
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Attitudinal Choquet Integral-Based Stochastic 
Multicriteria Acceptability Analysis 

 

Xiaomei Mi  
Business School 

Sichuan University  
Chengdu, 610064, China 

mixiaomei2017@163.com 

Huchang Liao  
Business School 

Sichuan University  
Chengdu, 610064, China 
liaohuchang @163.com 

Xiao-Jun Zeng 
Department of Computer Science 

The Univerisity of Manchester 
Manchester M13 9PL, UK 
x.zeng@manchester.ac.uk

Abstract—Preference learning is a subfield of machine 
learning. In the preference learning-fused decision analysis, the 
utility values of alternatives are inducted from human decision 
behavior. The commonly used utility model is the weighted 
summation. The model assumes the independency between 
criteria and the same attitude towards each performance value of 
alternatives, which is often unrealistic in practice. To solve this 
problem, this study presents an ACI-SMAA (Attitudinal Choquet 
Integral-based Stochastic Multicriteria Acceptability Analysis) 
model to consider the criteria interaction and attitudinal 
parameter of human decision behavior in decision analysis. The 
ACI-SMAA model is helpful to learn human preferences and 
analyze latent correlations. An application example about 
household energy selection is used to show the applicability and 
validity of the proposed model.  

Keywords—Preference learning, Attitudinal Choquet integral, 
Human decision behavior, Criteria interaction, Stochastic 
multicriteria acceptability analysis (SMAA). 

I. INTRODUCTION 

In a decision process with human behavior [1], multi-
dimensional information on several criteria is fused in a 
decision-maker (DM)’s preference. Since it is difficult for DMs 
to evaluate each alternative on each criterion especially when the 
number of alternatives or criteria is large, the preferences given 
by DMs are usually treated as a whole in the way of weighted 
summation without considering the criteria interaction. In some 
situations, the utility values deduced by summing the weights of 
criteria and performances of alternatives on these criteria may 
produce the paradox with the DM’s preference (see Example 1 
in Section II for details). To avoid such paradoxes, the Choquet 
integral [2] was used as an alternative of the utility model with 
criteria interaction. If no interaction exists, the Choquet integral 
is equivalent to the common weighted summation utility model.  

Additionally, a DM may own diverse tolerance degrees on 
alternatives, which can be identified by the “andness” and 
“orness” measures [3]. In this regard, the attitudinal Choquet 
integral (ACI) was presented to include the weights of criteria 
and the attitudes of the DM simultaneously [4]. The ACI is a 
generalization of the traditional Choquet integral with different 
attitudes and thus is flexible in decision analysis. 

In the preference learning process with the ACI model 

involving a DM’s given preferences, k
nn C  parameters of the 

k -additive interaction and one attitudinal value need to be 
determined where n  is the number of criteria. The k -additive 
interaction means the synergetic or antagonistic effect in the 
criteria subset whose criteria number is not greater than k  [5]. 
For the simplest condition of the criteria interaction, i.e., 2k  , 

there are  1 2 1n n    parameters to be determined, which 

requires much cognitive effort from the DM to evolve in the 
decision analysis process. This is a challenging research issue. 
To reduce the cognitive burden of DMs, the stochastic 
multicriteria acceptability analysis (SMAA) [6] was proposed to 
implement sampling in the feasible solution space without much 
specific input information. This motivates us to integrate the 
ACI model with the SMAA model, named the ACI-SMAA 
model for short to learn the preferences of DMs. An example 
about household energy selection is provided to validate the 
model. 

II. ATTITUDINAL CHOQUET INTEGRAL 

This section introduces the main features of criteria 
interactions modelled by the ACI [4]. An example about the 
mobile phone selection starts this section.  

Example 1. A DM evaluates three alternative mobile phones 
based on the performance information on two criteria with a 
scale [0,10]. The values are listed in Table I. The DM thinks that 
Meizu is priori to Meitu, whereas there is no difference between 
Meitu and Gree. That is to say, the DM ranks these three 
alternatives with the preference order 3 1 2A A A  .              

TABLE I.  PERFORMANCES OF THREE MOBILE PHONES 

Alternatives 
Criteria 

Technical feature 1c   Brand choice 2c  

Meitu 1A  10 0 

Gree 2A  0 10 

Meizu 3A  4 5 

If we use the common weighted summation to calculate the 
overall utility values of these alternatives, the three alternatives’ 
ranking can be modelled by  

1 2 1 24 5 10 10w w w w    

①  ② ③
                  (1) 
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where 1 2 1w w  , and 1w  and 2w  represent the importance of 

the two criteria, respectively.  

The weights of criteria consist an n -dimensional weight 

space,  1
1, 0

nn
i i ii

R w w w


   . To visualize these 

inequalities in Example 1, Eq. (1) can be transformed into three 
inequalities: ①②  2 15 6w w , ①③  1 24 5w w , and ②③ 

1 2w w , which are shown in Fig. 1.  

1 2 1w w 

①②

①③
②③

1 2w w
1 24 5w w

1 26 5w w

1w

2w
 

Fig. 1. Solutions of three inequalities in the two-dimensional space  

It is not hard to find that Eq. (1) has no solution in the two-
dimension weight scape because three lines intersect the 
normalization constraint line 1 2 1w w   with different points. 

The infeasibility of Eq. (1) raises the paradox about the DM’s 
preferences. From the perspective of mathematical formulas, we 
can obtain the infeasible inequality 1 2 14 5 6w w w   by 

combining ①②  2 15 6w w  and ①③  1 24 5w w . This is 

contradictory as far as both 1w  and 2w  are non-negative and at 

least one is positive which is ensured by 1 2 1w w  . Such a 

contradiction was resulted from the weighted summation which 
has an assumption that criteria are mutually independent. In 
other words, no interaction exists among criteria.  

The Choquet integral [2] is another way to aggregate 
multiple dimensional information by assigning weights to all 
possible subsets of the criteria set. In Example 1, the subsets of 

the criteria set,   ,  1c ,  2c ,  1 2,c c , should be assigned 

with the Choquet integral values,    0v   ,   1 1v c w , 

  2 2v c w ,   1 2, 1v c c  , respectively. The mathematical 

formula of the Choquet integral based on the measured values 
of subsets is shown as: 

       1 2 11
, , ,

n

n ii ii
ChI x x x x x v s  

  
            (2) 

where  ix  is the i th largest value in the permutation 

       0 1 2
{ , , , , }

n
x x x x     which guarantees  0

( ) 0v x   and 

       0 1 2 n
x x x x
   

    . is  which is the subset of the 

criteria set contains the criteria index  , ,i n . 

Example 2 (Continued to Example 1). Introducing the 
Choquet integral in Eq. (2), the DM’s preferences can be 
realized by Eq. (3):  

           2 1 2 1 24 , 10 10v c v c c v c v c       (3) 

where   1 0v c  ,   2 0v c  , and   1 2, 1v c c  . In this 

case, the solution to represent or model the DM’s preferences 

exists when         1 2 1 24 , 9v c v c v c c  4 9 . Thus, 

the importance of technical feature is the same as that of brand 
choice, and they are both less than or equal to 4/9.  

Besides Eq. (2), the Choquet integral can be computed from 
its Mobius transformation. The Mobius transformation, 

originated in [7], defines a unique function : 2Cm R  to 

mapping the power set of the whole criteria set  C  into the real 

value space R . The Mobius transformation function need to 
satisfy: 

   
D B

v B m D


                           (4) 

where   0m   ,   1
E C

m E


  and   iE B
m E c




0 . For each criterion ic , the Mobius value of ic  and another 

subset  \ iB C c  should not be less than zero.       Based on 

the Mobius transformation, the Choquet integral can be 
expressed in a linear form, shown as:  

   1 2, , , minm n iD C i D
ChI x x x m D x

 
           (5) 

where mChI  is the weighted summation of the minimal values 

of all subsets of the criteria set D  from C .     

The Choquet integral is not able to take into account the 
attitude of a DM, whereas the criteria interaction and different 
attitudes for extreme values may exist at the same time [4]. To 
tackle this issue, the attitudinal Choquet integral (ACI) of the n  
dimensional data with the attitudinal parameter   is proposed 
as: 

    min

1 2, , , log
i

i D
x

m n D C
ACI x x x m D  


       (6) 

where  0,    and 1   according to the property of the 

logarithmic function. 

Example 3 (Continued to Example 1). Introducing the 

solution of Eq. (3) as      1 2 =1 3v c v c  and   1 2, =1v c c  

in Example 1, the utility values of the three alternatives based on 
the ACI with different attitudinal parameter   values range 
from zero to ten without one can be obtained and visually shown 
in Fig. 2.      



 

Fig. 2. Attitudinal Choquet integral values of the three alterantives  

When   approaches to zero, the ACI is similar as the 

minimal operator. The ACI values of alternatives 1A  and 2A are 

close to their minimal values, 0, on criterions 2c  and 1c , 

respectively. The ACI value of alternative 3A  is near to the 

minimum, 4; when   is close to one, the ACI degenerates into 
the Choquet integral; when the value of   is large, the ACI acts 
as the maximal operator and ACI values of the three alternatives 
reach the maximal points. In a nutshell, the ACI is more flexible 
than the Choquet integral and takes the criteria interaction and 
DM’s attitude into consideration at the same time. However, 
regarding the application of the ACI, the difficulty of assigning 
weights to each subset of the criteria set still exists. For n  

criteria, the importance of 2n  subsets of the criteria set should 
be determined,  in which the importance of the whole criteria set 

 1 2, , , nc c c  is one.      

It is not easy to assign weights for all possible criteria subsets 
with interactions. That is to say, the importance degrees of some 
criteria subsets may not be available. The original Choquet 
integral or ACI does not have the ability to tackle the imperfect 
input information. To reduce human cognitive effort and 
consider criteria interaction simultaneously, the stochastic 
multicriteria acceptability analysis (SMAA) was introduced to 
generate recommended solutions with imperfect data (see [6] for 
details regarding the SMAA). The literature about the useful 
technique for stochastic analysis fused with the criteria 
interaction modelled by the Choquet integral is tabulated in 
Table II.     

TABLE II.  LITERATURE RELATED TO THE CHOQUET INEGRAL AND 

STOCHASTIC ANALYSIS 

Preference models 
Stochastic analysis 
techniques  

References 

Choquet integral SMAA [8] [9] [10] 

Bipolar Choquet integral SMAA [11] 

Level dependent Choquet 
integral 

SMAA [12] 

ACI 
SMAA with an attitudianl 
parameter 

This study 

The first column of Table II describes four preference 
models in human decision behavior. The Choquet integral [8-10] 

is the preliminary model, a special case of the ACI. The bipolar 
Choquet integral [11] describes the positive and negative 
interactions by the integral ranging from minus one to one. The 
level dependent Choquet integral [12] sets a threshold of 
alternative performances for generating interaction values. 
These three models failed to take DM’s attitudes into 
consideration. This is the motivation of this study and Section 
III tries to fill in this research gap.  

III. ACI-SMAA: ATTITUDINAL CHOQUET INTEGRAL-BASED 

STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS 

This section presents the ACI-SMAA model, a technique for 
preference learning in decision analysis. The criteria interaction 
and DM’s attitudes are considered at the same time in the ACI-
SMAA.  

A. ACI-based human decision behavior modelling 

DMs usually have two preference types, “preferential” and 
“indifferent”, which can be summarized into a weak preference 
order,  , on the alternative set in the multi-attribute utility 

theory [13, 14]. The weak preference relation between any two 
alternatives 1A  and 2A  is 1 2A A , denoting that 1A  is at least 

as good as 2A . Such a weak preference can be divided into 

preferential relation, meaning 1 2A A  and not 2 1A A , and 

indifferent relation, i.e., 1 2A A  and 2 1A A . The preferential 

and indifferent relations can be represented as:  

   

   
1 2 1 2

1 2 1 2

A A U A U A

A A U A U A

 

  


                  (7) 

where “  ” and “  ” denote “preferential” and “indifferent”, 
respectively.         

The overall utility value of an alternative can be calculated 
in two ways under different assumptions. In the first case, the 
relation among criteria is assumed independent and the utility 

function  
1

n

i j ijj
U A w x


   is additive, where jw  denotes the 

importance of criterion jc . In the other case, criteria are 

assumed dependent as interactions among criteria exist and the 

utility function       mini i iD C i D
U A CI A m D x

 
    is 

non-additive, where D  is the possible subsets of all criteria and

 m D  represents the Mobius transformation value of the 

importance of criteria subset D . The Mobius value based on Eq. 
(4) can be obtained by       

     1
B D

D B
m B v D




                    (8) 

where  v D  is the importance of the criteria set D .     

Considering the criteria interaction and the attitude of a DM, 
the preferential and indifferent relations of alternatives can be 
converted as: 

   

   
1 2 1 2

1 2 1 2

A A ACI A ACI A

A A ACI A ACI A

 

  


             (9) 



where the function ACI  aggregates the performance values of  
alternatives on all criteria based on the interaction and diverse 
views on extreme performance values.     

Example 4 (Continued to Example 1). The preference order 

3 1 2A A A   in Example 1 aggregated by the ACI can be 

measured as: 

   

           
           

1 2

min 0,1010 0
1 2 1 2

min 0,100 10
1 2 1 2

log ,

log ,

m mACI A ACI A

m c m c m c c

m c m c m c c





  

  



  

  

  (10) 

   

           
           

3 1

min 4,54 5
1 2 1 2

min 0,1010 0
1 2 1 2

log ,

log ,

m mACI A ACI A

m c m c m c c

m c m c m c c





  

  



  

  

  (11) 

Equation (10) deduces      1 2m c m c . As 1   and

     1 2 1, 2 1m c c m c  , in Eq. (11), the logarithmic function 

can be offset by the increasing property and thus Eq. (11) can be 
transformed into  

        4 5 4
1 2 1 2,m c m c m c c      

        10 0 0
1 2 1 2,m c m c m c c     


        

        

4 5 4
1 2 1 2

10
1 2 1 2

,

,

m c m c m c c

m c m c m c c

  



 

  
 


      

      

4 5 4
1 1 2

10
1 1 2

+ ,

+1 ,

m c m c c

m c m c c

  





 
 

       4 10 4 5
1 2 1, 1 +1m c c m c         

          4 10 4 5
1 11 2 1 +1m c m c          

   4 10 5 4
11 1m c          

In addition, the constraint of Eq. (3),   1v c

     2 1 24 , 9 4 9v c v c c   , denotes that 

  1 2, 1 9m c c  . Then, Eq. (11) can also be solved from the 

perspective of the value range of   1 2,m c c , shown as follows:             

       4 10 4 5
1 2 1, 1 +1m c c m c         

        4 10 4 5
1 2 1 22 , 1 1 , +1m c c m c c            

   10 5 4 10 5 4
1 2, 1 +1m c c              

Similarly, the constraint that the attitudinal parameter 
belongs to (0,1) can be obtained as well.  

Solving Eqs. (10) and (11), 4 1  

   10 5 4
1 1m c      ,      1 2 0m c m c  , 

   10 5 4
1 2, 1m c c      

10 5 4 +1     and 

        1 2 1 2, 1m c m c m c c    are obtained as the 

constraints of the DM’s preference order 3 1 2A A A   with 

1  . As  0,    and 1  , the Mobius transformed 

values of all possible subsets,   1m c ,   2m c ,   1 2,m c c , 

cannot be restricted as specific values. Compared with the 

derived constraint,      1 2v c v c    1 24 , 9 4 9v c c   

by the Choquet integral, the constraints deduced by Eqs. (10) 
and (11) limit the original cubic space for the Mobius values in 
a complex way with respect to  . In other words, the input 
information of human decision behavior restricts the solution 
space by the ACI, which is difficult to obtain the analytical 
solutions of Mobius values. The limited solution space based on 
the ACI preference orders may be not convex, and the 
nonconvex space is not appropriate for the Hit-and-Run 
sampling [15]. Therefore, the rejection sampling [16] is adopted 
in this study instead of the hit and run algorithm [17-19].      

B. Descriptive measures in the ACI-SMAA for learning 
human preferences 

This section adopts the idea of the descriptive measures in 
the SMAA [6] to depict the output results and help human 
understand their internal preferences.  

The original SMAA [20] used three descriptive measures, 
namely, the acceptability index, confidence factor and central 
weight vectors. Afterwards, SMAA-2 [21] utilized rank 
acceptability index, confidence factor and central weight vector. 
As for the SMAA-Choquet model [8], it considered the three 
descriptive measures in SMAA-2 as well but with the difference 
that the central weight vector contains the interactions between 
criteria. This study adopts the rank acceptability index, central 
attitudinal Choquet integral value and central Mobius vector 
with the focus on criteria interactions and attitudes at the same 
time. 

1) Rank acceptabiltiy index 
DMs’ preferences restrict the feasible space of Mobius 

values and the attitudinal parameter. Let  r
iM x  denote the 

decision space which supports alternative iA  to be ranked at the 

r -th position with the criteria’s Mobius values m  and the 
attitudinal parameter  . The rank acceptability index related to 
the support statement is calculated by 

   
 

 r
i

r
i X Mx M x

q f x f m f d dmdx            (12) 

where r
iq  represents the acceptability ratio of alternative iA  

ranked at the r th position. Xf , Mf  and f  are three 

probability density functions for the performance value x , the 
Mobius value m  and the attitudinal parameter  , respectively.   

2) Central attitudinal value 
Based on the rank acceptability of the first position, the 

central attitudinal value can be calculated by              



     
 1

1
r
i

c
i X MX M x

i

f x f m f d dmdx
q

        (13) 

where 1
iq  means alternative iA  is the best option. Other symbols 

own the same meaning in Eq. (12). 

3) Central Mobius vector 
Compared with other SMAA models [20, 21], the 

interaction-considered central Mobius vector can be computed 
by 

     
 1

1
r
i

c
i X M

X M x
i

m f x f m f md dmdx
q

       (14) 

where 
c
im  is devised for the best alternative.  

The computational complexity could be high if functions 

Xf , Mf  and f  are determined specifically to implement 

straightforward integration on each dimension in the multi-
dimensional integrals of Eqs. (12)-(14). For example, for a 
decision problem with four alternatives and four criteria, total 
dimensions for rank acceptability index is 20, because the outer 
integration in Eq. (12) goes through four-dimensional criteria 
space, and the inner one needs to integrate the space of all 
alternatives’ performances on each criterion (4*4=16). To avoid 
the big computational effort, the Monte Carlo simulation 
technique [22] is adopted to sample in the feasible space and to 
obtain the approximate values of the integrals given in Eqs. (12)-
(14).  

IV. AN ILLUSTRATIVE EXMAPLE: HOUSEHOLD ENERGY 

SELECTION 

This section gives an application example about how to 
solve household energy selection problem by using the proposed 
ACI-SMAA, and then compare the result with those obtained by 
the original utility model without criteria interactions and human 
attitudes.  

A. Case description 

Selecting the right household energy plays a vital role in the 
energy consumption management and the decision process is 
usually involving multiple dimensional information. The 
research report on China's household energy consumption [23] 
shows that China's household energy consumption level is at a 
relatively low level in the world, with biomass energy and 
electricity being the main sources of energy. The survey found 
that the average energy consumption of a standard Chinese 
household was 1087 kg (without transportation), 1208 
kg(including transportation) of standard coal. To improve the 
energy utilization efficiency, the household could choose 
different types of energy according to diverse objectives. Four 
energy alternatives are obtained with respect to four criteria as 
shown in Table III.              

TABLE III.  LITERATURE RELATED TO THE CHOQUET INEGRAL AND 

STOCHASTIC ANALYSIS 

Alternatives/criteria Cooking Heating 
Hot 
water 

Household 
appliances 

Biomass energy 1A  10 0 4 2 

Central heating 2A  0 10 1 5 

Electricity 3A  4 5 3 3 

Pipeline gas 4A  2 7 2 5 

In this case, the k -order additive Choquet integral [5] is set 

as the 2-order additive Choquet. Then,  1 2n n   numbers of 

Mobius values and the attitudinal parameter   should be 
determined by the DM, which is not a small cognitive effort-
required work. The SMAA technique was introduced to analyze 
the preferences of the DM and help the DM to make decision. 
Suppose that the DM gives a preference as the alternative 3A  is 

better than 2A . The ACI-based preference of the DM can be 

modelled as the following constraints:      
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

 


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 
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

 

 (15) 

The first constraint denotes the DM’s preference. The 
second constraint represents the non-negativity of each criterion. 
The third constraint indicates that the summation of the Mobius 

value of criterion 1ic ,   1im c , and other interactions between 

the criterion 1ic  and other criteria,    2 1
1 2\
,

i i
i ic C c

m c c
 , 

should be not less than zero. The last constraint shows the 
boundary of the importance of all criteria. There are more 
unknown variables than the number of constraints in Eq. (15). 
So, there might be multiple solutions of Eq. (15). In the 
following, the ACI-SMAA is introduced to sample possible 
solutions of Eq. (15) and analyze the unknown preferences on 
the remaining alternatives.  

B. Solving the case by the ACI-SMAA 

The preference    2 3ACI A ACI A  is derived at first.  
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Then, the rejection sampling is implemented to analyze the 
DM’s preferences in Eq. (15). It is observed that the DM may 
not tolerant some bad values because 3 2A A  and these utility 

values of the two alternatives are the same in the original utility 
model. Owing to this idea, the attitudinal parameter is restricted 



from zero to one. The rejection sampling process would stop 
when the number of acceptable samples reach one thousand. 
Using these samples, the ranks acceptability indices and central 
ACI values are listed in Tables IV-VI.    

TABLE IV.  RANKS ACCEPTABILITY INDICES  

Alternatives 1
iq  2

iq  3
iq  4

iq  

Biomass energy  7.3% 15.7% 44.6% 32.4% 

Central heating  0.0% 0.8% 31.7% 67.5% 

Electricity 78.9% 17.4% 3.7% 0.0% 

Pipeline gas  13.8% 66.1% 20.0% 0.1% 

TABLE V.  CENTRAL ATTITUDINAL VECTOR AND CENTRAL MOBIUS 

VECTOR OF SIGNLE CRITERION 

Alternatives    1m c   2m c   3m c   4m c  

1A  0.7549 0.4611 0.1306 0.3400 0.1582 

3A  0.4722 0.2331 0.2303 0.2578 0.2312 

4A  0.5062 0.1989 0.2137 0.2373 0.2703 

TABLE VI.  CENTRAL MOBIUS VALUES OF INTERACTIONS 

  1 2,m c c   1 3,m c c   1 4,m c c   2 3,m c c   2 4,m c c   3 4,m c c  

1A  -0.1718 -0.0440 0.0778 0.0864 0.0598 -0.0981 

3A  0.1975 -0.2526 0.0972 0.0916 -0.2656 0.1795 

4A  -0.3214 0.3405 0.0914 0.0724 0.3145 -0.4176 

In Table IV, alternative 2A  cannot be ranked at the first 

position with the 0.0% probability because the DM thinks that 

3A  is better than 2A . Alternative 3A  is the most likely to be the 

best with 81% probability. The data in Table IV can be visually 
shown in Fig. 3, where the height in the histogram represents the 
probability. 

 

Fig. 3. Ranks acceptability indicies of four alterantives  

Tables V and VI show that criteria 1c  and 2c  have the 

antagonistic effect. Alternative 1A  becomes the better 

alternative when criterion 1c  is more important. To sum up, the 

recommended ranking of alternatives is 3 4 1 2A A A A    

with the maximal likelihood.  

C. Discussions  

The original utility model without criteria interactions and 
the attitudinal parameter would regard four alternatives as the 
same utility value. This violates the DM’s given preference 

3 2A A . In this example, the original utility model is not 

appropriate.  

Some managerial implications can be summarized from the 
example. The input about the performances of alternatives and a 
single preference on two alternatives 3 2A A  are used in the 

ACI-SMAA model, and it outputs the most possible ranking of 
alternative energies. Compared with the original utility model, 
the ACI-SMAA requires less input information on criteria or 
alternatives and learn the DM’s preference as much as possible. 
For policy-makers of energy management, the ACI-SMAA is an 
efficient tool to analyze other alternatives of household energies 
from the perspective of the DM’s preferences. 

V.  CONCLUSIONS 

This paper presented an ACI-SMAA model to analyze 
human decision behaviors on the basis of criteria interactions 
and DMs’ attitudes in decision analysis. The interaction effect 
of the DM’s criteria and attitudes  were depicted by the ACI. 
The human decision behaviors on alternatives were transformed 
into the inequality or equality in the preference space. The 
Monte Carlo simulation based on rejection sampling was used 
to obtain the approximate values of three descriptive measures, 
namely, the rank acceptability index, central attitudinal value 
and central Mobius vector. Based on the sampling results, 
potential preferences of human decision behaviors and ranking 
results of alternatives could be acquired for decision analysis.       

For the future research direction, the multiple criteria 
hierarchy process [24] for the attitudinal Choquet integral with 
SMAA is an interesting topic with challenges.  
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