuring that the needle and its tip are maximally visible in
the visualized plane during the entire intervention.

III. PROPOSED METHOD

In this work we developed a deep neural network archi-
tecture whose idea is simple, but which offers a robust and
efficient alternative to semantic segmentation of objects in 3D
volumes, such as in tomography images and seismic cubes.
In this class of applications, the joint analysis of the object’s
three-dimensional shape is very important for the segmentation
task and its analysis represents a gain compared to techniques
that seek to do the segmentation based only on multi-slices
of two-dimensional images. On the other hand, the use of 3D
convolution operations would represent a high computational
complexity for training and applying the model.

In the present study we used a patch-based CNN model
called Three Orthogonal Planes convolutional neural network
model(TOP-CNN). According to [4], semantic segmentation
in tomographic images can be done with patch-based or using
encoder-decoder CNN models. A basic patch-based model
consists of several convolutional layers, pooling (downsam-
pling) layers, and fully-connected layers. The output from the
network is a single value representing the facies (class) label
of the seismic sample at the center of the input patch.

The central idea of our method is to use classic and well-
known models of CNN networks, such as AlexNet or VGG,
using state-of-the-art concepts and tools to train, in which the
receptive fields of the RGB channels of the network input
layer are re-organized in orthogonal planes in order to receive
as inputs signals a set of 2D images from 3 orthogonal planes
of the sub-volume to be segmented, as can be seen in Figure
1.

For an input image (for seismic data: amplitudes in orthogo-
nal planes crossing the central a point of a small 3D window),
the TOP-CNN model first automatically extracts several high-
level abstractions of the three 2D images (similar to seismic
attributes) using the convolutional and pooling layers, then
classifies the extracted attributes using the fully connected and
softmax layers.

For each example used as a network input, a subsampling
of the seismic cube to a cube of dimensions n×n×n is made.
The classification objective is the central point of this sample,
that is, we want to identify which facies this central point
belongs to. The size chosen for sampling imposes a spatial
restriction on the network, since learning is carried out based
on individual examples. As the model uses 2D convolution, it
is necessary to transform the information of the sampled cube

Seismic cube sample

Inline section

Horizontal section

Crossli
ne section

RGB image

n × n × n

n × n

class 0 class 1 class l...

Convolutional
Neural
Network

Fig. 1: Overview of our proposed method using 3 orthogonal
planes sampling to create inputs for a convolutional neural
network.

so that it adapts to the two-dimensional format that feeds the
model. The objective is to carry out this transformation without
losing the spatial correlations in the three dimensions of the
cube and, for this, three sections are extracted passing through
the center of the cube, one for each axis. These sections are
then stacked in the form of an RGB image, with each section
assuming the values of one of the color channels. This process
is illustrated in Figure 1.

In the case of data used for training and network validation,
each example must be associated with a label that identifies
the expected output. Two approaches were used to generate the
seismic data and the facies labels for the patch-based training
set: using well logs and seismic from a region around the well;
and from patches manually classified in specified regions of
the seismic cube.

A. Network Architecture

The network topology developed for this work is composed
of four blocks: the first three are a sequence of a convolutional
layer (which are always followed by ReLU activation), then
a pooling layer and a dropout layer; the last block is a fully
connected layer before a softmax activation. An overview of
this architecture is illustrated in Figure 2, the abbreviations c,
p, fc and s stand for convolution layer, max-pooling layer, fully



connected layer and stride, respectively. The number following
c and p indicates the size of a square window used for the
operation, while the number of filters or units are marked at
the end of the convolution and fully connected layers.

c5 s1 64

p2 s1

dropout

c3 s1 128

p2 s1

dropout

fc 200

softmax

c7 s1 32

p2 s1

dropout

Fig. 2: Diagram of the network architecture used in this work.
The letters c, p and fc are used to abbreviate convolution, max
pooling and fully connected layers.

The Python programming language was used to implement
the method. The libraries used were: Keras, for definition,
training, and testing of convolutional network models; Ten-
sorflow as backend from the Keras library; Matplotlib and
K3D for viewing data and results. The code produced dur-
ing this work can be found in the GitHub repository at:
https://github.com/thurbridi/cnn-facies-classifier

Since this sampling method generates a great deal of re-
dundant data compared to the original seismic cube, it was
necessary to implement training and prediction methods using
Keras Sequence object, which streamlines multiprocessing and
loads only the necessary examples for each epoch to memory.

IV. EXPERIMENTAL RESULTS

As mentioned in section II, seismic data is obtained through
indirect measurements of the subsurface and it’s interpretation
to seismic facies is not trivial. This data is usually made
available as 3D volumes of reflection values processed from
seismic acquisition.

In the problems relating to seismic data segmentation,
ground truth data often comes from a specialist that interprets
a limited number of examples. In the case of data used
for supervised machine learning training and validation, each
example must be associated with a label that identifies the
expected output. However, different researchers may annotate
different classes, or use different train and test splits [11].

Two approaches can be used to generate the seismic data
and the facies labels that will make up the training set:

• The training set can come from well information - which
can be viewed as a line, approximately vertical, that
crosses the seismic cube. For each of the facies values
classified in the well, we sample the region around the
value from the seismic cube, that is, we slide a cube
centered along the line of the well that crosses the seismic
data, performing the sampling process described above
and associating the values of classified facies;

• The training set can also be formed by data from classifi-
cations made manually by specialists in patches or small
tiles in specified regions of the seismic cube.

Two distinct test scenarios were employed in this study:
the Stanford VI-E synthetic reservoir, which was originally
created by Castro et al. (2005), and represents a three-layer
prograding fluvial channel system; and block F3, a real seismic
survey acquired in the North Sea, offshore Netherlands, which
is freely accessible by the geoscience research community.

In the first scenario, the training set was built using data
from some wells randomly spread across the cube. In the
second scenario, the patch based training data was obtained
from the public database made available by Alaudah et al. [11].
We scrutinize their results in order to compare our proposal
with other research that classifies seismic facies using CNNs
in a purely two-dimensional approach.

A. Seismic Facies Segmentation in the Stanford VI-E

The Stanford VI-E reservoir [23] is a synthetic reservoir
model created with the aim of testing modeling, characteri-
zation, and reservoir production algorithms. It is an extensive
data set with more than 6 million cells containing petrophys-
ical properties and seismic attributes. The data are available
in a volume of size 150 × 200 × 200 cells. The cells have
dimensions 25m in the horizontal axes x and y and 1m in the
vertical axis z. Therefore, the reservoir has an extension of
3,750m in the east-west direction, 5,000m in the north-south
direction and 200m in depth.

The stratigraphic model of the reservoir fluvial channel
system prograding into the basin located toward the north
of the reservoir. deltaic deposits (layer 3) were formed first
and meandering channels (layer 2) and then sinuous channels
(layer 1) were deposited in this fluvial channel system. Layers
1 and 2 are composed of four facies: floodplain (clay deposits),
pointbar (sand deposits that occur along the inner convex
edges), channel (sand deposits), and textitboundary (clay
edge). The deltaic Layer contains only the floodplain and
channel facies [23].

Figure 4 illustrates the complete reservoir (upper left corner)
and layers 1, 2 and 3 (upper right, lower left and lower right,
respectively).

Seismic facies were mapped to classes of the classification
problem by assigning a numerical code to each one:

• floodplain: class 0;
• pointbar: class 1;



(a) inline 30

(b) crossline 80

(c) depth 70

Fig. 3: Orthogonal Planes seismic sections from the Stanford
VI-E reservoir cube.

• channel: class 2;
• boundary: class 3.
In our experiment we train and use the TOP-CNN to

segment the classes in layers 1 and 2. Basically the idea is to
test the method’s capability to classify classes 2 (pointbar), 3
(channel) and 4 (boundary) when trained with different levels
of sinuosity.

In order to set up our training set using the seismic traces
and classified facies around oil wells approach, we randomly
create 10 pseudo-wells in Stanford VI-E cube (originally this

Fig. 4: Stratigraphic model of the Stanford VI-E reservoir [23].

synthetic model does not have defined wells). So, 10 random
x and y positions of the seismic cube were chosen, each
representing the position of a pseudo-well. Moving along the
z axis in these positions, cubes of size 32 × 32 × 32 are
sampled. The label for each of these samples is extracted
from the ground truth reservoir’s facies volume in the position
corresponding to the center of the sample.

When analyzing the training data set (Figure 5), we ob-
served that class 0 (floodplain) is much more frequent than
other classes, which is expected based on the reservoir struc-
tures (Figure 4). However, the learning of unbalanced classes
is a known problem in the area of machine learning. [24]
presents a review on state of the art solutions for this problem.
In our experiment, we made class balance using the Random
Oversampling algorithm that randomly repeats examples from
the less frequent classes. After balancing, the brightness values
for each orthogonal plane image were normalized to the [0, 1]
interval and 20% of the data was reserved for the validation
set. The resulting class distribution can be seen in Figure 6.

Fig. 5: Class frequency of training examples.



Fig. 6: Class frequency of training examples after random
oversampling.

After trained with with pseudo-wells data, the model was
applied across the whole seismic cube and performance met-
rics was calculated. The model showed an average accuracy
of 0.89 which means a high rate of true positives and true
negatives between classes. PrecisionM value indicates that, on
average, 60% of the points classified as a given facies were
correctly predicted and the recallM value indicates that, on
average, 61% of the points of a facies are classified correctly.

Analyzing the confusion matrix, shown in Figure 7, we can
observe that, while class 0 had 93% of correct predictions,
our model had some difficulties in correctly classify between
classes 2 and 3. As pointed out by [23], both classes are
composed of sandstones with very similar impedance values
(see Figure 3), so that their seismic amplitude responses are
very similar. Since the boundary (class 3) is a very thin
structure between the floodplain (class 0) and channel (class 2)
structures, we can notice that many times the model incorrectly
classify the right class.

Figure 8 shows the classes ground truth (above) compared
with result of the network forecast in the first two layers of the
Stanford VI-E reservoir. In this figure, class 0 (floodplain) is
made transparent to highlight the reservoir’s river structures.
Classes 1, 2 and 3 are represented by the colors blue, green
and yellow in that order. With this 3D visualization, it is
interesting to note that class 3, despite the low precision in
the confusion matrix, still has part of its structure recovered
given its occurrence in thin layers only at the edges between
classes. Visually, the net result also seems to get worse in
the second layer of the reservoir, where the channels become
shallower, narrower and more sinuous.

B. Seismic Facies Segmentation in the F3 Block

Located next to Netherlands coast, the F3 block covers an
area of 16km × 24km and was mapped with 3D seismic
surveys for oil and gas exploration. As mentioned in Section
II and at the beginning of this section, Alaudah et al. [11]
processed part of this block to create a benchmark, annotating

Fig. 7: Confusion matrix from the Stanford VI-E dataset.

the entire volume and dividing it into 3 sets, one for training
and two sets for final testing. The benchmark features 6
different classes (seismic facies) separated by their seismic
response and formation period, listed below:

0) Upper North Sea: claystones and sandstones from
Miocene to Quaternary;

1) Middle North Sea: sands, sandstones, and claystones
from Paleocene to Miocene;

2) Lower North Sea: same composition of Middle North;
3) Chalk/Rijnland: carbonates of Upper Cretaceous and

Paleocene; clay formations with sandstones of Upper
Cretaceous;

4) Scruff: claystones of Upper Jurassic and Lower Creta-
ceous;

5) Zechstein: evaporites and carbonates of Zechstein.

These classes can be visualized in Figure 9: Upper North
in red, Middle North in green, Lower North in yellow,
Chalk/Rijnland in blue, Scruff in orange and Zechstein in
purple.

As reported in Section II, in addition to the anno-
tated dataset, [11] presents two alternatives (patch-based and
section-based) to serve as baseline models to train and test
their encoder-decoder network topology. Using their annotated
dataset, we trained our model with different patch sizes
(32× 32, 48× 48, 64× 64), making use of the whole training
cube with a 80/20 training/validation split.

After validation loss converged, we ran our models on
the test data and calculated the same metrics used for the
benchmark’s models, which are:

• Pixel Accuracy (PA), is the percentage of pixels over all
classes that are correctly classified;

• Class Accuracy (CA), is the percentage of pixels that are
correctly classified in a class i.



(a) Stanford VI-E ground truth 3D model.

(b) TOP-CNN reconstruction of the Stanford VI-E reser-
voir.

Fig. 8: Comparison between the original model (a) and our
trained network prediction (b) on the Stanford VI-E reservoir.
Green corresponds to channel, Blue corresponds to pointbar
and Yellow corresponds to boundary.

• Mean Class Accuracy (MCA), is the average of CA over
all classes; and

• Frequency-Weighted Intersection over Union (FWIU), is
the measure of the overlap between the set of pixels that
belong to class i and the set of pixels classified as class
i averaged over all classes and each class is weighted by
its size.

Table I lists our results as well as Alaudah’s results for their
patch-based dataset. In bold is the best result for each metric.

With the results presented in Table I, we note that bigger
sampling windows (thus bigger input image size) favored more
massive classes, especially Lower N., where we achieve 0.98

Fig. 9: 3D view of the geological facies in the training partition
of the F3 block.

class accuracy. TOP-CNN 64× 64 patch size model presents
a better performance when using the Pixel Accuracy and the
Frequency-Weighted Intersection over Union metrics, while
the 32 × 32 patch size model has a better Class Accuracy in
three over six class classification and achieve the best Mean
Class Accuracy over all other models.

In comparison to Alaudah’s Patch-based model, our TOP-
CNN approach surpassed most metrics (except Lower N. Class
Accuracy) when not using data augmentation for training.
However, we took class imbalance into account by using Keras
class weights for weighting the loss function during training.
It is important to note that despite using 2D convolutional
networks in the traditional way, Alaudah et al. apply their
model in inlines and crosslines and makes an average where
the same points are evaluated [11].

V. CONCLUSION

In this work, we have introduced the Three Orthogonal
Planes Convolutional Neural Network model to efficiently
perform the semantic segmentation and facies classification
of 3D seismic cubes. The main idea of this model is to be
able to capture some spatial correlations between 3D image
voxels making it a computationally less complex alternative
than using 3D convolutional networks.

Our proposed model were evaluated on a synthetic data of
the Stanford VI-E reservoir and on real data in a benchmark
based on the F3 block. Two approaches were used to generate
the seismic data and the facies labels for the patch-based
training set: using well logs and seismic from a region around
the well; and from patches manually classified in specified
regions of the seismic cube. The results show a strong semantic



TABLE I

Model
Metric Class Accuracy

PA Zechstein Scruff Rijnland/Chalk Lower N. S. Middle N. S. Upper N. S. MCA FWIU
TOP-CNN w 32× 32 patch size 0.86 0.71 0.31 0.59 0.93 0.90 0.96 0.73 0.76
TOP-CNN w 48× 48 patch size 0.87 0.59 0.24 0.63 0.96 0.89 0.95 0.71 0.78
TOP-CNN w 64× 64 patch size 0.88 0.26 0.22 0.60 0.98 0.86 0.95 0.64 0.79

Patch-based model 0.788 0.264 0.074 0.499 0.992 0.804 0.754 0.565 0.640
Patch-based + aug. 0.852 0.434 0.221 0.707 0.974 0.884 0.916 0.689 0.743
Patch-based + aug + skip 0.862 0.458 0.286 0.673 0.974 0.912 0.926 0.705 0.757

modeling capability surpassing, in most cases, the results
presented by another 2D CNN model on the same data.

As future work we consider working on data augmentation
techniques and the use of transfer learning instead of training
our models from scratch. Another point that deserves attention
is to expand the model to an encoder-decoder architecture
in order to verify an increase in performance as reported
for 2D CNNs in other researches and the addition of other
non-orthogonal planes in order to try to capture other voxels
correlations. In addition, currently forecasting is done pixel by
pixel. In the future we intend to evaluate the forecast made in
a pixel neighborhood in order to be able to further increase
the accuracy.
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