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Abstract—With the onset of easy access to supercomputers with
high amounts of memory available, machine learning algorithms
have continued to increase the resources necessary to perform
their data analysis. This paper aims to show development in the
other direction, by showing that through the use of a combination
of feature bagging and ensembles of Extreme Learning Machines
(ELMs) it is possible to leverage machine learning, without loss
of accuracy, on devices where Flash memory is very scarce,
and Random-access memory (RAM) is even scarcer, such as on
embedded systems. This novel strategy is called Feature Bagged
Extreme Learning Machines (FB-ELMs).

I. INTRODUCTION

Classification [1] is a machine learning process by which an
algorithm attempts to correctly label samples of data based on
their characteristics. The algorithm is trained in a supervised
[2] manner, meaning that it’s components are tuned based on
examples whose classes are known. The process by which
we train the base algorithm implemented in this paper, an
ensemble of Extreme Learning Machines (ELM, [3]-[9]), is
described in the next section.

The arrival of “smart” technology, such as phones, watches,
and other new memory and computational limited devices,
has created the need to develop algorithms that are not just
accurate but also space and Central Processing Unit (CPU)
sensitive. While it has become easy to rent a computationally-
powerful and seemingly memory-infinite node in the cloud,
it is now increasingly difficult to utilize home desktops and,
even more difficult, embedded systems to perform machine
learning analysis. On embedded systems there are often only
hundreds of Kilobytes (Kb) to work with in Flash memory,
and a fraction of that for Random-Access Memory (RAM).
What if there were a way to modify an algorithm to reduce
its memory footprint, without loss of accuracy? In this paper,
we will propose a methodology to do just that by utilizing
Feature Bagging [10], a method where only a subset of a
sample’s features are used to train each model or group of
models, in combination with an ensemble of Extreme Learning
Machines (ELMs). By utilizing this novel Feature Bagged-
Extreme Learning Machine (FB-ELM) ensemble, this paper
will show that performing machine learning analysis with
severe memory constraints is not only possible but also highly
accurate.

An advantage of ELMs is that it is relatively easy to export
and import a trained ELM, the only values needed being
the input and output weights of the network. With that in
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mind, our analysis will show the memory consumption only
of predicting using the FB-ELM ensemble, since training an
FB-ELM, exporting it’s values, and then importing them onto
an embedded system is straight-forward. With the memory
constraints associated with training the algorithm taken off of
the embedded system, the necessity for carefully selected data
in training is eliminated.

Others [11]-[14] have proposed methodologies to address
machine learning with memory constraints, but these meth-
ods sacrifice speed, need hyper-tuned training data, or must
optimize an embedded system’s instruction set. Our method-
ology does none of these things and yet performs with high
accuracy despite the severe memory constraints. In the next
Section, we will introduce the concept and methodology of
Extreme Learning Machines. In Section III, we will discuss the
Traditional ELM Ensembling Technique, and then in Section
IV how we implement Feature Bagging to improve upon the
traditional method. In Section V, the Experimental Data and
Settings are presented. The Memory Usage Analysis and the
Impact on Accuracy of this novel approach are summarized in
Sections VI and VII. Finally, graphical results and conclusions
are presented in Sections VIII, IX, and X.

II. EXTREME LEARNING MACHINE

The Extreme Learning Machine [3]-[9], [14]-[19] is intro-
duced as a generalized Single-Layer Feed-forward Network
(SLFN) [7], [20]-[22]. This type of Network is capable of
solving classification [23]-[25], regression [26], [27] and clus-
tering problems [28], [29]. According to Huang et al. in [8],
ELM has good generalized performance in most cases and the
learning speed is thousands of times faster than conventional
neural networks [6], [30].

ELM belongs to the family of Randomized Neural Networks
(RNNSs). Unlike traditional neural networks and learning algo-
rithms, the ELM algorithm shows that hidden nodes can be
randomly generated. Thus, the weights from the first layer
can be independent from the training data. Because there is
no dependence between the input and output weights, ELM
has a non-iterative linear ordinary least square solution for
the output weights, unlike the conventional Back-propagation
training procedure [31]. On top of the distinct properties of
ELM, Huang et al. in [20], [22] stated that ELM has the
universal approximation capability, indicating that ELM can



Fig. 1. ELM Structure

universally approximate any continuous target functions in any
compact subset X of the Euclidean space R™ [32].

The rest of this Section gives a brief explanation of the orig-
inal ELM. In order to keep a uniform meaning for notations
throughout the paper, some of the original notations for ELM
have been modified.

Figure 1 shows a typical structure of ELM, which contains
three layers: the input layer, the hidden layer, and the output
layer. Input layer weights (w) and biases (b) are randomly
generated and don’t involve in the further training anymore.
X € R™*4 X = (¢1,...,%m,)  is the input data, with
sample size m, and feature size d. Through the first layer,
6 is mapped to IN-dimensional ELM random feature space.
After the nonlinear transformation f, the hidden layer output
is:

hi(x) = f(xTw; +b;), i € [1,N]. (1)

f is also called the activation function. Many nonlinear
function can be applied here, such as a sigmoid function. Other
activation functions are listed in [20], [22]. The last layer is
the ELM functional output:

N
feLm(z) = Z 0:hi(x) = h(x)T0 =1, (2)
i=1

Where, h(z) = (hi(z),...,hn(x))T, 0 is the output
weights & = (01,...,0n5)7 and & is the approximation of
t — the true target value (i.e. labels, or regression values) of
x.

The last step for training an ELM is to determine the
output layer coefficients: 0. If T = (t1,...,tm)" is the
corresponding target matrix of the input matrix X, € should
satisfy the following equation:

6= arg;nin | ferm(X) - T, 3)

in which, ELM function: fgpn(X) = T is an approximation
of the true target matrix T'.

To simplify the problem, introduce H € R™*":

hl(wl) hN(iL'l)

H == 9 (4)

hi(xm) hy(Zm)
and the minimization problem in equation 3 can be rewritten
as:

6 = argmin |[HO — T'||*. (5)
]

III. TRADITIONAL ELM ENSEMBLING TECHNIQUE

As described above in Section II there is random initial-
ization of the weights of the input layer of an ELM. This
creates the issue of predictive stability for the algorithm as
some initializations will inherently perform worse than others.
Therefore in the practiced use of ELMs, a traditional ensemble
is utilized. This traditional ensemble is composed of numerous
ELMs which are each randomly initialized with different input
layer weights. The training of a traditional ELM ensemble has
two parts, which requires a split of the training set into two
subsets: training and validation.

First with the training subset, after using the feature-wise
means and standard deviations of the subset and normalizing
the data, we compute the weights of the output layer for each
ELM in the ensemble by the process described in Section
II. Once finished computing these output layer weights, we
complete the first part of the training step and move on to
validation. In the second step of training, we utilize each
individual model to make predictions on the second subset of
our training data, the validation set. Since the input weights
of an ELM are randomized, the models within the ensemble
will have varying levels of performance. By training on a
subset of the training data and predicting on the validation
set, we evaluate the models that perform best on the data and
give them more weight in the final decision. To execute this
second step, we first normalize the validation set using the
mean and standard deviation of the training set. Then each
model in the ensemble predicts on each sample and is assigned
a weight. The weight of each model within the traditional ELM
ensemble is equal to its accuracy of classifying correctly the
samples in the validation set.

After the models are trained and weighted, the traditional
ELM ensemble can make predictions on the testing set. Each
model classifies each sample, just as in the training set,
however when it comes to choosing a final classification for
the sample, the ensemble chooses the class that has the highest
“weight sum” as so:

class = argmax (s1,82,...,58;). (6)
Where, i equals the number of possible classes, and
81, S2,...,S; represent the weight sums of classes 1,2,. ...

The weight sum is calculated by summing the weights of all
the models that predicted a sample as a certain class.

This weighting strategy mitigates the issue of predictive
stability of an ELM caused by the model’s random initial-
ization. By utilizing numerous ELMs, in some cases several



hundred, then weighting each model based on its performance
predicting the validation set with favorably initialized ELMs
weighted more heavily, and finally using these weights to
make an ensembled final classification as described above, it
becomes possible to observe consistent and accurate results
despite the random initialization of the ELM models. Not only
that, but this weighting strategy has another advantage. Since
every ELM is weighted based on its accuracy at classifying the
validation set, we can assign a minimum threshold accuracy
for giving a model any weight at all. This, in turn, would give
ELMs that are poor at predicting a certain data set no say
in the ensembled classification while at the same time giving
relatively more say to the models whose weight is above the
threshold.

IV. FEATURE BAGGED-ELM ENSEMBLING TECHNIQUE

As stated, feature bagging [33] is a method in which sepa-
rate models are trained on subsets of the original features. The
training of each FB-ELM ensemble is nearly identical to that
of the traditional ELM ensembling technique in Section III,
which requires a split of our total training set into training and
validation sets. However there is an additional pre-processing
step before the training of the FB-ELMs. In this step the
training data, composed of n features, is split column-wise
into m “bags” each composed of n/m features (m must dived
evenly into n). A process to select the number of bags to be
used in an experiment, and which features belong to each bag,
is dependent on the shape and composition of the data set.
Each of these bags is composed of a unique set of features.
Then for each of the n/m bags, we create a traditional ELM
ensemble as described above in Section III. The ELMs in each
traditional ensemble are trained on a single bag of features,
instead of the entire feature set, rendering the models as FB-
ELMs. Once the training step is complete, there is a weight
assigned to each FB-ELM just as is done in the training of
ELMs in the traditional ELM ensemble.

Once each FB-ELM is trained, we can move onto testing
the ensemble. With each sample in the test set, every FB-
ELM makes a classification prediction. Then for each of
the ensembles, which again only used a single unique bag
of features for training, the weight sums are computed. As
utilized in Formula 6 and defined shortly after, the weight sum
is calculated by summing the weights of all the models that
predicted a sample as a certain class. The difference with a
FB-ELM ensemble and a traditional ELM ensemble is that
the former produces several sets of weight sums, one for
each feature bag, and the latter only produces a single set of
weight sums. Using Formula 6, an intermediate classification
of the sample is produced from every set of weight sums, and
the final classification is then the result of ensembling these
intermediate classifications by a majority rule selection:

class = mode(classy, classy, . .., class;). @)

Where, i equals the number of features bags, and
classg, classy, . .., class; represent the intermediate classifi-
cations, computed with Formula 6, for each bag.

V. EXPERIMENTAL DATA AND SETTINGS

The data set in this experiment was provided by SwineTech,
Inc, a company that specializes in improving animal welfare,
productivity, and sustainability within the modern pork indus-
try. SwineTech does this by producing SmartGuard®) devices,
which are systems of wearable devices and monitors that track
sow behaviour relative to its piglets and environment in order
to reduce piglet fatalities. The data collection and tracking of
sows is performed on 32-bit Microcontrollers, which utilize
ARME® Cortex(®R) cores and are manufactured by Silicon
Laboratories. The Microcontroller used in this experiment has
512Kb of internal Flash memory and 64Kb of RAM, and the
data specifically provided to us for analysis is composed of
accelerometer and gyroscopic readings of a sow both in motion
and stationary.

The data set is composed of over 34,000 readings of the
sow, each with 66 features, and across 28 distinct time series
[34]-[36]. Based on these readings we perform a two part
classification: first whether the sow is in motion or not, and
second, if the sow is not in motion, whether it is sitting
or standing. This classification prediction is done using the
Feature Bagged-ELM Ensembling Technique described in the
previous section.

Combining feature bagging with ELMs gives us the memory
usage reduction needed to run machine learning on embedded
systems. In order to leverage both feature bagging and all 66
features of our data set, we split our data set into 6 groups: the
first containing features one through eleven, the second with
features twelve through twenty-two, etc. Therefore there are a
total of 6 ensembles of FB-ELMs, that each utilize completely
different subsets of the feature space, and in total use the
entirety of the 66 features of each sample.

Each of the six ensembles of FB-ELMs contains 900
models, for a total of 5400 models. As described in Section
III, numerous models are utilized in order to overcome the
predictive instability of a single ELM. After weighting each
model based on its performance on the validation set, only
the top ten models from each of the six ensembles are chosen
to be used for predictions on the test set. Given the memory
constraints of the embedded system, reducing the total number
of models from 5400 to 60 through the weighting and selecting
step is clearly advantageous to achieving the overall goal
of space saving. By selecting the FB-ELMs with the best
performance on the validation set, the overall accuracy of the
ensemble is maintained.

In the test set, the classification decisions of the ten FB-
ELMs in each group are ensembled to classify the test sample
by the process described at the end of Section IV. The six
decisions from each feature group are then ensembled for
a final classification of the sample. A successful prediction
by our algorithm is characterized as when the majority of
the six FB-ELM ensembles classify a sample as in motion
or stationary, and if stationary, whether the sow is sitting or
standing, when that is the actual class.
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Fig. 2. Memory Usage

VI. MEMORY USAGE ANALYSIS

The two components of memory on an embedded system
are Flash and RAM. All the information required to utilize an
ensemble of ELMs can be stored in Flash, however to actually
do computations with said information it must be loaded into
RAM. For this reason, we illustrate the memory consumption
of a single model for RAM, as well as the consumption of the
entire ensemble for Flash.

The amount of memory required for a single trained ELM
to classify a sample is relative to the number of features in
the sample space (NF), the number of neurons in the input
layer (NN), and the number of possible classes that can be
predicted (NC).

Each step of classification with an ELM has its associated
memory requirement, and the total memory requirement is
the summation of these parts’ sizes: the test sample (1 by
NF), input weights (NF by NN), output weights (NN by NC),
intermediate result of projection of sample with input weights
(1 by NN), and final result of projection of intermediate result
with output weights (1 by NC). A simplified formula is as
follows:

(NN +1)(NC+ NF)+ NN. (8)

The resulting value of this formula should be multiplied by
32, the number of bits in a floating point number, in order
to produce the final memory requirement for an ELM as it is
represented in RAM.

In our experiment, the sample space is composed of 66
features, the number of neurons is 102, and the number of
possible classes is 2. Using the above memory requirement
formula, a single ELM requires 28.4Kb of data with these
specifications. In our feature bagged example, with each ELM
only utilizing 11 features each, the memory requirement is
reduced nearly 5-fold to 5.8Kb.

While only a single ELM needs to be loaded into RAM
at a time to make predictions, the entire ensemble must be
stored in Flash memory of the device. The two ensembles
for this experiment are composed of 60 models each. As
expected the FB-ELM ensemble requires far less memory than
the traditional ensemble: 348Kb and 1704Kb, respectively.
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VII. IMPACT ON ACCURACY

In order to evaluate accuracy we implemented a 10-Fold
Cross Validation (ie. training the models on 90% of the data
and testing on the remaining 10%, repeated 10 times for each
unique subset, and the final accuracy computed as the average
accuracy of every set [37]) of the 28 times series dataset.

Despite each ELM being provided with less data in order
to reduce their memory requirements, the ensemble of FB-
ELMs performed better than the traditional approach. When
we ran the 10-Fold Cross Validation to predict whether a
sample was in motion or stationary, the ensemble of ELMs
without feature bagging correctly classified each sample with
an average accuracy across validation sets of 85%, while the
feature bagging approach actually attained a better accuracy
of 96%, as shown in Figure 3. We have included graphs
of 3 of the 28 times series’ actual classes along side both
ensembles predictions in order to illustrate further the FB-
ELMs ensemble superior predicting ability.

We then repeated the experiment, but now using the 10-Fold
Cross Validation to predict whether a sample was sitting or
standing. Even though the ensemble of ELMs without feature
bagging sometimes performed better on a single series, it
only correctly classified each sample with an average accuracy
across validation sets of 89%, where the feature bagging
approach again attained a better overall accuracy of 90%,
as shown in Figure 4. We have included graphs of 3 of
the 28 times series’ actual classes along side both ensembles
predictions.



VIII. STATIONARY VERSUS IN MOTION SERIES’ EXAMPLES

The examples below are composed of data from the first three time series in the data set, classified as in motion or as
stationary. The top row of graphs are the actual classes of the subject, where a value of 0 means stationary and value of 1
means in motion. The second and third rows show the classifications of each sample by the standard ELM and the FB-ELM

ensembles, respectively.
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IX. STANDING VERSUS SITTING SERIES’ EXAMPLES

Similar to the previous page of examples, the examples below are composed of data from the first three time series in the
data set but now classified as sitting or as standing. The top row of graphs are the actual classes of the subject, where a value
of 0 means standing and value of 1 means sitting. The second and third rows show the classifications of each sample by the

standard ELM and the FB-ELM ensembles, respectively.
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X. CONCLUSION AND FUTURE WORK

The results of the experiment not only highlight the space
saving advantage of combining feature bagging with an ensem-
ble of ELMs, but also this method’s capability to improve the
accuracy of prediction. This strategy can reduce the overhead
of a machine learning algorithm by nearly 5-fold, and perhaps
more in other cases, making high-level data analysis available
on devices with severe memory constraints such as embedded
systems. Not only does this method account for severe memory
constraints, it does so without a loss of accuracy. For both the
sow transition and the sow sitting vs standing data sets in this
experiment, the accuracy increased by 11% and by 1% with
the feature bagged ELM ensemble over the accuracy of the
traditional ELM ensemble where each model is fed all the
data. In both data sets the accuracy improved with the FB-

Fig. 9. Series #2 Position Classes

Fig. 10. Series #3 Position Classes

ELM implementation.

Regarding future work, a clear area for development is
the automatic selection of features for each “bag.” In this
experiment, the number of feature subsets was six with each
set containing eleven features. If the number of subsets was
eleven with each containing six features, we may have yielded
different results. Thus a method for subset size selection would
be useful going forward. Another area for future work is to
test this methodology on more data sets. It is unclear whether
using feature bagging with an ensemble of ELMs will always
improve the accuracy of prediction, as it did in this experiment.
The focus of this paper was primarily on the space saving
properties of this methodology, so we did not experiment with
data from other domains. In order to evaluate the algorithm’s
impact on accuracy more research needs to be done.
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