
 

Double Attention for Pathology Image Diagnosis 
Network with Visual Interpretability 

Abstract—In recent years, cervical cancer has been one of the 
most common diseases in women's cancer.  The advanced 
diagnosis of cervical precancerous lesions is essential for 
preventing cervical cancer. Its effectiveness and efficiency can be 
greatly improved by computer aided diagnosis, while challenged 
by the imprecise conclusions and uninterpretable process of 
diagnosis. To solve this problem, we propose a novel deep 
learning-based interpretable diagnosis system for pathology 
images, consisting of three interrelated models: an image model, 
an attention model and a conclusion model.  

Computer aided diagnosis improves the effectiveness and 
efficiency of the proposed image model uses a convolutional neural 
network (CNN) to ex-tract semantic features. Combining the 
model with the semantic attribute attention model, it aims to 
capture the discriminant relationship between se-mantic 
attributes by predicting the conclusion label through long-term 
and short-term memory (LSTM). The network is trained in an 
end-to-end manner, with different weights for each model. 
Experimental results on cervical intraepithelial neoplasia images, 
diagnostic reports and label datasets show that the proposed 
method achieves a significant improvement over traditional 
methods with a better interpretability. 

Keywords—deep learning, visual interpretability, cervical 
precancerous lesions. 

I. INTRODUCTION  
Cervical cancer is one of the two most common malignant 

tumors in women, ac-counting for the majority in the female 
reproductive system. In recent years there has a resurgence, with 
the incidence of cervical cancer in developing countries being 
significantly higher than in developed countries. Every six 
minutes, on average, a woman dies of cervical cancer. China 
account, which accounts for nearly one sixth of the world’s 
population, has a disproportionately high rate of cervical cancer, 
accounting for about one fourth of the global total. The five 
years survival rate amongst patients receiving early treatment 
stands at nearly 100%, while the five year survival rate for those 
receiving treatment in advanced stages is between 20 and 50%. 
It is the only malignant tumor type with clear etiology, where 
high-risk groups may be identified through cervical cancer 
screening. The lesion may be identified and treated early, in the 

precancerous stage, thus preventing transition into malignant 
tumors.  

Screening results of cervical precancerous lesions are 
directly linked to the ability of trained pathologists. However, in 
China, trained pathologists number in the tens of thousands, 
which is far from adequate to allow diagnosis of such a large 
number of pathological sections. Moreover, in many cases, the 
workload and resulting stress on the pathologist may lead to 
misdiagnosis. Therefore, given these circumstances, it is very 
important to leverage technology, such as introducing 
convolutional neural net-works, to assist in automation of 
medical diagnostics. 

With rapid development of deep learning, in recent years, 
significant progress has been made in the area of computer-aided 
medical diagnosis (CAD). Traditional deep learning methods 
treat processes as standard classification problems [1]. However, 
it is less efficient and less effective in diagnosing many diseases, 
such as Kidney renal clear cell carcinoma (KIRC) [2]. The 
reason is that the classification model simplifies the actual 
diagnosis process and lacks discriminant information supporting 
the conclusion. Doctors, even professional pathologists, often 
find it difficult to understand how models interpret features and 
make diagnostic conclusions. Therefore, a description is needed 
in order to address this challenge and support the clinical 
decision-making process. 

In clinical practice, the process and output provided by a 
deep learning model is effective and important in the CAD 
process only after having been evaluated by a pathologist. 
Ideally, the model should capture the distinguishing features 
from the pathological image and generate written descriptions, 
as well as contextual and visual attention cues to assist the 
pathologist to reach their decision. For physicians, this method 
is more efficient and convenient than models which only 
produces conclusion labels. 

This has prompted us to further investigate the premise for a 
model which automatically captures latent and discriminative 
features, then generates a corresponding report and visual 
attention map. Three key challenges remain to be addressed: 
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• The structured report has to contain different semantic 
attribute descriptions to support the conclusion.  

• The output of the model must be clearly understood by 
medical professionals.  

• The model needs to generate the discriminative 
attention map of semantic at-tribute label.  

The above challenges are addressed through the 
implementation of an end-to-end network which consists of 
image, attention and conclusion models. The image model based 
upon CNNs extracts the discriminative features from the 
pathology image. A new method is proposed for the attention 
model, which generates the visible attention map and the 
structured report. The attention model is treated as a multi-label 
classification task so that the model generates full-structured 
context. In this approach, the conclusion model, combined with 
the attention model, possesses the ability to learn the contextual 
dependencies among the semantic attributes with the “memory” 
of LSTM for conclusion making.  

Moreover, the main contributions of our method are: 

• A new approach is proposed which can generate the 
structured report and support the conclusion of 
interpretable vision for pathology images. 

• Construction of the pathology cervical intraepithelial 
neoplasia images, diagnostic report and attribute labels 
(CINDRAL) dataset (explained later in Section 3) with 
Shanghai International Peace Maternity and Child 
Health Hospital (IPMCH). 

• Using two ways of attention method in our model. 

• Undertaking extensive experimentation and evaluations 
on the CINDRAL dataset, and demonstrate accuracy and 
effectiveness of the approach. 

The remainder of the paper is organized into several sections, 
beginning with a re-view of related work. This is followed by a 
description of the dataset, then by an explanation of the proposed 
model, which includes the extracted features and address-ing 
attention model’s functionality. Finally, detailed performance 
studies and analysis on CINDRAL datasets are disclosed. 

II. RELATED WORK 

A. Image and Conclusion Model 
Recent advances in the performance of medical diagnostics 

[3,5,7,14,30] have achieved rapid progress as a result of the 
development of CNNs[4] and the memory mechanisms of 
recurrent neural networks (RNNs). Traditional methods treat the 
CAD as a classification problem, in cases such as skin lesions[6], 
lung squamous cell carcinoma [1], and conclusion of 
pathological images [8]. 

However, these methods for CAD typically aimed at finding 
one particular type of disease, concealing correlations between 
semantic attributes. Some researchers have considered latent 
dependent information from the report and pathology images by 
LSTM [11] in order to overcome this issue. The construction of 
CNN-RNN based framework model to predict the conclusion 
label of chest X-rays, is a prime example [9]. This method 
implements CNN to extract the feature of a disease and RNN to 
describe the attributes of the disease. Another methods uses 

CNN to obtain visual and semantic features from chest X-rays 
while using hierarchical LSTM to get a more intuitive report and 
conclusion [10]. The work most closely related to medical report 
and diagnosis generation was recently contributed by Zhang[12]. 
This group proposed the CNN-LSTM model to describe the 
semantic attribute report, which generates the conclusion. 
However, some words (e.g. “along”, “the”, and “is”) present in 
their report (e.g. Polarity along the basement membrane is 
negligibly lost) contain no medically significant information 
supporting the conclusion. In this case, the most important word 
in the sentence is “negligibly,” which provides the 
discriminative features to help the LSTM draw the conclusion. 

Following the work of Wang et al.[13], this problem can be 
addressed by changing the conclusion problem into one of multi-
label classification which allows the conclusion model to obtain 
accurate semantic attribute description labels. Our methods can 
generate the attribute report including the conclusion, which 
possess more accurate performance than the previously 
mentioned methods. 

B. Attention Model 
There has been a significant amount of research focused on 

the attention mechanism which achieves textual and visual 
interpretability in traditional natural image datasets, such as 
ImageNet [4], and other related methods [23,30]. For the 
attention model, our work is similar to several previous works 
[15-19]. Xu et al.[18] proposed the sequence to sequence model 
and attention model in the image captioning task. Within the 
context of that work, the attention map was determined using the 
CNN features and the previously hidden states of LSTM. 
Pedersoli et al. [20] provided associations between the attention 
map and caption words. 

These above mentioned works have inspired further research 
in an effort to spur ongoing improvements to CAD, with several 
works focused on generation of reports for medical images. 
Additionally, these works focus on interpretable visual 
diagnosis [8,10,12,21,22], which can support the pathologist’s 
decision-making process.  

MDNET [12] introduced an attention model which focuses 
on the image region while every word is generated from the 
model. However, words such as, “like,” “the,” “a,” and “along,” 
amongst others, have no factual relationship to the attention map 
of the image. 

In an attempt to address the problem, our method aimed at 
the visual interpretation of semantic attributes (e.g. in 
CINDRAL dataset, there are four types), rather than focusing on 
single words from the report.  

III. DATESET 
The cervical intraepithelial neoplasia images, diagnostic 

report and labels (CINDRAL) dataset was collected in 
collaboration with the Shanghai International Peace Maternity 
and Child Health Hospital (IPMCH). Whole-slide images (WSI) 
of stained tissue sections, captured under twenty times 
magnification, were obtained from fifty patients at risk of 
cervical neoplasm. One thousand, 600x600 RGB images were 
randomly selected from the dataset. 
 



 

 
Fig. 1. One example in the CINDRAL dataset. It consists of a pathology 

image and a structured report (four semantic attributes, each with four state 
labels). No extra locations on images are needed in the dataset. (Color 

available online.) 

 
The pathologists provided a paragraph describing four 

semantic attribute features (Fig. 1). These attributes included, 
the state of condyloma, cell polarity, cell crowding, and nuclear 
pleomorphism, followed by a diagnostic conclusion. The 
attributes and the conclusion are both grouped into one of four 
labels; normal, high-grade, low-grade, and insufficient 
information. Contained within different reports, each 
description of semantic attributes has two or three very similar 
descriptions (i.e. “portions of the nuclei are clumped together” 
and “extremely crowded nuclei can be seen”). Thus there are 
five sentences, four attributes and one conclusion, per image. 

The dataset was pre-processed by cropping, rotating 
(90°,180° and 270°), and/or horizontal/vertical flipping for the 
purpose of data augmentation. We randomly selected 20% of the 
images as test data and the remaining 800 images were used for 
training and cross-validation. From the dataset, the four 
attributes and the conclusion are treated as five separate tasks for 
the structured report and LSTM, trained to support the 
conclusion model. 

IV. METHOD 
The method [25] (Fig. 2) uses a residual network (ResNet18) 

which is faster to train and achieves similar or better 
performance than most commonly used VGG16 [24] or AlexNet 
[31] models, on the training images. The network processes the 
image with convolutional layers to extract the feature map, 
denoted as F(I). Then the weighting is obtained from every 
attribute attention model and the conclusion model, comprised 
of an LSTM network, predicts the final result from the attention 
map. Finally, the scores from four attention maps are fused to 
achieve the final conclusion label distribution. 

A. Attention Model with Structured Report 
A minimum of one author is required for all conference 

articles. Author names should be listed starting from left to right 
and then moving down to the next line. This is the author 
sequence that will be used in future citations and by indexing 
services. Names should not be listed in columns nor group by 
affiliation. Please keep your affiliations as succinct as possible 
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Fig. 2.   The overall illustration of our model. A pathology image with its structured report and labels, presented as an example. Image model extracts the 
features, attention model demonstrates the attention map and the structured report, while conclusion semantic attributes, each with four state labels).  

 



(for example, do not differentiate among departments of the 
same organization). 

The attention mechanism, reported by Xu[18], is focused on 
learning the attention map for the whole image so that it can 
support the final prediction. However, in this work, we focus on 
the relationship between four semantic attributes to implicitly 
provide the discriminate information for LSTM to draw the 
conclusion. Therefore, we propose attention models which 
present the four semantic attributes of the CIN images. The 
attention model dynamically computes a weight map for every 
attribute, which presents the visual attention region 
corresponding to input image.  

For one attribute (Fig.2), we duplicate the feature 𝐹(𝐼) four-
fold, since every residual network in the attention model has the 
ability to learn the accurate features for each attribute with 
different parameters. The residual network extracts features, 
denoted as 𝐹%(𝐼)  with a dimension of 256 × (14 ∙ 14) , with 
k={1,2,3,4} representing the four attributes. After a global 
average pooling layer, a feature denoted as 𝑓%(𝐼)  with a 
dimension of 1 × 256, is obtained from 𝐹%(𝐼). 

Specifically, following [27], the weight map can be 
computed as follows: 

	𝑂% = softmax(𝑓%(𝐼)𝑇% + 𝑏)               (1)                                 

𝑇%; = 𝑆%𝑇%                            (2) 

𝑊% = (𝑇%;)>𝐹%(𝐼)                   (3) 

Where 𝑇% is a learned fully connection layer parameter with 
a dimension of 256 × 4 . 𝑆%, 𝑘 = {1,2,3,4}  is the one-hot 
representation of the k-th image attribute generated by 𝑂%. Then 
we may obtain one column of  𝑇%, denoted as 𝑇%;, 𝑖 = {1,2,3,4} 
with a dimension of 256 × 1, and containing the discriminate 
information of the k-th semantic attribute. Finally, the weight 
map, denoted as 𝑊%  with dimension 14 × 14 , which 
corresponds to the attribute’s attentional regions in the input 
image is generated by bilinear interpolation. 

The matrix 𝑊%  presents the visual interpretability to the 
pathologists, indicating which regions the attention model 
focuses on. The weight map 𝑊% and the feature map 𝐹%(𝐼) need 
to work in a cohesive manner so that the 256-dim feature 𝑓% can 
contain the accurate k-th attribute feature selected by weight 
map (Fig. 2). 

𝑓% = 𝑊%(𝐹%(𝐼))>                             (4) 
Two loss functions are employed in order to better train the 

model. Initially, we use the semantic attributes label for the 
feature 𝑓%(𝐼), and then apply the severity level label of each 
attribute for the feature 𝑓%. The motivation behind this is two-
fold. First, the feature generated by the ResNet can better extract 
the attribute information which is critical for next procedure. 
Second, a structured diagnostic report can be generated by the 
second loss function which can provide the information 
regarding the symptoms for every attribute. The two loss 
functions serve a supervisory role on the attention model, which 
can ensure the attention model training produces accurate 
semantic features for the next conclusion model. 

We use the channel attention block (CAB) in our model (Fig. 
3).  Within the attention block, the weight channel can be 

extracted by the feature map1, which represents the weight of 
each channel. And then, we multiply the weights on each 
channel. The block “chooses” the discriminative feature for the 
conclusion module. 

In the experiment, we compared the differences in the use of 
regional attention mechanisms and individual channel attention 
mechanism. Two different attention mechanisms can bring 
different enhancement effects to the model. The regional 
attention mechanism is more about telling us which area is more 
important. At the same time, the channel attention mechanism 
tells us more about which channels are the more important 
feature channels in the obtained features. 

B. Conclusion Model 
Feedback from the pathologists shows that symptom 

descriptions of semantic attributes as well as the latent 
relationship between attributes both support the conclusion. 
Considering relevance and dependence, we adopted the LSTM 
network to draw the conclusion. 

There are numerous previous works on the generation of 
diagnostic reports using image captions as the input for LSTM 
training[8,12,18,21,22]. However, diagnostic reports often 
contain words which present no medically significant 
information. These words provide less accurate features from 
which to draw the conclusion. The proposed method treats the 
discriminate attribute features as the input to LSTM, in order to 
directly consider the critical feature as part of the conclusion. 

Following [11], LSTM is defined by the following equations: 

																															𝑥% = 𝑟𝑒𝑙𝑢J𝑊(K)𝑓% + 𝑏KL, k ≠ 0										 (5) 

																									𝑖% = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	(𝑊(;)𝑥% + 𝑈(;)ℎ%WX + 𝑏;)  (6) 

																							𝑓% = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	(𝑊(Y)𝑥% + 𝑈(Y)ℎ%WX + 𝑏Z)  (7) 

																		𝑜% = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑J𝑊([)𝑥% + 𝑈([)ℎ%WX + 𝑏[L      (8) 

																				�̃�% = 𝑡𝑎𝑛ℎ	(𝑊(a)𝑥% + 𝑈(a)ℎ%WX + 𝑏a)         (9) 

																																								𝑐% = 𝑓% ∗ 𝑐%WX + 𝑖% ∗ �̃�%              (10) 

																																												ℎ% = 𝑜% ∗ 𝑡𝑎𝑛 ℎ(𝑐%)																	 (11) 

																																			𝑧% = 𝑟𝑒𝑙𝑢(𝑊(d)ℎ% + 𝑏d)                (12) 

                                    𝑠% = 𝑊(e)𝑧% + 𝑏e                     (12) 
 

Where the computation process represents k-th (𝑘 ≠ 0 ) 
LSTM network, and 𝑓%  in equation (5) is a 256-dim vector 
containing the attribute information to support conclusion; ℎ%WX 
and 𝑐%WX are the hidden states and memory cells of the previous 
LSTM; The k-th LSTM hidden state ℎ% is used to predict score 
distribution, denoted as 𝑠%, of the conclusion by equation (12) 
and (13). Note that we initialize the hidden state with the feature 
𝑓f extracted from an image, and the initial process for the LSTM 
network is set as: 

ℎf = 𝑓f                    (13) 

𝑧f = 𝑟𝑒𝑙𝑢(𝑊(d)ℎf + 𝑏d)        (14) 

																			𝑠f = 𝑊(e)𝑧f + 𝑏e               (15) 



We obtain the final predicted conclusion, denoted as 𝑠Z  , 
which is a normalized exponential function, by adding the 
distributions of the five predicting scores,	𝑠f, 𝑠X, 𝑠g, 𝑠h, 𝑠i	: 

𝑠Y = 𝑠f +	𝑠X + 𝑠g +	𝑠h +	𝑠i           (17)                                         

Headings, or heads, are organizational devices that guide the 
reader through your paper. There are two types: component 
heads and text heads. 

Component heads identify the different components of your 
paper and are not topically subordinate to each other. Examples 
include Acknowledgments and References and, for these, the 
correct style to use is “Heading 5”. Use “figure caption” for your 
Figure captions, and “table head” for your table title. Run-in 
heads, such as “Abstract”, will require you to apply a style (in 
this case, italic) in addition to the style provided by the drop 
down menu to differentiate the head from the text. 

C. Network Optimization 
The overall model has three sets of parameters: 𝜃k	 in the 

image model I, 𝜃l	in the attention model A, 𝜃m in the conclusion 
model C. The overall optimization problem in our method is 
expressed as: 

max
no，np，	nq	

ℒkJ𝑙a, 𝐼(𝐼; 𝜃t)L + ℒl(𝑙e, 𝐴[𝐼(𝐼; 𝜃t); 𝜃l])
+ℒm(𝑙a, 𝐶{𝐴[𝐼(𝐼; 𝜃t); 𝜃l]; 𝜃m})

								 (18) 

where (𝐼, 𝑙a, 𝑙e) is a training tuple: I is a pathology image,	𝑙a 
denotes the conclusion label, and 𝑙e is the semantic attribute 
label. Modules I, A and C are supervised by three negative log 
likelihood loss functions ℒk, ℒl	and ℒm. 

During the training stage, Adam and standard back-
propagation are employed to optimize the joined model. For 
end-to-end training, we treat the loss function as two stages with 
different weights and learning rates. Thus, the training loss is 
computed as: 

	ℒossk,l,m = λ(ℒossk + ℒossl) + (1 − 𝜆)ℒossm       (16) 

where ℒoss(𝐼, 𝐴, 𝐶) represents the combined loss function 
of the entire model. In the first 10 epochs, the parameter λ	(0 <
λ < 1) is larger so that the accurate feature can be extracted 
from input image. With the training process, λ  is becoming 
smaller to support better predicted conclusion. 

V. EXPERIMENTAL RESULTS 
In this section, we validate the proposed model on four 

aspects to demonstrate significant improvements compared with 
other methods. The experiments are implemented on the 
CINDRAL dataset as follows:  

• The Implementation details In Training stage. 

• Validation of the diagnosis conclusion accuracy (DCA) 
with the purpose of showing superior performance 
compared to that of other CNNs and image captioning 
methods. 

• Then we conduct experiments on the semantic attributes 
prediction accuracy (SAPA) with MDNET to prove our 

method possesses the ability to generate the same 
diagnostic report using different methods.  

• We use the method of MDNET method in CINDRAL 
dataset, which would show that the weakness of the 
method. 

• This is followed by conducting the experiment on the 
different sequences of semantic attributes with the 
purpose of validation.   

• We demonstrate that the attention map concurs with 
semantic attributes, and visually supports the conclusion. 

A. Implementation Details 
Our experiment is based upon the open source toolbox 

Pytorch,  and implements the pretrained model for encoding the 
backbone Resnet18, which makes convergence faster in the 
training process. With a batch size of 32, we used a single 
GTX1080 GPU, and cross entropy was used as the loss function. 
We follow prior work to use the learning rate scheduling lr =
baselr ∗ (1 − ;���

�[���_;���
)�[��� . The base learning rate for Adam 

is set to 0.0001 for our dataset. The momentum is set to 0.9 and 
weight decay is set to 0.0001. The network is trained for 100 
epochs, then we randomly shuffle the training samples, crop 
them to 500x500 pixels, and rotate them by between ten and 
fifteen degrees. During data augmentation, we apply 50% 
random probability to change brightness, contrast, and color 
channel. 

B. Diagnosis conclusion accuracy on CINDRAL 
In the computer-aided medical diagnosis process, the 

pathologist usually expects to get more accurate conclusions, 
therefore the DCA of evaluation metrics are critical aspects to 
consider. To validate the effectiveness of the proposed model, it 
was compared with results obtained by implementing AlexNet, 
VGG16, ResNet [28], DenseNet [26]. In this setting, the CNNs 
use the conclusion label. However, our model treats the semantic 
attributes and conclusion as the label in order to ensure that these 
attributes contribute significantly to improvements in decision-
making. Factors, such as a pre-trained model on ImageNet, were 
also taken into consideration. Moreover, a comparison with 
MDNET in DCA, was also conducted, as it is the method with 
which ours is most similar. 

TABLE 1. DIAGNOSIS CONCLUSION ACCURACY ON CINDRAL 

Method Image Classification 
Model AlexNet VGG16 Resnet18 Resnet34 

Pre-trained ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ 
DCA(%)±std 71.2

±2.0 
71.2
±2.5 

66.0
±4.3 

66.0
±5.8 

78.4
±2.5 

78.6
±1.5 

77.2
±4.0 

78.2±
3.5 

Method Image 
Classification Image captioning Our 

Model Densenst40 MDNET show and 
tell 

Our 
Method 

Pre-trained ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ 
DCA(%)±std 75.0

±2.4 
75.4
±1.9 

78.0
±2.3 

78.2
±2.2 

75.2
±4.5 

74.9
±3.6 

85.0
±1.3 

84.4±
1.1 

 
Pre-trained CNN model are not available in for this 

application in the medical im-age domain due to the fact that 
there is a huge difference in features between the natu-ral images 
from ImageNet and pathology images. With the increase of 
model depth, the CNN models achieve an accuracy which is at 



best 78% in CINDRAL, which is a similar accuracy as that of 
MDNET. 

Our method achieves a substantially higher accuracy rate of 
84% in CINDRAL. The results demonstrate that by treating the 
semantic attributes as labels, substantially improvements may be 
realize in performance. 

C. MDNET method result on CINDRAL  
MDNET [12] is a model of image captioning that generates 

final diagnostic conclusions and obtains the attention maps 
corresponding to each word, was chosen to establish a baseline 
for comparison. In order to train MDNET, we modified 
CINDRAL sentences in into a similar format. The result of 
MDNET is show in the Figure5. 

 

 
Fig. 5. MDNET attention result in CINDRAL dataset 

As we can see from the diagram, MDNET reports contain a 
large number of words that are not related to diagnostic semantic 
properties because of the form of natural language. For example, 
in “there is no obvious condyloma present throughout the tissue”, 
the words that have the most semantic information are “no 
obvious”, and the other words like “throughout”, “tissue”, and 
“is” have no useful information. These adverbial  phrases, such 
as “no obvious” are often only used to grammatically 
supplement other words in a sentence. However, these types of 
adverbial phrases often bear the most weight, with the remainder 
of the words making it more difficult for the model to learn its 
semantics and its corresponding attention region.   

D. Structured Diagnosis Report 
In clinical practice, not only natural language but also visual 

interpretation is necessary for pathologists to understand the 
specific symptoms of each semantic attribute. Therefore, this 
problem is addressed by generating structured diagnostic reports 
to help pathologists understand basic principles of the model’s 

TABLE 1. SAPA PERFORMANCE COMPARISON WITH MDNET 

  Condyloma Cell Polarity 
Model MDNET Our MDNET Our 

SAPA(%)
±std 72.4±1.6 72.8±1.0 76.0±1.6 75.2±2.3 

 Cell Crowding Pleomorphism 

Model MDNET Our MDNET Our 
SAPA(%)
±std 76.0±1.5 76.0±1.5 78.0±1.1 78.6±1.7 

 

conclusions. In the experiment, we compare the discriminant 
information in the structured report in different ways, the 
semantic attribute prediction accuracy (SAPA) and MDNET. 

Table 2 shows an average score of more than 5 times. It can 
be seen that in the four semantic attributes, the accuracy of the 
results is almost the same as MDNET. In our approach, we 
implement predictions by treating the problem as a multi-label 
classification problem, rather than using natural language 
reports in MDNET to treat the problem as image subtitles. In 
general, we have proposed a new method for generating 
diagnostic reports that exhibits the same performance as 
MDNET. 

E. Different Sequence of Semantic Attributes  
We conducted a comparative experiment with CNN-RNN 

[29] with the purpose to investigate the influence of different 
sequences on LSTM. CNN-RNN model also considers the latent 
relationship between the attribute labels in natural images. 
Hence in our work, we change the attribute sequence. As an 
example, we denote the previous sequence, which is type 
condyloma, polarity, crowd and pleomorphism, as ABCD. Then 
we compare the DCA after permutation of the order of the 
sequence, as BCAD, DBCA and CADB. 

TABLE 3. INFLUENCE OF SEMANTIC ATTRIBUTE INPUT SEQUENCE ON MODEL 

PERFORMANCE 

Model Sequence of 
attributes DCA(%)±std 

CNN-RNN 

Previous 
order(ABCD) 76.6±4.2 

Order 1（BCAD） 65.4±3.4 
Order 2 （DBCA） 70.2±3.8 
Order 3 （CADB） 70.0±3.1 

Our method 

Previous 
order(ABCD) 85.0±1.7 

Order 1（BCAD） 85.2±2.9 
Order 2 （DBCA） 84.4±1.3 
Order 3 （CADB） 84.8±1.2 

 
The results are shown in table 3. Our proposed method 

outperforms the baseline model by demonstrating significantly 
improved DCA with the different sequence.  

 
Fig.6. the t-SNE visualization of the features extracted by the Resnet18 

module for all test images in our CINDRAL dataset. 
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Fig.7. the t-SNE visualization of the features (𝑓X, 𝑓g, 𝑓h, 𝑓i) extracted by 

attention module 
 

In this experiment, we also tried to compare the t-SNE 
visualization results between the classification feature 𝑓f and the 
features 𝑓X, 𝑓g, 𝑓h, 𝑓i  which are extracted from our attention 
module. The first image (Figure 6) shows the t-SNE 
visualization of the features extracted by the Resnet18 module 
for all test images in our CINDRAL dataset. The second image 
(Figure 7) is the t-SNE visualization of the features (𝑓X, 𝑓g, 𝑓h,
𝑓i) extracted by attention module. All images in the test set, have 
different distributions of test sample features, based upon 
different attributes and diagnostic conclusions. Therefore in our 
method, we  map the final diagnostic conclusion space through 
the feature space under different attributes. Then we use LSTM 
to transform this mapping process into a form of sequence 
predictions, which can help us make better use of features to 
generate acceptable conclusions for clinicians. 

F. The attention model with visually interpretation  
In this experiment, we show the attention region for each 

semantic attribute (an example in Figure 8). The four attention 
models (as Figue.2) compute and show the attention map to 
interpret how the network supports the diagnostic conclusion. 
Rather than the attention region for a single word in , we 
generate four attention maps to support four semantic attributes. 
Our pathologist draws the region of interest (ROI) which 
significantly support the decision-making process. Thus we are 
able to observe the result which expresses strong 
correspondence between the pathologist annotations and our 
attention regions for four semantic attributes in the Figure 8. 
Note that there are no regional annotations in the training stage. 
Our work demonstrates the model has learned the critical 
information to support its conclusion. 

 
Fig. 8. The illustration of diagnosis report and four semantic attribute 

attention regions. Best viewed in color. 
 

VI. CONCLUSION  
This paper presents a new approach to interpreting pathology 

image date, through the generation of structured diagnostic 
reports with visual interpretation towards the attention map. 
Specifically, we have proved the efficacy of this method, which 
treats the four semantic feature as the input of LSTM, which then 
learns the accurate information to support the conclusion. 
Additionally, our pathologist also expresses appreciation for the 
utility of this work in the field of pathology image diagnosis. 
Experimental results on CINDRAL dataset demonstrate that our 
proposed deep model can significantly improve the performance 
in both accuracy and efficiency. 
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