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Abstract— Motivation is quite an important topic when 

addressing continual open-ended learning processes in 
autonomous robots. The three main issues that need to be 
considered are, firstly, how does a designer define what the robot 
strives for in a manner that is independent from any particular 
domain it may find itself in. Secondly, once that robot is in a 
domain, how does it go about finding and relating goals in that 
particular domain on its own. Finally, the third issue is, once a goal 
is found, how does a robot establish a representation, usually in 
the form of a Value Function, that will allow it to exploit that goal. 
This paper deals with the third issue in the framework of the 
motivational engine we have designed for cognitive architectures. 
It addresses the problem of efficiently and appropriately learning 
complex Value Functions starting from intrinsically motivated 
traces of valuated robot actions that are often ambiguous and 
multivalued. To this end, a developmental learning mechanism is 
proposed that relies on the concurrent application of a real time 
ANN learning procedure over the traces of the valuated robot 
actions, and a simpler sensor correlation-based approach to allow 
for the production of better configured data traces for the learning 
process. The mechanism is analyzed and discussed over an 
experiment considering a real Baxter robot. 

Keywords—motivation, cognitive developmental robotics, open-
ended learning, value function learning 

I. INTRODUCTION 
Barto [1] described motivation as a series of “processes that 

influence the arousal, strength and direction of behavior”. Any 
autonomous robot that must operate in open-ended learning 
settings [2], must be endowed with some type of motivational 
mechanism that defines what it should strive for at any given 
point in time [3]. This motivational mechanism is the one that 
structures the evaluation required by any decision process the 
robot cognitive architecture must perform, and it does so by 
determining at each point in time the goals the robot must 
achieve. Thus, when deciding among different alternatives, the 
robot evaluates each one of them by estimating how useful they 
may be for achieving its current goal, and chooses the one that 
is most useful, that is, the one that provides the highest utility 
with regards to that goal. It is through this evaluation process 
that motivation is reflected in the actions the robot performs. 

Looking at this more formally from a deliberative point of 
view, if we have a robot in its current state StϵS (being S the 
robot’s state space) at time t, it will always try to choose the best 

action to perform, *At (where * denotes the optimum) by, first, 
prospectively exploring the consequences of a number of 
different possible actions {A1, A2, …. An} from its action 
repertoire that could be applied at time t. These consequences 
can be expressed in terms of the set of end-states achieved by 
the actions, iSt+1 with iϵ[1,n] and, consequently, related to them. 
Thus, by determining the utility of these end-states towards the 
goal, the one with the highest utility, *St+1, can be chosen, 
leading to the determination of the best action to be applied (i.e. 
the one that led to the optimum prospective state). Of course, 
performing prospection requires the availability of a World 
Model (WM), and to determine the utility of states, a Utility 
Model (UM) is necessary [4].  

In the realm of reinforcement learning (RL) [5], the 
functions used for determining utility are called Value Functions 
(VF), and they have been studied extensively [6][7]. They 
represent the expected utility of each point in state space with 
regards to a goal. That is, the probability of achieving a utility 
starting from that point. However, in most of the work in RL, it 
is usually assumed that the robot will operate in a known 
domain, where the robot designer is able to predefine the goal or 
goals that need to be achieved in terms of points in the state 
space of the robot in that domain it needs to reach (e.g. find red 
balls). In other words, the designer is able to express what the 
robot needs to do (its task) in terms of an operational goal 
defined as the specific perceptions the robot needs to achieve in 
that particular domain. 

In open-ended learning settings, however, this is not 
possible. That is, there is no way for the designer to define these 
goals beforehand as, by definition of open-endedness, the 
domains the robot will operate in are unknown at design time. 
Consequently, in order to be able to produce meaningful 
oriented behavior in the robots, different approaches in the 
literature [8][9] and, in particular, the motivational engine we 
have defined [4], have resorted to the definition of a 
motivational structure based on drives. Drives can be seen as the 
distance to internal goals of the robot that are completely 
independent from the domain it is in. These goals are defined in 
an internal (sometimes called motivational) state space, which is 
not directly related to the operational state space (S) defined by 
the combination of the robot and a particular domain. Drives are 
established by the system designer, and the value of each drive 
reflects how far the system is from satisfying a need the designer 
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has deemed important for the robot, independently of how this 
need can be satisfied in any particular domain.  

Consequently, in a motivational architecture for open-ended 
operation, a designer defines the needs and associated drives of 
the robot. When the robot finds itself in a new domain it needs 
to find goals (state space points, St, that produce utility) in that 
particular domain and learn how to exploit them in order to be 
able to satisfy its drives. Unlike in traditional RL, the robot is 
establishing its own goals in the domain and in the process of 
finding ways to exploit them, it is learning new policies or skills. 
It is important to note that the only control over a cognitive robot 
a designer has is by creating the appropriate drives. 

It is often the case that to be able to find a goal that actually 
fulfills an operational drive it is necessary to first acquire some 
basic policies or skills (e.g. to get an apple from a tree, we need 
to learn to reach the tree and to climb the tree before being in a 
position to learn that an apple satisfies our hunger). Thus, if the 
designer wants the robot to explore and acquire those skills, it 
needs to provide the robot with drives that will allow 
establishing some type of indirect or virtual goal that permits 
performing these learning processes. We classify these drives as 
cognitive drives, that is, drives that are there to induce learning 
and whose satisfaction is related to how much is explored as in 
the case of novelty [10], to how much is learnt as in the case of 
curiosity [11][12] or to how much effect is achieved over the 
environment as in the case of effectance [13]. Cognitive drives 
have often been assimilated to Intrinsic Motivations (IMs), 
following the nomenclature established in the psychological and 
educational literature [14], [15]. This term was defined by Ryan 
and Deci [16] as “the doing of an activity for its inherent 
satisfaction rather than for some separable consequence”.  

Many authors have resorted to intrinsic or cognitive drives 
to try to directly find goals or to pre-learn skills that can facilitate 
finding goals [16]. In fact, in a previous paper [18], we have 
described a developmental mechanism that allows for the 
progressive construction of a complete drive-goal structure in 
open-ended settings starting from a combination of cognitive 
and operational drives.  

However, if, once an operational goal is found, a robot is to 
be able to consistently choose actions leading to that goal in a 
deliberative manner, it is necessary for the robot to construct a 
Value Function that is associated to it. This problem is a hard 
problem due to the complexity of the domains the robot may 
find itself in and to the fact that they are not known beforehand, 
implying that these models need to be obtained on-line, but, 
more importantly, due to the fact that the only information the 
robot has are the traces of states it went through as it applied 
actions in that domain until the goal was reached.   

The most common approach to the construction of VFs when 
in continuous domains that are not known beforehand is the use 
of an eligibility traces based strategy [4]. The idea is to provide 
an expected utility value to each step in a trace that was 
successful in reaching a goal that decays from the goal with the 
position of the step on the trace, and use the values obtained 
from a large enough set of traces in order to define or learn the 
final VF. Although popular, this approach presents many 
problems when considering real, continuous and complex 
domains due to the inconsistencies, ambiguities and multi-

valuations of points that may arise, which can lead to very poor 
VF modelling results using these techniques.  

A. Scientific contribution 
In this paper, we face the problem of the construction 

through learning of Artificial Neural Network (ANN) based 
Value Functions in open-ended learning scenarios. In particular, 
we address the issue of the very poor conformation of the 
training sets obtained directly from cognitive drive induced 
traces in complex domains. To this end, we propose a 
developmental learning approach that can be applied in any 
domain. This approach starts by creating very rough local Utility 
Models based on the concept of Separable Utility Regions 
(SURs) [19], which are used to conform well behaved traces, 
without ambiguities, that can be used as training data in a 
subsequent ANN based VF learning stage. We show that the 
results produced through this combined approach improves on 
the traditional ANN based VF learning procedures. 

II. DESCRIPTION OF THE PROBLEM 

A. General Value Function Learning 
To learn Value Functions from traces using ANNs is a 

typical approach in RL. It is the approach we have used in 
previous works within the motivational system of the Epistemic 
Multilevel Darwinist Brain cognitive architecture (e-MDB) [4], 
as explained in detail in [19] and [20]. Specifically, our approach 
was based on the use of cognitive drives to generate exploratory 
behaviors in order to locate goals. Then, when a goal had been 
found, we made use of the information on the trace of states 
followed to reach the goal as an initial training set to train an 
ANN as a VF for that goal. Obviously, this small data set of only 
one trace will not produce a reliable VF and a balance between 
following the VF in order to reach the goal and use the cognitive 
drive to explore other paths towards the goal that can add new 
training data in order to improve the VF had to be established. 
Once a large enough set of traces with well evaluated states was 
gathered, the training of the VF should be optimal. In what 
follows we describe this process in more detail organized into 3 
stages: 

1) Initial steps  
In the initial stages of learning, no goal state has been 

reached, and as there are not VFs available for reaching goals 
corresponding to operational drives, the motivational system 
makes use of a cognitive drive (C-Drive), which guides the robot 
behavior towards the discovery of unvisited sensorial states 
operating as an explorative intrinsic process. One possibility is 
to use the concept of novelty when choosing what states to spend 
efforts on reaching out of a set of candidate states that are 
prospectively generated. Novelty is specified as a distance 
measurement between perceptual states that tries to steer the 
robot towards areas of its state space that are most unknown. To 
compute it, a trajectory buffer is created that stores all the 
perceptual states the robot has experienced in the last M instants 
of time. Formally, the novelty of the k-th candidate state Sc,k is:  
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where n is a coefficient that regulates the balance between the 
relevance of distant and near states, Si is the i-th state in the 
trajectory buffer and N is the number of candidate states 
considered. High values of n guide the exploration towards 
distant states while low values of n lead to a more local 
exploration.  

A novelty value is assigned to each of the N candidate states 
proposed, and the one with a highest value will be chosen as the 
desired state. As a consequence, the cognitive architecture will 
apply the action or actions required to reach such state [20]. 

2) First goal achieved 
Fig. 1 helps to illustrate this second stage. The first time a 

robot reaches a goal using the C-Drive, it receives a real utility 
value (top left image of Fig. 1). Following the eligibility traces 
strategy of RL [5], a first trace of real data, made up of the series 
of state space points the robot went through as it reached the 
goal, can be stored in the Trace Buffer. This is represented on 
the top right diagram of Fig. 1 with the points in the state space 
denoted by pi (perceptions), and the assigned utility going from 
1 at the goal point and decreasing to 0 along the trace, as usual 
in this type of strategy. Using these data as training set, an on-
line VF learning process can start, as we will explain in detail in 
section 3. It is clear that modeling a VF using a single trace will 
provide a poor model, especially in complex scenarios. 
Therefore, the robot will need to reach the goal from different 
areas of state space in order to produce more traces that will 
make the training set more complete. That is, as more traces are 
obtained, the quality of the VF will increase. 

3) Normal operation 
Typically, in cognitive robotics, once the goal is reached, the 

setup is restarted in some way and the goal must be found again. 
This is a normal behavior of cognition-based systems, where the 
goal must be achieved many times to establish its real relevance. 
As a consequence, new data can be collected in order to improve 
the reliability of the VF. In the first steps, there are only a small 
number of traces in memory, so the reliability of the VF remains 
low. Also, in regions that are far away from those where the goal 
was found, the VF is not reliable either. Hence, a measurement 
that indicates the validity of the VF in those points is required. 

To this end, we have developed the concept of certainty 
region, which represents the area in the state space where the VF 
is reliable and can be used to evaluate a candidate state. In [19], 
details on how the certainty regions are computed are provided, 
although the background idea is to calculate an n-dimensional 

area that encompasses the samples stored in the Trace Buffer. 
Continuing with the example of Fig. 1, the bottom left diagram 
shows a representation of a certainty region for this case, which 
surrounds the trace points that are stored in the Trace Buffer of 
the top right diagram, those where the VF is more reliable.  

Consequently, during normal operation a candidate state will 
be evaluated using a given VF if it falls within the VF’s certainty 
region. By construction, increasing values of a VF lead towards 
a goal. This implies that, whenever the robot finds its way into 
the certainty region of an appropriately defined VF, its 
deliberative mechanism will lead it up its slopes towards the 
goal. When outside any certainty region, the motivational 
mechanism will use a C-Drive, much in the same way as in the 
initial steps, with the objective of finding goals, that is, utility 
generating regions. Consequently, the appropriate modeling of 
VFs and the definition of their certainty regions are of 
paramount importance to be able to consistently achieve utility.  

Obviously, as more traces are obtained, the reliability of the 
VF and the size of its associated certainty region will increase, 
thus making it more probable for a state to be encompassed by 
it. Consequently, the use of novelty will decrease, leading to an 
ideal situation where the relevant state space is covered by VFs, 
and the robot is able to reach any goal without having to search, 
just following the corresponding VFs. 

B. Multivalued traces 
It can be easily seen that this process has the problem of 

using an initial exploratory method to reach the goal, which 
could lead to a highly inefficient random search. To solve this 
issue, many techniques in the field of intrinsic motivation 
research have been proposed [1][3]. These try to find relevant 
directions in the state space that provide clues towards reaching 
the goal, being the novelty concept presented above one of them. 
Although these methods avoid a random search in the state 
space, some kind of exploration is required associated to any C-
Drive. Hence, whenever a C-Drive is activated during the 
normal operation of the robot, non-optimal paths to the goal in 
the state space may arise, and these will lead to ambiguities and 
multi-valuations in the states stored in the traces.  

This situation is illustrated in the bottom right representation 
of Fig. 1. Let us imagine that the robot has followed the path p4, 
p5, p6, …p10 to reach the goal. The resulting trace could be that 
of the top right table, where some states like p7 will present a 
utility value that is higher than p6, which would not be correct in 
terms of distance to the goal. In addition, a different trace could 
arise where the robot would go from p7 directly to p9. This would 
entail that p7 would have two different expected utility values 
depending on the trace. Thus, in any learning process involving 
the traces of states as training set, learning will be severely 
hindered as there are points that are multivalued. Obviously, the 
optimal path would be moving from p4 to p8, but using C-Drives 
will often produce these types of ambiguities.  

Hence, in the first stages of learning, while the C-Drive is 
applied, the states in the traces that are stored in the Trace Buffer 
may be multivalued, and any machine learning approach will 
have difficulties in modeling them. In previous research, we 
have been successfully using Deep Learning techniques over 
this Trace Buffer in relatively simple cases. But as the realism 

Fig. 1. Schematic representation of the VF learning process. 



and complexity of the problem increases, and the state space 
dimensionality becomes higher, proper learning becomes less 
accessible. To solve this issue and allow for the general learning 
of VFs in open-ended settings, we have designed a 
developmental learning methodology, which will be presented 
in the following section. 

III. DEVELOPMENTAL LEARNING OF VALUE 
FUNCTIONS 

The methodology proposed here, relies on a three-stage 
procedure in order to produce well behaved training sets that 
allow for robust ANN based Value Function learning. These 
three stages are in fact run concurrently and it is through their 
interactions that the desired result is achieved.  

The first stage is the cognitive drive led exploration stage. 
This stage is the same as in the classical VF learning approach 
and is described in the previous section. It allows the robot to 
find goals and provides the initial traces that make up the 
training set. Here is where the approach diverges from the 
classical one. As these data may be poorly configured and 
present multi-valuations, and thus ambiguities, instead of 
directly using these traces in order to train the ANN 
corresponding to the global VF we will use them to produce a 
simplified Utility Model based on the concept of Separable 
Utility Regions (SUR) [19].  

The idea behind a SUR is that the process of reaching a goal 
can be described by chaining sequences of actions in state space, 
each action chosen in order to increase or decrease a specific 
sensor value (implying a sort of Manhattan like motion, 
following one sensor each moment in time). In other words, the 
objective is to provide paths towards goals through sequences of 
direct correlations of utility value variations with the variation 
of the values of individual sensors. For instance, when the goal 
is to reach a light, the value of the light sensor is positively 
correlated with expected utility. Consequently, on the one hand, 
the multidimensional problem is divided into one-dimensional 
portions that are a lot easier to model. On the other hand, SURs 
do not represent expected utility values, but rather, an indication 
of in what directions these values grow (whether there a positive 
or a negative correlation). Obviously, this leads to a much 
rougher representation of utility, especially in complex 
situations. However, not having to produce exact expected 
utility values makes them very resilient to problems related to 
multi-valuation, randomness, ambiguities and to undetectable 
changes in the scenarios.  

It is evident that the key to this approach is to determine the 
sensor tendencies as correlated to directions in state space that 
produce utility variations each moment in time (see Algorithm 
1), choose the strongest one (the active sensor tendency) and 
define a certainty area for this correlation (for what area of state 
space this sensor_value-utility_value_variation correlation is 
valid). The main effort when learning a SUR comes from the 
definition of the corresponding certainty area, this is, the domain 
where the correlation is applicable. The computation of SURs 
and their certainty areas is explained in detail in [19] as well as 
how they work as utility or Value Function modelers by 
themselves. The main conclusion that is derived is that SURs are 
generally very easy to obtain even when the trace data is 
multivalued and otherwise ambiguous. Nonetheless, they do not 

represent a viable option in order to produce efficient and precise 
VFs, especially in complex domains. 

The objective of this paper is not to produce final VFs made 
up of SURs, but rather, to make use of the resilience to poorly 
configured traces that SURs have demonstrated. Thus, in this 
stage of our procedure, the traces obtained from the exploration 
stage are used to construct a rough SUR based model of utility 
(VF). After this, whenever a state falls within a SUR certainty 
area, the sequence of SURs leading to the goal are followed, 
generating a new trace. The traces generated this way do not 
contain multivalued states. This implies that now the Trace 
Buffer contains well behaved samples that allow for feasible 
ANN based VF learning. 

_______________________________________ 
Algorithm 1 Search for tendencies______________________ 
dec: decreasing tendency 
i: current sensor 
inc: increasing tendency 
j: current trace episode 
S: set of robot sensor values 
T: trace 
  1: function CORRELATION_EVALUATOR (T) 
  2: for i ϵ S do 
  3:  inc is initially set to 1 
  4:  dec is initially set to 1 
  5:  for j ϵ T do 
  6:   if inc or dec then 
  7:    inc,dec←CheckCorrelationType(T, i, j) 
  8:  if inc then 
  9:   AddIncreasingTendencyTrace (T, i, j) 
  10: else 
  11:  if dec then 
  12:   AddDecreasingTendencyTrace(T, i, j) 

________________________________________ 
 

Consequently, the third stage of the approach proposed here 
implies learning a final multidimensional ANN based Value 
Function. This is mandatory if we aim to reach the goal in an 
optimal way. SURs can lead to the goal in a Manhattan like 
manner, one dimension at a time. However, for the sake of 
efficiency, in cases where there exist multidimensional 
dependencies between variables, or if we require a precise utility 
prediction, a multidimensional model is required. To this end, 
using the traces in the Trace Buffer as the training set, we have 
trained on-line an ANN based VF in the form of a multilayer 
perceptron by means of the Adam optimizer [21], which is an 
on-line learning method based on stochastic gradient descent. 
The batch size for the Adam algorithm can be adjusted, but the 
best results were obtained with a variable batch size equal to the 
trace length. Therefore, every time a new trace is obtained, a 
batch is created and the ANN is trained for a predefined number 
of epochs, as will be shown in section 4.  

As commented at the beginning of the section, the three 
stages (exploration, learning SURs and learning ANN based 
VFs) are run concurrently. Exploration is active whenever a 
state is not within the certainty region of a SUR or VF. SUR and 
ANN learning take place whenever new traces leading to the 
goal are registered in the Trace Buffer. However, in this 
developmental approach the important point is that, in the initial 
steps of learning, only the SURs are used to evaluate the 



candidate states, so the traces that are obtained do not contain 
ambiguities. These traces are used for training online the ANN 
that represents the multidimensional VF. This VF will control 
state evaluation when two criteria are met:  

1) The goal is reached a predefined number of times Ga. This 
criterion is established once the SURs are assumed to be 
consistent, and consequently, the Trace Buffer contains 
relevant traces to reach the goal. 

2) The prediction error of the ANN based VF is lower than a 
threshold eu. This criterion is established to verify that the 
multidimensional space is learnable. 

Once these two criteria are satisfied, the multidimensional 
VF becomes active and from this moment onwards, the traces 
are generated by it. That is, the Trace Buffer will start to contain 
samples with possible variations in all the dimensions, and the 
ANN based VF learning could degrade. To deal with this issue, 
eu is continuously checked, and if it increases above a threshold, 
the SURs take control again.  

Finally, Fig. 2 shows a diagram summarizing the different 
stages of the proposed methodology, as well as the criteria for 
alternating between them. 

 

IV. EXPERIMENTAL RESULTS 
To illustrate the validity of the approach commented above 

in the developmental learning of VFs, a real robotic experiment 
has been designed, called “cleaning the playground”. The 
experimental setup is displayed in Fig. 3, and it includes a Baxter 
robot, a white table with a delimited red zone that simulates a 
playground, two different types of objects (fruits and bricks) and 
two boxes, one brown and the other one transparent. The final 
objective is to collect the different objects and, according to their 
type, place them in the corresponding box without any prior 
knowledge. Consequently, in this setup, the two boxes make up 
two goals that must be discovered. 

This setup works over a state space generated by three 
sensors: two provide the distance from the top corners of the 
playground to the robot (dc1 and dc2), and the other one 
provides the type of object the robot is grabbing (t). Thus, at each 
iteration, the system will perceive a sensorial state: S(t) = (dc1, 
dc2, t). As for the actions A(t), they control the movement of the 
right arm of the Baxter robot, that is, the change in the direction 
of movement of the Baxter effector at a constant height and at a 

fixed speed. The position of the corners is detected in a 
calibration stage before placing the boxes on the table, so it does 
not have to be sensed unless the red zone is modified. This is 
why the boxes can be placed on the top of these corners, as 
displayed in Fig. 3. 

The robot operation starts with an object in the gripper (as 
shown in Fig. 3). When it is placed over any of the boxes, the 
object is automatically dropped, and the robot receives a reward 
(utility). This event triggers a reset of the scenario and the robot 
arm will be placed in a location over the table again, carrying a 
different type of object. As commented above, the state space in 
this experiment presents two goals. One of them is achieved 
when releasing the fruits in the brown box and the other is 
related to releasing the bricks in the transparent box. No utility 
is provided for any other point of the space. 

A. Easy Cleaning 
In a first setup (Fig. 3), the robot must learn to place the 

objects in their boxes when the latter are located in the upper 
corners of the playground area. Therefore, in this case, there is a 
direct relationship between each of the goals and two of the 
sensors of the robot (since the distance to the corners of the table 
are known). 

TABLE I.  PARAMETERIZATION OF THE DEVELOPMENTAL LEARNING IN THE 
EXPERIMENTS 

ANN VF activation Value 
Ga 500 
eu 0.5 

ANN Parameter Value 
Input neurons 3 
Output neurons 1 
Hidden layers [10, 3] 
Batch size Trace length 
Training epochs 10 

 

As explained in section 2, initially, the robot has no idea 
where the goals are or how to reach them. Consequently, the 
exploratory behavior of a C-Drive is activated, and novelty 
guides the robot response, trying to find any goal. Once the first 
goal is reached and thus the first trace is obtained, VF learning 
starts, which implies the concurrent execution of the SURs 
creation algorithm and the online ANN learning process using 
the traces obtained by the SURs. The parameters used in this 

Fig. 3. The cleaning playground setup. 

Fig. 2. Flow diagram representing the different stages of the methodology. 
G is the number of times the goal has been reached, whereas ep is the 
prediction error of the ANN based VF. 



learning process are displayed in Table 1, where the 3 input 
neurons of the ANN are the values of the 3 sensors that make up 
the state space, while the output is the expected utility. 

Fig. 4 shows the results obtained for 10 independent runs of 
this experiment using the proposed methodology. Each line 
displays the accumulated reward (goal achievements) obtained 
through the iterations for each of the executions of the 
experiment. The moment when the VF replaces the SURs is 
marked by an increase in the thickness of the line. In this case, 
since the problem is relatively simple, there is almost no 
improvement in the efficiency of the robot when solving the task 
once the VF takes control. However, what is relevant is that the 
VF learning did not degrade starting from traces created with the 
SURs and then continuing with those produced by the VF. 

To illustrate the problem of learning the VF from scratch, 
Fig. 5 shows 10 executions of this simple setup in which the 
SURs creation was disabled. That is, the system tries to learn the 
VF directly from the traces it generates. As it can be observed in 
the figure, the VF is never properly learnt due to the expected 
ambiguities in the traces (it only reaches 250 rewards in 20000 
iterations as compared to more than 800 in the previous case).  

B. Complex cleaning 
In this second setup (Fig. 8), the boxes are placed at 

intermediate points in the playground area. This causes the 
complexity of the problem to increase, since the robot does not 
have a direct perception of their position. Therefore, it will have 
to learn to triangulate the position from the corners of the 
playground. The parameters used in the VF learning process are 
the same as in the previous case (Table 1). 

As in the previous case, Fig. 6 shows the time required for 
the correct learning of the VF in 10 executions of the 
experiment. In this case, it can be clearly seen how the slope of 
the curves increases, reflecting how the number of rewards per 
unit of time grows with iterations. This represents an increase in 
the system’s efficiency as it improves its knowledge of the 
scenario and the task to be solved. It can also be seen how the 
efficiency of the system is higher when the VF takes the control 
(the slope of the graph increases) in most of the cases, which 
means that the developmental strategy is successful in this type 
of complex setup, as expected. 

Once at this point, to see in a clearer way that the VF 
improves the efficiency of the robot when solving the task, an 
analysis of the traces of the robot to reach the final objectives 
using both approaches (SURs and VF), is carried out. To this 
end, Fig. 7 shows a representation of 100 random starting points 
(in which the robot starts by holding the object) ordered by 
increasing distance from that point to the goal, and the number 
of iterations necessary to reach the goal using SURs and VF. It 
is easy to appreciate in the figure how the number of steps 
(iterations) necessary to solve the problem with SURs is larger 
than those required by the VF. This change in efficiency is 
mainly due to the fact that the VF is able to generalize better 
over the state space in multidimensional problems.  

Finally, Fig. 8 contains a representation of the trajectory 
followed by the real robot arm to reach the goal using SURs (top 
image) and VF (bottom image), in a representative execution of 
the experiment. As it can be observed by following the yellow 
arrows, when using the SURs, the trajectory is not optimal and 
the robot first moves the object towards the corner, and then 
towards the corresponding box. This is the expected result, 
because the robot is following only one-dimensional paths. In 

Fig. 5. Performance analysis for the first setup without using SURs. 

Fig. 6. Performance analysis for the second setup. 

Fig. 4. Performance analysis for the first setup. 



the bottom image, it can be clearly observed that now the 
movement is optimal, as expected when a multidimensional 
model in the form of a VF is considered.  

With these simple results, the potential of the proposed 
approach for the developmental learning of Value Functions 
becomes evident. As shown, it allows us to take advantage of 
the best of each of the utility modeling techniques (SURs and 
VFs). Thus, depending on the complexity of the problem, the 
use of the different elements will vary to allow the utility to be 
modeled as efficiently as possible. Finally, the need to learn the 
VF and not only solve the problem using SURs has been 
justified, paying attention to the efficiency obtained in the 
behavior of the robot. 

V. CONCLUSIONS 
This paper has addressed the issue of learning Value 

Functions (VF) on-line in the context of a motivational 
mechanism for open-ended learning robots. The main issue that 
has been considered is the problem of ambiguities, due to the 
necessary use of exploratory motivations, in the values of the 
points in the traces obtained towards the goal and which are used 
in order to train ANNs to represent the VFs.  

We have analyzed the possibility of the concurrent 
application of a simpler, albeit less efficient, SUR based 
approximation to VF production. The rationale behind this is 
that SURs are much faster to obtain once a goal is found, thus 
reducing the reliance on exploratory motivations to construct the 
VF. Using the SURs to reach the goal produces much better 
configured trace sets with less ambiguities in order to obtain the 
ANN based VFs. The experimental results show that this is 
indeed the case. In examples where just using traditional VF 
learning with exploratory motivations provide very poor results, 
using the concurrent application of SURs and ANN based VF 
training permits reaching very satisfactory models.  

We are currently implementing these strategies in 
experiments that make use of the whole e-MDB cognitive 
architecture, including its memory elements to evaluate the 
efficiency of the reuse of these VFs when facing new domains. 
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