

Developmental Learning of Value Functions in a
Motivational System for Cognitive Robotics

Alejandro Romero
GII, CITIC research center

University of A Coruña
A Coruña, Spain

alejandro.romero.montero@udc.es

Francisco Bellas
GII, CITIC research center

University of A Coruña
A Coruña, Spain

francisco.bellas@udc.es

Abraham Prieto
GII, CITIC research center

University of A Coruña
A Coruña, Spain
abprieto@udc.es

Richard J. Duro
GII, CITIC research center

University of A Coruña
A Coruña, Spain
richard@udc.es

Abstract— Motivation is quite an important topic when

addressing continual open-ended learning processes in
autonomous robots. The three main issues that need to be
considered are, firstly, how does a designer define what the robot
strives for in a manner that is independent from any particular
domain it may find itself in. Secondly, once that robot is in a
domain, how does it go about finding and relating goals in that
particular domain on its own. Finally, the third issue is, once a goal
is found, how does a robot establish a representation, usually in
the form of a Value Function, that will allow it to exploit that goal.
This paper deals with the third issue in the framework of the
motivational engine we have designed for cognitive architectures.
It addresses the problem of efficiently and appropriately learning
complex Value Functions starting from intrinsically motivated
traces of valuated robot actions that are often ambiguous and
multivalued. To this end, a developmental learning mechanism is
proposed that relies on the concurrent application of a real time
ANN learning procedure over the traces of the valuated robot
actions, and a simpler sensor correlation-based approach to allow
for the production of better configured data traces for the learning
process. The mechanism is analyzed and discussed over an
experiment considering a real Baxter robot.

Keywords—motivation, cognitive developmental robotics, open-
ended learning, value function learning

I. INTRODUCTION
Barto [1] described motivation as a series of “processes that

influence the arousal, strength and direction of behavior”. Any
autonomous robot that must operate in open-ended learning
settings [2], must be endowed with some type of motivational
mechanism that defines what it should strive for at any given
point in time [3]. This motivational mechanism is the one that
structures the evaluation required by any decision process the
robot cognitive architecture must perform, and it does so by
determining at each point in time the goals the robot must
achieve. Thus, when deciding among different alternatives, the
robot evaluates each one of them by estimating how useful they
may be for achieving its current goal, and chooses the one that
is most useful, that is, the one that provides the highest utility
with regards to that goal. It is through this evaluation process
that motivation is reflected in the actions the robot performs.

Looking at this more formally from a deliberative point of
view, if we have a robot in its current state StϵS (being S the
robot’s state space) at time t, it will always try to choose the best

action to perform, *At (where * denotes the optimum) by, first,
prospectively exploring the consequences of a number of
different possible actions {A1, A2, …. An} from its action
repertoire that could be applied at time t. These consequences
can be expressed in terms of the set of end-states achieved by
the actions, iSt+1 with iϵ[1,n] and, consequently, related to them.
Thus, by determining the utility of these end-states towards the
goal, the one with the highest utility, *St+1, can be chosen,
leading to the determination of the best action to be applied (i.e.
the one that led to the optimum prospective state). Of course,
performing prospection requires the availability of a World
Model (WM), and to determine the utility of states, a Utility
Model (UM) is necessary [4].

In the realm of reinforcement learning (RL) [5], the
functions used for determining utility are called Value Functions
(VF), and they have been studied extensively [6][7]. They
represent the expected utility of each point in state space with
regards to a goal. That is, the probability of achieving a utility
starting from that point. However, in most of the work in RL, it
is usually assumed that the robot will operate in a known
domain, where the robot designer is able to predefine the goal or
goals that need to be achieved in terms of points in the state
space of the robot in that domain it needs to reach (e.g. find red
balls). In other words, the designer is able to express what the
robot needs to do (its task) in terms of an operational goal
defined as the specific perceptions the robot needs to achieve in
that particular domain.

In open-ended learning settings, however, this is not
possible. That is, there is no way for the designer to define these
goals beforehand as, by definition of open-endedness, the
domains the robot will operate in are unknown at design time.
Consequently, in order to be able to produce meaningful
oriented behavior in the robots, different approaches in the
literature [8][9] and, in particular, the motivational engine we
have defined [4], have resorted to the definition of a
motivational structure based on drives. Drives can be seen as the
distance to internal goals of the robot that are completely
independent from the domain it is in. These goals are defined in
an internal (sometimes called motivational) state space, which is
not directly related to the operational state space (S) defined by
the combination of the robot and a particular domain. Drives are
established by the system designer, and the value of each drive
reflects how far the system is from satisfying a need the designer

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

has deemed important for the robot, independently of how this
need can be satisfied in any particular domain.

Consequently, in a motivational architecture for open-ended
operation, a designer defines the needs and associated drives of
the robot. When the robot finds itself in a new domain it needs
to find goals (state space points, St, that produce utility) in that
particular domain and learn how to exploit them in order to be
able to satisfy its drives. Unlike in traditional RL, the robot is
establishing its own goals in the domain and in the process of
finding ways to exploit them, it is learning new policies or skills.
It is important to note that the only control over a cognitive robot
a designer has is by creating the appropriate drives.

It is often the case that to be able to find a goal that actually
fulfills an operational drive it is necessary to first acquire some
basic policies or skills (e.g. to get an apple from a tree, we need
to learn to reach the tree and to climb the tree before being in a
position to learn that an apple satisfies our hunger). Thus, if the
designer wants the robot to explore and acquire those skills, it
needs to provide the robot with drives that will allow
establishing some type of indirect or virtual goal that permits
performing these learning processes. We classify these drives as
cognitive drives, that is, drives that are there to induce learning
and whose satisfaction is related to how much is explored as in
the case of novelty [10], to how much is learnt as in the case of
curiosity [11][12] or to how much effect is achieved over the
environment as in the case of effectance [13]. Cognitive drives
have often been assimilated to Intrinsic Motivations (IMs),
following the nomenclature established in the psychological and
educational literature [14], [15]. This term was defined by Ryan
and Deci [16] as “the doing of an activity for its inherent
satisfaction rather than for some separable consequence”.

Many authors have resorted to intrinsic or cognitive drives
to try to directly find goals or to pre-learn skills that can facilitate
finding goals [16]. In fact, in a previous paper [18], we have
described a developmental mechanism that allows for the
progressive construction of a complete drive-goal structure in
open-ended settings starting from a combination of cognitive
and operational drives.

However, if, once an operational goal is found, a robot is to
be able to consistently choose actions leading to that goal in a
deliberative manner, it is necessary for the robot to construct a
Value Function that is associated to it. This problem is a hard
problem due to the complexity of the domains the robot may
find itself in and to the fact that they are not known beforehand,
implying that these models need to be obtained on-line, but,
more importantly, due to the fact that the only information the
robot has are the traces of states it went through as it applied
actions in that domain until the goal was reached.

The most common approach to the construction of VFs when
in continuous domains that are not known beforehand is the use
of an eligibility traces based strategy [4]. The idea is to provide
an expected utility value to each step in a trace that was
successful in reaching a goal that decays from the goal with the
position of the step on the trace, and use the values obtained
from a large enough set of traces in order to define or learn the
final VF. Although popular, this approach presents many
problems when considering real, continuous and complex
domains due to the inconsistencies, ambiguities and multi-

valuations of points that may arise, which can lead to very poor
VF modelling results using these techniques.

A. Scientific contribution
In this paper, we face the problem of the construction

through learning of Artificial Neural Network (ANN) based
Value Functions in open-ended learning scenarios. In particular,
we address the issue of the very poor conformation of the
training sets obtained directly from cognitive drive induced
traces in complex domains. To this end, we propose a
developmental learning approach that can be applied in any
domain. This approach starts by creating very rough local Utility
Models based on the concept of Separable Utility Regions
(SURs) [19], which are used to conform well behaved traces,
without ambiguities, that can be used as training data in a
subsequent ANN based VF learning stage. We show that the
results produced through this combined approach improves on
the traditional ANN based VF learning procedures.

II. DESCRIPTION OF THE PROBLEM

A. General Value Function Learning
To learn Value Functions from traces using ANNs is a

typical approach in RL. It is the approach we have used in
previous works within the motivational system of the Epistemic
Multilevel Darwinist Brain cognitive architecture (e-MDB) [4],
as explained in detail in [19] and [20]. Specifically, our approach
was based on the use of cognitive drives to generate exploratory
behaviors in order to locate goals. Then, when a goal had been
found, we made use of the information on the trace of states
followed to reach the goal as an initial training set to train an
ANN as a VF for that goal. Obviously, this small data set of only
one trace will not produce a reliable VF and a balance between
following the VF in order to reach the goal and use the cognitive
drive to explore other paths towards the goal that can add new
training data in order to improve the VF had to be established.
Once a large enough set of traces with well evaluated states was
gathered, the training of the VF should be optimal. In what
follows we describe this process in more detail organized into 3
stages:

1) Initial steps
In the initial stages of learning, no goal state has been

reached, and as there are not VFs available for reaching goals
corresponding to operational drives, the motivational system
makes use of a cognitive drive (C-Drive), which guides the robot
behavior towards the discovery of unvisited sensorial states
operating as an explorative intrinsic process. One possibility is
to use the concept of novelty when choosing what states to spend
efforts on reaching out of a set of candidate states that are
prospectively generated. Novelty is specified as a distance
measurement between perceptual states that tries to steer the
robot towards areas of its state space that are most unknown. To
compute it, a trajectory buffer is created that stores all the
perceptual states the robot has experienced in the last M instants
of time. Formally, the novelty of the k-th candidate state Sc,k is:

𝑁𝑜𝑣! = 	
1
𝑀(𝑑𝑖𝑠𝑡(𝑆",! − 𝑆$)%

&

$'(

					𝑤𝑖𝑡ℎ	𝑘 = 1	𝑡𝑜	𝑁

where n is a coefficient that regulates the balance between the
relevance of distant and near states, Si is the i-th state in the
trajectory buffer and N is the number of candidate states
considered. High values of n guide the exploration towards
distant states while low values of n lead to a more local
exploration.

A novelty value is assigned to each of the N candidate states
proposed, and the one with a highest value will be chosen as the
desired state. As a consequence, the cognitive architecture will
apply the action or actions required to reach such state [20].

2) First goal achieved
Fig. 1 helps to illustrate this second stage. The first time a

robot reaches a goal using the C-Drive, it receives a real utility
value (top left image of Fig. 1). Following the eligibility traces
strategy of RL [5], a first trace of real data, made up of the series
of state space points the robot went through as it reached the
goal, can be stored in the Trace Buffer. This is represented on
the top right diagram of Fig. 1 with the points in the state space
denoted by pi (perceptions), and the assigned utility going from
1 at the goal point and decreasing to 0 along the trace, as usual
in this type of strategy. Using these data as training set, an on-
line VF learning process can start, as we will explain in detail in
section 3. It is clear that modeling a VF using a single trace will
provide a poor model, especially in complex scenarios.
Therefore, the robot will need to reach the goal from different
areas of state space in order to produce more traces that will
make the training set more complete. That is, as more traces are
obtained, the quality of the VF will increase.

3) Normal operation
Typically, in cognitive robotics, once the goal is reached, the

setup is restarted in some way and the goal must be found again.
This is a normal behavior of cognition-based systems, where the
goal must be achieved many times to establish its real relevance.
As a consequence, new data can be collected in order to improve
the reliability of the VF. In the first steps, there are only a small
number of traces in memory, so the reliability of the VF remains
low. Also, in regions that are far away from those where the goal
was found, the VF is not reliable either. Hence, a measurement
that indicates the validity of the VF in those points is required.

To this end, we have developed the concept of certainty
region, which represents the area in the state space where the VF
is reliable and can be used to evaluate a candidate state. In [19],
details on how the certainty regions are computed are provided,
although the background idea is to calculate an n-dimensional

area that encompasses the samples stored in the Trace Buffer.
Continuing with the example of Fig. 1, the bottom left diagram
shows a representation of a certainty region for this case, which
surrounds the trace points that are stored in the Trace Buffer of
the top right diagram, those where the VF is more reliable.

Consequently, during normal operation a candidate state will
be evaluated using a given VF if it falls within the VF’s certainty
region. By construction, increasing values of a VF lead towards
a goal. This implies that, whenever the robot finds its way into
the certainty region of an appropriately defined VF, its
deliberative mechanism will lead it up its slopes towards the
goal. When outside any certainty region, the motivational
mechanism will use a C-Drive, much in the same way as in the
initial steps, with the objective of finding goals, that is, utility
generating regions. Consequently, the appropriate modeling of
VFs and the definition of their certainty regions are of
paramount importance to be able to consistently achieve utility.

Obviously, as more traces are obtained, the reliability of the
VF and the size of its associated certainty region will increase,
thus making it more probable for a state to be encompassed by
it. Consequently, the use of novelty will decrease, leading to an
ideal situation where the relevant state space is covered by VFs,
and the robot is able to reach any goal without having to search,
just following the corresponding VFs.

B. Multivalued traces
It can be easily seen that this process has the problem of

using an initial exploratory method to reach the goal, which
could lead to a highly inefficient random search. To solve this
issue, many techniques in the field of intrinsic motivation
research have been proposed [1][3]. These try to find relevant
directions in the state space that provide clues towards reaching
the goal, being the novelty concept presented above one of them.
Although these methods avoid a random search in the state
space, some kind of exploration is required associated to any C-
Drive. Hence, whenever a C-Drive is activated during the
normal operation of the robot, non-optimal paths to the goal in
the state space may arise, and these will lead to ambiguities and
multi-valuations in the states stored in the traces.

This situation is illustrated in the bottom right representation
of Fig. 1. Let us imagine that the robot has followed the path p4,
p5, p6, …p10 to reach the goal. The resulting trace could be that
of the top right table, where some states like p7 will present a
utility value that is higher than p6, which would not be correct in
terms of distance to the goal. In addition, a different trace could
arise where the robot would go from p7 directly to p9. This would
entail that p7 would have two different expected utility values
depending on the trace. Thus, in any learning process involving
the traces of states as training set, learning will be severely
hindered as there are points that are multivalued. Obviously, the
optimal path would be moving from p4 to p8, but using C-Drives
will often produce these types of ambiguities.

Hence, in the first stages of learning, while the C-Drive is
applied, the states in the traces that are stored in the Trace Buffer
may be multivalued, and any machine learning approach will
have difficulties in modeling them. In previous research, we
have been successfully using Deep Learning techniques over
this Trace Buffer in relatively simple cases. But as the realism

Fig. 1. Schematic representation of the VF learning process.

and complexity of the problem increases, and the state space
dimensionality becomes higher, proper learning becomes less
accessible. To solve this issue and allow for the general learning
of VFs in open-ended settings, we have designed a
developmental learning methodology, which will be presented
in the following section.

III. DEVELOPMENTAL LEARNING OF VALUE
FUNCTIONS

The methodology proposed here, relies on a three-stage
procedure in order to produce well behaved training sets that
allow for robust ANN based Value Function learning. These
three stages are in fact run concurrently and it is through their
interactions that the desired result is achieved.

The first stage is the cognitive drive led exploration stage.
This stage is the same as in the classical VF learning approach
and is described in the previous section. It allows the robot to
find goals and provides the initial traces that make up the
training set. Here is where the approach diverges from the
classical one. As these data may be poorly configured and
present multi-valuations, and thus ambiguities, instead of
directly using these traces in order to train the ANN
corresponding to the global VF we will use them to produce a
simplified Utility Model based on the concept of Separable
Utility Regions (SUR) [19].

The idea behind a SUR is that the process of reaching a goal
can be described by chaining sequences of actions in state space,
each action chosen in order to increase or decrease a specific
sensor value (implying a sort of Manhattan like motion,
following one sensor each moment in time). In other words, the
objective is to provide paths towards goals through sequences of
direct correlations of utility value variations with the variation
of the values of individual sensors. For instance, when the goal
is to reach a light, the value of the light sensor is positively
correlated with expected utility. Consequently, on the one hand,
the multidimensional problem is divided into one-dimensional
portions that are a lot easier to model. On the other hand, SURs
do not represent expected utility values, but rather, an indication
of in what directions these values grow (whether there a positive
or a negative correlation). Obviously, this leads to a much
rougher representation of utility, especially in complex
situations. However, not having to produce exact expected
utility values makes them very resilient to problems related to
multi-valuation, randomness, ambiguities and to undetectable
changes in the scenarios.

It is evident that the key to this approach is to determine the
sensor tendencies as correlated to directions in state space that
produce utility variations each moment in time (see Algorithm
1), choose the strongest one (the active sensor tendency) and
define a certainty area for this correlation (for what area of state
space this sensor_value-utility_value_variation correlation is
valid). The main effort when learning a SUR comes from the
definition of the corresponding certainty area, this is, the domain
where the correlation is applicable. The computation of SURs
and their certainty areas is explained in detail in [19] as well as
how they work as utility or Value Function modelers by
themselves. The main conclusion that is derived is that SURs are
generally very easy to obtain even when the trace data is
multivalued and otherwise ambiguous. Nonetheless, they do not

represent a viable option in order to produce efficient and precise
VFs, especially in complex domains.

The objective of this paper is not to produce final VFs made
up of SURs, but rather, to make use of the resilience to poorly
configured traces that SURs have demonstrated. Thus, in this
stage of our procedure, the traces obtained from the exploration
stage are used to construct a rough SUR based model of utility
(VF). After this, whenever a state falls within a SUR certainty
area, the sequence of SURs leading to the goal are followed,
generating a new trace. The traces generated this way do not
contain multivalued states. This implies that now the Trace
Buffer contains well behaved samples that allow for feasible
ANN based VF learning.

Algorithm 1 Search for tendencies______________________
dec: decreasing tendency
i: current sensor
inc: increasing tendency
j: current trace episode
S: set of robot sensor values
T: trace
 1: function CORRELATION_EVALUATOR (T)
 2: for i ϵ S do
 3: inc is initially set to 1
 4: dec is initially set to 1
 5: for j ϵ T do
 6: if inc or dec then
 7: inc,dec←CheckCorrelationType(T, i, j)
 8: if inc then
 9: AddIncreasingTendencyTrace (T, i, j)
 10: else
 11: if dec then
 12: AddDecreasingTendencyTrace(T, i, j)

__

Consequently, the third stage of the approach proposed here
implies learning a final multidimensional ANN based Value
Function. This is mandatory if we aim to reach the goal in an
optimal way. SURs can lead to the goal in a Manhattan like
manner, one dimension at a time. However, for the sake of
efficiency, in cases where there exist multidimensional
dependencies between variables, or if we require a precise utility
prediction, a multidimensional model is required. To this end,
using the traces in the Trace Buffer as the training set, we have
trained on-line an ANN based VF in the form of a multilayer
perceptron by means of the Adam optimizer [21], which is an
on-line learning method based on stochastic gradient descent.
The batch size for the Adam algorithm can be adjusted, but the
best results were obtained with a variable batch size equal to the
trace length. Therefore, every time a new trace is obtained, a
batch is created and the ANN is trained for a predefined number
of epochs, as will be shown in section 4.

As commented at the beginning of the section, the three
stages (exploration, learning SURs and learning ANN based
VFs) are run concurrently. Exploration is active whenever a
state is not within the certainty region of a SUR or VF. SUR and
ANN learning take place whenever new traces leading to the
goal are registered in the Trace Buffer. However, in this
developmental approach the important point is that, in the initial
steps of learning, only the SURs are used to evaluate the

candidate states, so the traces that are obtained do not contain
ambiguities. These traces are used for training online the ANN
that represents the multidimensional VF. This VF will control
state evaluation when two criteria are met:

1) The goal is reached a predefined number of times Ga. This
criterion is established once the SURs are assumed to be
consistent, and consequently, the Trace Buffer contains
relevant traces to reach the goal.

2) The prediction error of the ANN based VF is lower than a
threshold eu. This criterion is established to verify that the
multidimensional space is learnable.

Once these two criteria are satisfied, the multidimensional
VF becomes active and from this moment onwards, the traces
are generated by it. That is, the Trace Buffer will start to contain
samples with possible variations in all the dimensions, and the
ANN based VF learning could degrade. To deal with this issue,
eu is continuously checked, and if it increases above a threshold,
the SURs take control again.

Finally, Fig. 2 shows a diagram summarizing the different
stages of the proposed methodology, as well as the criteria for
alternating between them.

IV. EXPERIMENTAL RESULTS
To illustrate the validity of the approach commented above

in the developmental learning of VFs, a real robotic experiment
has been designed, called “cleaning the playground”. The
experimental setup is displayed in Fig. 3, and it includes a Baxter
robot, a white table with a delimited red zone that simulates a
playground, two different types of objects (fruits and bricks) and
two boxes, one brown and the other one transparent. The final
objective is to collect the different objects and, according to their
type, place them in the corresponding box without any prior
knowledge. Consequently, in this setup, the two boxes make up
two goals that must be discovered.

This setup works over a state space generated by three
sensors: two provide the distance from the top corners of the
playground to the robot (dc1 and dc2), and the other one
provides the type of object the robot is grabbing (t). Thus, at each
iteration, the system will perceive a sensorial state: S(t) = (dc1,
dc2, t). As for the actions A(t), they control the movement of the
right arm of the Baxter robot, that is, the change in the direction
of movement of the Baxter effector at a constant height and at a

fixed speed. The position of the corners is detected in a
calibration stage before placing the boxes on the table, so it does
not have to be sensed unless the red zone is modified. This is
why the boxes can be placed on the top of these corners, as
displayed in Fig. 3.

The robot operation starts with an object in the gripper (as
shown in Fig. 3). When it is placed over any of the boxes, the
object is automatically dropped, and the robot receives a reward
(utility). This event triggers a reset of the scenario and the robot
arm will be placed in a location over the table again, carrying a
different type of object. As commented above, the state space in
this experiment presents two goals. One of them is achieved
when releasing the fruits in the brown box and the other is
related to releasing the bricks in the transparent box. No utility
is provided for any other point of the space.

A. Easy Cleaning
In a first setup (Fig. 3), the robot must learn to place the

objects in their boxes when the latter are located in the upper
corners of the playground area. Therefore, in this case, there is a
direct relationship between each of the goals and two of the
sensors of the robot (since the distance to the corners of the table
are known).

TABLE I. PARAMETERIZATION OF THE DEVELOPMENTAL LEARNING IN THE
EXPERIMENTS

ANN VF activation Value
Ga 500
eu 0.5

ANN Parameter Value
Input neurons 3
Output neurons 1
Hidden layers [10, 3]
Batch size Trace length
Training epochs 10

As explained in section 2, initially, the robot has no idea
where the goals are or how to reach them. Consequently, the
exploratory behavior of a C-Drive is activated, and novelty
guides the robot response, trying to find any goal. Once the first
goal is reached and thus the first trace is obtained, VF learning
starts, which implies the concurrent execution of the SURs
creation algorithm and the online ANN learning process using
the traces obtained by the SURs. The parameters used in this

Fig. 3. The cleaning playground setup.

Fig. 2. Flow diagram representing the different stages of the methodology.
G is the number of times the goal has been reached, whereas ep is the
prediction error of the ANN based VF.

learning process are displayed in Table 1, where the 3 input
neurons of the ANN are the values of the 3 sensors that make up
the state space, while the output is the expected utility.

Fig. 4 shows the results obtained for 10 independent runs of
this experiment using the proposed methodology. Each line
displays the accumulated reward (goal achievements) obtained
through the iterations for each of the executions of the
experiment. The moment when the VF replaces the SURs is
marked by an increase in the thickness of the line. In this case,
since the problem is relatively simple, there is almost no
improvement in the efficiency of the robot when solving the task
once the VF takes control. However, what is relevant is that the
VF learning did not degrade starting from traces created with the
SURs and then continuing with those produced by the VF.

To illustrate the problem of learning the VF from scratch,
Fig. 5 shows 10 executions of this simple setup in which the
SURs creation was disabled. That is, the system tries to learn the
VF directly from the traces it generates. As it can be observed in
the figure, the VF is never properly learnt due to the expected
ambiguities in the traces (it only reaches 250 rewards in 20000
iterations as compared to more than 800 in the previous case).

B. Complex cleaning
In this second setup (Fig. 8), the boxes are placed at

intermediate points in the playground area. This causes the
complexity of the problem to increase, since the robot does not
have a direct perception of their position. Therefore, it will have
to learn to triangulate the position from the corners of the
playground. The parameters used in the VF learning process are
the same as in the previous case (Table 1).

As in the previous case, Fig. 6 shows the time required for
the correct learning of the VF in 10 executions of the
experiment. In this case, it can be clearly seen how the slope of
the curves increases, reflecting how the number of rewards per
unit of time grows with iterations. This represents an increase in
the system’s efficiency as it improves its knowledge of the
scenario and the task to be solved. It can also be seen how the
efficiency of the system is higher when the VF takes the control
(the slope of the graph increases) in most of the cases, which
means that the developmental strategy is successful in this type
of complex setup, as expected.

Once at this point, to see in a clearer way that the VF
improves the efficiency of the robot when solving the task, an
analysis of the traces of the robot to reach the final objectives
using both approaches (SURs and VF), is carried out. To this
end, Fig. 7 shows a representation of 100 random starting points
(in which the robot starts by holding the object) ordered by
increasing distance from that point to the goal, and the number
of iterations necessary to reach the goal using SURs and VF. It
is easy to appreciate in the figure how the number of steps
(iterations) necessary to solve the problem with SURs is larger
than those required by the VF. This change in efficiency is
mainly due to the fact that the VF is able to generalize better
over the state space in multidimensional problems.

Finally, Fig. 8 contains a representation of the trajectory
followed by the real robot arm to reach the goal using SURs (top
image) and VF (bottom image), in a representative execution of
the experiment. As it can be observed by following the yellow
arrows, when using the SURs, the trajectory is not optimal and
the robot first moves the object towards the corner, and then
towards the corresponding box. This is the expected result,
because the robot is following only one-dimensional paths. In

Fig. 5. Performance analysis for the first setup without using SURs.

Fig. 6. Performance analysis for the second setup.

Fig. 4. Performance analysis for the first setup.

the bottom image, it can be clearly observed that now the
movement is optimal, as expected when a multidimensional
model in the form of a VF is considered.

With these simple results, the potential of the proposed
approach for the developmental learning of Value Functions
becomes evident. As shown, it allows us to take advantage of
the best of each of the utility modeling techniques (SURs and
VFs). Thus, depending on the complexity of the problem, the
use of the different elements will vary to allow the utility to be
modeled as efficiently as possible. Finally, the need to learn the
VF and not only solve the problem using SURs has been
justified, paying attention to the efficiency obtained in the
behavior of the robot.

V. CONCLUSIONS
This paper has addressed the issue of learning Value

Functions (VF) on-line in the context of a motivational
mechanism for open-ended learning robots. The main issue that
has been considered is the problem of ambiguities, due to the
necessary use of exploratory motivations, in the values of the
points in the traces obtained towards the goal and which are used
in order to train ANNs to represent the VFs.

We have analyzed the possibility of the concurrent
application of a simpler, albeit less efficient, SUR based
approximation to VF production. The rationale behind this is
that SURs are much faster to obtain once a goal is found, thus
reducing the reliance on exploratory motivations to construct the
VF. Using the SURs to reach the goal produces much better
configured trace sets with less ambiguities in order to obtain the
ANN based VFs. The experimental results show that this is
indeed the case. In examples where just using traditional VF
learning with exploratory motivations provide very poor results,
using the concurrent application of SURs and ANN based VF
training permits reaching very satisfactory models.

We are currently implementing these strategies in
experiments that make use of the whole e-MDB cognitive
architecture, including its memory elements to evaluate the
efficiency of the reuse of these VFs when facing new domains.

ACKNOWLEDGMENT
This work has been partially funded by the EU's H2020

research programme (grant No 640891 DREAM), Ministerio de
Ciencia, Innovación y Universidades of Spain/FEDER (grant
RTI2018-101114-B-I00), Xunta de Galicia and FEDER (grant
ED431C 2017/12), and by the Spanish Ministry of Education,
Culture and Sports for the FPU grant of Alejandro Romero.

REFERENCES
[1] A. G. Barto, “Intrinsic motivation and reinforcement learning,” in

Intrinsically Motivated Learning in Natural and Artificial Systems, 2013.
[2] S. Doncieux et al., “Open-ended learning: a conceptual framework based

on representational redescription,” Front. Neurorobot., 2018.
[3] G. Baldassarre and M. Mirolli, “Intrinsically motivated learning in natural

and artificial systems,” in Intrinsically Motivated Learning Systems: an
Overview, Springer Berlin Heidelberg, 2013, pp. 1–14.

[4] A. Romero, A. Prieto, F. Bellas, R. J. Duro, “Simplifying the creation and
management of utility models in continuous domains for cognitive
robotics”, Neurocomputing, Vol 353, pp. 106-118, 2019

[5] R. S. Sutton and A. G. Barto, “Introduction to Reinforcement Learning,”
Learning, vol. 4, no. 1996, pp. 1–5, 1998.

[6] X. Huang and J. Weng, “Value system development for a robot,” IEEE
Int. Conf. Neural Networks - Conf. Proc., vol. 4, pp. 2883–2888, 2004.

[7] K. E. Merrick, “A Comparative Study of Value Systems for Self-
Motivated Exploration and Learning by Robots,” IEEE Trans. Auton.
Ment. Dev., vol. 2, no. 2, pp. 1–15, 2010.

[8] J. A. Starzyk, “Motivated Learning for Computational Intelligence,”
Comput. Model. Simul. Intellect …, no. Ml, pp. 265–292, 2010.

[9] N. Hawes, “A survey of motivation frameworks for intelligent systems,”
Artif. Intell., vol. 175, no. 5–6, pp. 1020–1036, 2011.

[10] X. Huang and J. Weng, “Novelty and Reinforcement Learning in the
Value System of Developmental Robots,” Proc. Second Int. Work.
Epigenetic Robot., pp. 47–55, 2002.

[11] A. Baranes and P. Y. Oudeyer, “Active learning of inverse models with
intrinsically motivated goal exploration in robots,” Rob. Auton. Syst., vol.
61, no. 1, pp. 49–73, 2013.

Fig. 8. Comparison between real robot traces before and after learning the
VF. Top: Trajectory using SURs. Bottom: Trajectory using VF.

Fig. 7. Comparison of the time needed to solve the task using SURs
and using Value Function .

[12] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrel, and A. Efros,
“Large-scale study of curiosity-driven learning,” arXiv Prepr., no.
1808.04355, 2018.

[13] K. Seepanomwan, V. G. Santucci, and G. Baldassarre, “Intrinsically
Motivated Discovered Outcomes Boost User’s Goals Achievement in a
Humanoid Robot,” in Proc. 2017 ICDL-EpiRob, 2017, pp. 178–183.

[14] P. Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? A typology
of computational approaches,” Front. Neurorobot., vol. 1, p. 6, 2009.

[15] U. Nehmzow, Y. Gatsoulis, E. Kerr, J. Condell, N. Siddique, and T. M.
Mcginnity, Intrinsically Motivated Learning in Natural and Artificial
Systems. 2013.

[16] R. M. Ryan and E. L. Deci, “Intrinsic and Extrinsic Motivations: Classic
Definitions and New Directions,” vol. 67, pp. 54–67, 2000.

[17] G. Baldassarre and M. Mirolli, “Deciding which skill to learn when:
Temporal-difference competence-based intrinsic motivation (TD-CB-
IM),” Intrinsically Motiv. Learn. Nat. Artif. Syst., pp. 257–278, 2013.

[18] A. Romero, F. Bellas, J. A. Becerra, and R. J. Duro, “Bootstrapping
Autonomous Skill Learning in the MDB Cognitive Architecture,” Lect.
Notes Comput. Sci., vol. 11486, pp. 120–129, 2019.

[19] A. Prieto, A. Romero, F. Bellas, R. Salgado, and R. J. Duro, “Introducing
Separable Utility Regions in a Motivational Engine for Cognitive
Developmental Robotics,” Integr. Comput. Aided. Eng., vol. 26, no. 1,
pp.3-20, 2019

[20] R. Salgado, A. Prieto, F. Bellas, L. Calvo-Varela, and R. J. Duro,
“Motivational engine with autonomous sub-goal identification for the
Multilevel Darwinist Brain,” Biol. Inspired Cogn. Archit., vol. 17, 2016.

[21] Kingma, D. P. & Ba, J. (2014). Adam: A Method for Stochastic
Optimization, cite arxiv:1412.6980.

