
Resilience and Robustness of Spiking Neural
Networks for Neuromorphic Systems

Catherine D. Schuman
Oak Ridge National Laboratory

Oak Ridge, TN, USA
schumancd@ornl.gov

J. Parker Mitchell
Oak Ridge National Laboratory

Oak Ridge, TN, USA
mitchelljp1@ornl.gov

J. Travis Johnston
Oak Ridge National Laboratory

Oak Ridge, TN, USA
johnstonjt@ornl.gov

Maryam Parsa
Electrical and Computer Engineering

Purdue University
West Lafayette, Indiana, USA

mparsa@purdue.edu

Bill Kay
Oak Ridge National Laboratory

Oak Ridge, TN, USA
kaybw@ornl.gov

Prasanna Date
Oak Ridge National Laboratory

Oak Ridge, TN, USA
datepa@ornl.gov

Robert M. Patton
Oak Ridge National Laboratory

Oak Ridge, TN, USA
pattonrm@ornl.gov

Abstract—Though robustness and resilience are commonly
quoted as features of neuromorphic computing systems, the
expected performance of neuromorphic systems in the face of
hardware failures is not clear. In this work, we study the effect
of failures on the performance of four different training algo-
rithms for spiking neural networks on neuromorphic systems:
two back-propagation-based training approaches (Whetstone
and SLAYER), a liquid state machine or reservoir computing
approach, and an evolutionary optimization-based approach
(EONS). We show that these four different approaches have
very different resilience characteristics with respect to simulated
hardware failures. We then analyze an approach for training
more resilient spiking neural networks using the evolutionary
optimization approach. We show how this approach produces
more resilient networks and discuss how it can be extended to
other spiking neural network training approaches as well.

Index Terms—neuromorphic computing, spiking neural net-
works, resilience

I. INTRODUCTION

Neuromorphic computing systems offer great promise for
the future of computing. As noted in [1], one of the most
frequently cited characteristics of neuromorphic computing
systems that make them attractive for real-world applications
is that they have inherent fault tolerance, robustness and

Notice: This manuscript has been authored in part by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

resilience characteristics. Resilience and robustness character-
istics of traditional neural networks have been widely studied,
but it is not clear how these results will translate to the types
of spiking neural networks (SNNs) that are implemented on
neuromorphic systems. In particular, it is not clear what the
resilience and robustness characteristics of SNNs are. More-
over, there are several different types of common algorithms
for training SNNs, including backpropagation-like algorithms,
liquid state machines, and evolutionary optimization. The
networks that are produced by these different algorithms have
very different network topologies and performance character-
istics, and it is not clear how these differences will impact
their fault tolerance capabilities.

Specifically for neuromorphic computing, understanding the
resilience characteristics of SNNs trained using different algo-
rithms is likely to become increasingly important. In particular,
a key area of research in neuromorphic computing is in new
devices and materials to implement various components of
neuromorphic systems. New and emerging devices that are
currently being studied in neuromorphic computing include
metal oxide memristors and other non-volatile memory tech-
nologies [2], [3], biomimetic and biomolecular materials [4],
and optoelectronic [5] implementations. Because these are
experimental devices, there are likely to be failures due to
hardware-level issues [6]. Thus, when designing SNNs for
neuromorphic deployment, understanding how those networks
will behave in the presence of corruption in the network
due to device failures is important in understanding how
neuromorphic systems will behave on real world applications.

In this work, we seek to provide a baseline understanding
of the resiliency properties of SNNs trained using a variety
of training algorithms. The primary type of failure we focus

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

on in this work is synapse failure, though other types of
failures (malfunctioning synapses or neurons, neuron failures,
etc.) may also be common. We examine SNNs trained using
four different algorithms and how those SNNs perform in the
face of synapse failures. We show that these four different
algorithms have very different performance with respect to
failures in the network. We propose an approach to train
for resiliency of SNNs for one particular algorithm type
(evolutionary optimization) and we show how it improves the
resiliency of the resulting SNNs. We then discuss how this
approach can be extended for the other algorithms in future
work.

II. BACKGROUND AND RELATED WORK

The resilience, robustness, and fault tolerance capabilities
of traditional neural networks have been widely studied over
the last few decades, and there have been several algorithms
proposed to improve these characteristics in traditional neural
networks [7]–[11], as well as deep learning networks [12],
[13]. However, because there are fundamental differences in
how SNNs perform computation, as well as different types of
training approaches, it is not clear that any of these approaches
will translate to SNNs.

One of the key technologies used to implement neuromor-
phic systems is memristors. However, memristors are known
to have several different types of faults, so there has been a sig-
nificant amount of work in addressing those challenges from
the perspective of the algorithms and architectures. In [14],
memristor faults are addressed by analyzing memristors laid
out in a crossbar topology. The crossbar array provides a dense
layout where every input is connected to every output. Within
the crossbar array, some proportion of the memristors were
selected to be locked at either a high or low resistance without
being able to switch. The array with induced faults was trained
using SPICE and MATLAB, and the networks with faulty
memristors were still trained. Even in the case that 50% of
the memristors were faulty, in several trials the network was
trained in fewer than 50 epochs. Hence, the highly connected
crossbar topology was (in some instances) resilient with a 50%
fault rate for the embedded memristors.

In [6], a two layer neural network that achieves an accuracy
of 92.64% on the MNIST dataset is used to illustrate the
impact single-bit failures (SBF) can have on a memristor neu-
romorphic network. The synaptic weight matrix is mapped to
the conductances of a memristor array in such a neuromorphic
system. Hence, synapse failures in this neural network are
in correspondence with SBFs in the memristor-based system.
With an SBF rate of 20%, the accuracy drops from 92.64%
to 39.4%. To increase the fault tolerance of this network,
the normalized accuracy (ACCreal/ACCideal) is introduced,
and several protocols to increase the normalized accuracy
are examined. First, it is noted that there are significant and
insignificant weights. These weights are identified, and an
analysis shows that if only insignificant weights are affected
the normalized accuracy can drop by as little as 1%. Next,
a retraining protocol is introduced where the failed bits are

held constant and the other synaptic weights are initialized as
in the original model. The network is still trained with failed
bits held fixed and all other bits updating in each training step.
At a 20% SBF rate, the normalized accuracy can be recovered
up to 98.1%. Lastly, a remapping protocol is introduced where
a small number of memristor columns in which failure occurs
are replaced by new memristor columns. Namely, the columns
corresponding to the 5% of the most significant weights which
fail. The normalized accuracy is improved to 99.3% after this
remapping procedure. It is noteworthy the impact of which bits
fail has on performance. If the SBF rate is 30% but occurs
only on insignificant weights, the normalized accuracy can be
brought up to 99.9%. On the other hand, if these failures occur
on the most significant weights the normalized accuracy can
only be recovered to 95.1%. Hence, identifying critical bits,
retraining after bit failures, and replacing the most significant
failed bits can go a long way to mitigate faults in memristive
neuromorphic systems.

Fault tolerance of Resistive Random Access Memory
(RRAM) and RRAM-based Computing Systems (RCS) is
provided in [15], [16]. An RCS is a high speed, low energy,
in-memory, multi-bit (i.e., more information for less hardware)
design which utilized memristors in a crossbar topology as
RAM. There are some faults, such as Stuck at 0/1 (SA0/1)
faults, Transition faults (TF), and Address Decoder faults
(ADF) that are common to RAM and RRAM. Hence, many
of the protocols for detecting and handling faults in RAM
apply to RRAM. On the other hand, the physical mechanism
of RRAM gives rise to some unique faults such as Read/Write
Disturbance faults (R/WDF) in which a read/write current
is applied during a read/write operation, which modulates
the current of the cell in unintended ways. Faults in which
resistances can no longer be modulated (SA0/1 faults) are
called hard faults, while faults in which resistances are simply
not as intended (R/WDFs) are called soft faults. Hard faults
can arise when a memristive unit has poor write endurance.
That is, when many writes occur on one unit, physical fatigue
can occur causing SA0/1 faults. A number of prophylactic
procedures are proposed to prevent write fatigue. For example,
threshold training in which weights are updated only when
they change beyond a certain tolerance to prevent many unnec-
essary writes. Another principle example is to periodically ex-
change units which endure frequent writes with units which are
written to infrequently. Once SA0/1 faults have occurred, the
procedure outlined in [6] of weight identification, retraining,
and remapping can be employed. Soft faults such as R/WDF
can be dealt with by performing resistance updates on chip.
Instead of reading, updating, and writing a resistance, one can
update the resistance on chip. Fewer read and write operations
reduces the risk of a read/write current being applied during
a read/write, thus reducing the probability of a fault.

Resilience of Convolutional Neural Networks (CNN) is
analyzed in [17]. It was observed in [12], [18], [19] that errors
in some neurons are more critical than others. For example,
an error in an output neuron affects only that output, while
an error to an early neuron in a small layer will propagate

through most of the rest of the network. While one can
analyze a network for critical neurons and protect against
faults (correcting faults when they occur), this can often be
expensive or cumbersome. The authors propose a two step
resilience optimization scheme that prevents major faults from
occurring. The first component optimizes the architecture. It
was noted in [19] that the resilience of a neuron is proportional
to the number of neurons in the same layer. However, adding
many new neurons can increase cost and energy efficiency to
train the network. Hence, they propose adding neurons only to
specific bottleneck layers to protect against significant faults
in a few critical neurons. The second component optimizes the
features. A measure is introduced to identify which features
are more critical than others, where the criticality score
depends on the weights between layers. Weights are adjusted
to normalize the criticality score layer to layer. The network is
then re-trained, as changing the weights affects accuracy. The
re-trained network retains initial accuracy, but the criticality
scores between layers are closer to normalized. The procedure
is iterated until the normalization step reduces the accuracy
within some small accepted tolerance. Hence, no one feature is
more critical than any other. These methods are demonstrated
on pre-trained networks which predict MNIST, CIFAR-10, and
ILSVRC benchmarks, and the worst case failure rates for a
single bit flip for each network are drastically reduced.

Many fault tolerant techniques for DNNs require large
overhead and redundancy, while many applications favor low
energy use and low latency. In [20], a particular Neural
Architecture Search (NAS) is introduced. Specifically, a set
of objective functions including error resiliance, energy con-
sumption, latency, and bandwidth based solely on architecture
are introduced. Multi-objective NAS is performed with an
evolutionary algorithm which is an extension of LEMON-
ADE [21]. Notice that the objective functions depend only on
the architecture, and so expensive training steps are not neces-
sary. The networks produced via the multi-objective search are
shown to be fault tolerant when evaluated with random bit flip
errors. Finally, with many DNNs the training steps and final
weights are computed with floating point precision, often times
low energy applications (such as cell phones, edge devices,
etc.) perform better with 8 bit representations of weights.
Converting the floating point weights to a coarser binary
representation is known as quantization. Two quantization
techniques are introduced, and on one set of networks one of
the quantized networks is shown to be more error resilient than
the other. In particular, fault tolerances are not quantization-
invariant, and hence one should consider which quantization
method is being used when fault resilience is important.

III. METHODS

A. Algorithms

In this work we analyze the resiliency properties of SNNs
trained using a variety of different training algorithms. In
particular, the four different algorithms we study are a liquid
state machine approach, a back-propagation-based approach
for training deep neural networks with binary communication

appropriate for neuromorphic deployment called Whetstone
[22], a back-propagation-based approach for training deep
spiking neural networks called SLAYER [23], and an evo-
lutionary optimization-based approach called EONS [24].

Reservoir computing or liquid state machine approaches are
often targeted towards time series data classification tasks.
For our reservoir computing approach, we randomly create
a spiking neural network with 100 hidden neurons, 20 output
neurons and approximately 500 synapses. We use a spike-
count encoding approach as described in [25], with a max-
imum of 10 spikes applied over time for each input value.
We simulate activity in the network for 1000 time steps for
each input value. A vector of the counts of spikes from each
output neuron is collected and passed to a linear regression
classifier from the scikit-learn Python module, which is the
readout layer for our reservoir computing approach.

The second algorithm that we use in this work is Whetstone
[22]. Whetstone is an approach that trains deep neural net-
works with binary communication. These types of networks
can be implemented on spiking neuromorphic hardware be-
cause a binary communication approach is a simplified version
of spikes (i.e., one that does not take into account the timing of
spikes as part of the computation). Whetstone trains networks
with binary communication by gradually “sharpening” the
activation functions of neurons from differentiable functions
like ReLUs to non-differentiable threshold functions that are
more appropriate for deployment on spiking neuromorphic
hardware. Whetstone has primarily been used to train net-
works for image recognition, for datasets such as MNIST and
CIFAR10. We use Whetstone’s adaptive scheduling for the
sharpening process. We use 10-hot encoding for the outputs,
as using multiple output neurons for a single output class is
recommended in [22] in order to avoid Whetstone zeroing out
an entire class over the course of training. We use a three layer,
fully-connected network with 20 neurons in the hidden layer.
However, it is worth noting that by optimizing the network
structure (number of layers, number of hidden neurons per
layer), better performance may be achieved.

The third algorithm we use in this work is Spike LAYer
Error Reassignment (SLAYER) [23]. SLAYER is a back-
propagation-like approach that not only trains the weights
of the spiking neural network, but also trains the delays in
the network. As such, SLAYER has primarily focused on
datasets with temporal components, including audio signals,
spike trains, and dynamic vision sensor (DVS) data. In this
work, we convert our non-time series data into spike trains
for input into SLAYER, as we do for both the liquid state
machine and EONS algorithms. Unlike the other algorithms,
we have hand-tuned the SLAYER hyperparameters such as τ ,
θ, and ρ, to perform well on the datasets we use here. We
have done this for the SLAYER approach and not the others
because SLAYER fails to train for the task at all without tuning
those parameters. As in Whetstone, we use a three layer, fully-
connected network with 20 neurons in the hidden layer.

The final algorithm that we use for training is Evolutionary
Optimization for Neuromorphic Systems or EONS [24]. EONS

is a genetic or evolutionary algorithm-based approach for
determining both the structure and parameters of an SNN for
neuromorphic deployment. EONS tends to produce relatively
small (10s of neurons) and relatively sparse (10s to 100s of
synapses) SNNs that are highly recurrent. EONS has been
primarily targeted towards control applications, such as those
described in [26]. As in the reservoir computing approach
and the SLAYER approach, we use spike-count encoding
to translate the data from the datasets into spikes. It is
worth noting that we do not tune the parameters of EONS
to perform well on this task and simply utilize the default
parameters. Tuning either the EONS parameters or the input
encoding parameters for networks trained using EONS can
have significant performance impacts [25].

B. Simulating Failures

Each of the different algorithms described above can pro-
duce radically different network structures. For example, we
use structures typical of traditional artificial neural networks
for the Whetstone and SLAYER algorithms, i.e., networks
organized into layers with full connectivity between the layers.
Both reservoir and EONS generated networks are relatively
sparse and can have recurrent connections. As a result, the size
of the networks are often radically different, with SLAYER
and Whetstone networks having hundreds to thousands of
synapses, reservoirs typically having hundreds of synapses and
EONS-generated networks typically having tens of synapses.

Because the networks vary so greatly in size and because we
would expect synaptic devices to fail with some probability,
we evaluate different failure rates fr ∈ {0.1, 0.2, 0.3, ..., 0.9}.
For failure rate fr, we zero out or remove fr × snet synapses
from the network, where snet is the number of synapses in the
originally trained network. We randomly choose the synapses
to zero out for each failure rate individually, so the synapses
removed for failure rate 0.1 may be entirely distinct from the
synapses removed for failure rate 0.2, etc.

It is worth noting that most of the background and related
work in Section II focuses on either a failures for a particular
type of hardware (e.g., a bit flip or a memristor fault) or
a particular type of algorithm or neural network type (e.g.,
convolutional neural networks). In this work, we evaluate a
single failure type, full synapse failure, that can occur on
many different types of neuromorphic hardware, especially
those where the synapses are implemented using experimental
devices. The intent behind choosing this type of failure is so
that we can understand the broader implications of large-scale
failures on the performance of SNNs on different types of neu-
romorphic hardware. Moreover, we analyze the implications of
this failure type on a variety of algorithms, as we expect that
different algorithms will be utilized for different applications
even on the same neuromorphic hardware platform.

C. Datasets and Experimental Setup

Because the four algorithms we are studying target vastly
different types of applications, we narrow our focus to classi-
fication tasks that are simple enough to be amenable to all of

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Synapses Deleted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

EONS, iris average
SLAYER-20, iris average
Whetstone-20, iris average
reservoir, iris average

EONS, iris average
SLAYER-20, iris average
Whetstone-20, iris average
reservoir, iris average

Fig. 1. Iris results. The mean performance across all 100 networks for each
algorithm is shown in the bolded line and one standard deviation is shown to
visualize the variance in performance for that algorithm.

the algorithms as a baseline comparison, but also give enough
variation in performance to understand the impact of failures
on the performance of networks produced by these algorithms.
In particular, we use three of scikit-learn’s toy datasets: iris,
wine, and breast cancer. We use a two-thirds/one-third split on
the train/test data for each dataset, and the same train/test split
it used across all algorithms and all tests. A brief summary of
the characteristics of these datasets is given in Table I.

TABLE I
DATASET CHARACTERISTICS

Iris Wine Cancer
Features (Inputs) 4 13 30
Classes (Outputs) 3 3 2
Total Samples 150 178 569

For each of the algorithms, we train 100 distinct spiking
neural networks. These networks are different across the 100
tests because of variations in the initial weights (for Whetstone
and SLAYER), reservoir initialization (for the liquid state
machine approach), and different initial populations (for the
EONS approach).

IV. RESILIENCY RESULTS

Figures 1, 2, and 3 give the results for the iris, wine, and
cancer datasets, respectively. There are a few key observations
to be made from these results. The first observation is that the
overall trends of how the different algorithms perform holds
across all three datasets. That is, though the best performing
approach can differ across datasets, the general shape of the
resilience “curves” for each of the algorithms is the same
across each dataset. For example, the Whetstone resilience
curves are more convex across all three datasets, while the
EONS curves are more concave.

Second, it is clear that the reservoir computing approach has
very poor resiliency characteristics across all three datasets.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Synapses Deleted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
in

g
Ac

cu
ra

cy
EONS, wine average
SLAYER-20, wine average
Whetstone-20, wine average
reservoir, wine average

EONS, wine average
SLAYER-20, wine average
Whetstone-20, wine average
reservoir, wine average

Fig. 2. Wine results. The mean performance across all 100 networks for each
algorithm is shown in the bolded line and one standard deviation is shown to
visualize the variance in performance for that algorithm.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Synapses Deleted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

EONS, cancer average
SLAYER-20, cancer average
Whetstone-20, cancer average
reservoir, cancer average

EONS, cancer average
SLAYER-20, cancer average
Whetstone-20, cancer average
reservoir, cancer average

Fig. 3. Breast cancer results. The mean performance across all 100 networks
for each algorithm is shown in the bolded line and one standard deviation is
shown to visualize the variance in performance for that algorithm.

That is, with even a failure rate of 0.1, the performance of
SNNs in reservoir approaches are significantly hurt. The other
approaches more gradually become worse over time, and all
of the approaches drop to approximately “guessing” behavior
at high levels of failures for each dataset (guessing becomes
approximately 33% for both iris and wine and approximately
50% for the cancer dataset), except for SLAYER on the cancer
dataset, which still maintains a performance of around 70
percent.

In order to compare the performance of different algorithms
and different networks with respect to resiliency and overall
performance of the network, we define a metric that gives
information about both the performance of the network, as
well as its performance in the presence of failure, which we

call gfr (net). We calculate this metric as the area under the
resiliency curves up to a failure rate of fr, such as those plotted
in Figures 1 - 3. Since we evaluate failure rates for fr ∈
{0, 0.1, 0.2, ..., 0.9}, we approximate the area under the curve
as follows:

gfr (net) =
0.1

fr

∑
f∈{0.1,...,fr}

1

2
(af (net) + af−0.1(net)) (1)

where af (net) is the accuracy of given network at failure
rate f . This value is higher for networks that have both
high initial performance on the testing set, as well as high
performance in the presence of failures. Using this metric, we
can find the best performing, most resilient networks for each
of the four algorithms and compare the performance of those
different approaches directly. We calculate g0.3(net) for all of
the networks trained across each of the four algorithms and
find the networks with the highest value for each of the four
algorithms.1 Table II gives a summary of the characteristics of
each of these four networks. There are a few items of interest
to note in this table. First, the performance of EONS and
reservoir computing generated networks tends to be monoton-
ically decreasing as failures occur, while the same is not true
of Whetstone and SLAYER networks. In fact, some failures
in the network can improve the performance of the network
in some cases (e.g., the starting accuracy of the SLAYER
network on the wine dataset and the Whetstone network on the
cancer dataset is lower than the accuracies of these networks
in the presence of failures). It is known that sparsifying deep
networks can improve the performance in some cases [27], and
it appears that the same is true in the case of deep learning-
style SNNs.

The second thing to note from Table II is that the size
of these networks is radically different across the different
algorithms. For example, the EONS networks have an order of
magnitude fewer synapses than any of the other approaches.
Practically, this means that for a task like the wine classi-
fication task, a failure rate of 0.3 for the EONS network
results in a network with only 39 synapses, while a failure
rate of 0.3 for the SLAYER network results in a network that
still has 224 synapses. Moreover, in all cases, the Whetstone
networks at a failure rate of 0.9 have more synapses than the
original EONS generated network for each of the datasets.
It is clear that the size of the network has an impact on
the resiliency. However, in the case of neuromorphic systems,
larger networks also require larger physical hardware and more
power to implement them. On real-world applications, there
are likely to be tradeoffs in accuracy, network size, power
usage, and resiliency that will have to be made.

1We chose to focus on a failure rate of 0.3 because we believe it
is a reasonable estimate for a relatively large-scale failure in a physical
neuromorphic hardware system. This metric could easily be applied for any
failure rate, however. We include results in the rest of this work for up to a
failure rate of 0.9 to show what would happen in the event of catastrophic
failure.

TABLE II
BEST NETWORK STATISTICS

Accuracy fr = 0.1 fr = 0.2 fr = 0.3 δ0.3 Neurons Synapses

Iris

Reservoir 94.0 76.2 59.0 55.1 0.70 124 494
Whetstone 92.0 88.0 92.0 84.0 0.91 54 680
SLAYER 84.0 84.0 64.0 64.0 0.74 27 140
EONS 94.0 89.4 75.2 62.4 0.81 20 19

Wine

Reservoir 94.0 76.3 59.0 55.1 0.70 124 494
Whetstone 98.3 96.6 94.9 93.2 0.96 63 860
SLAYER 96.6 100.0 88.1 91.5 0.94 36 320
EONS 96.6 82.4 70.3 66.0 0.78 39 56

Cancer

Reservoir 94.0 76.3 59.0 55.1 0.70 124 494
Whetstone 96.8 97.3 97.3 96.3 0.96 70 1000
SLAYER 96.3 96.3 93.6 87.2 0.94 52 640
EONS 94.1 86.7 78.8 74.4 0.83 61 67

0.
47

1

0.
60

9

0.
66

5

0.
70

2

AUC Resiliency Metric for 30% Failure Rate

Di
st

rib
ut

io
n

(G
au

ss
ia

n
Fi

t) EONS, iris
SLAYER-20, iris
Whetstone-20, iris
reservoir, iris

Fig. 4. Gaussian fitted distribution of g0.3 for each of the four algorithms
on the iris dataset.

Figures 4 - 6 give Gaussian-fitted distributions for the
area-under-the-curve metric g0.3 for each of the four algo-
rithms. These distributions give a summary of the overall
resiliency and performance characteristics of the four differ-
ent algorithms on each of the datasets. These figures give
similar information as those in Figures 1 through 3, but
they also elucidate a few other resiliency features. First, as
they summarize the statistics across all 100 networks for
each dataset, we see that EONS networks have relatively
consistent resiliency behavior (across the 100 networks) on
all three datasets, whereas Whetstone is most consistent on
the wine and cancer datasets and is least consistent on the
iris dataset. This indicates that the resiliency performance of
the algorithm can greatly depend on the dataset for some
approaches. Second, although the Whetstone and SLAYER
approaches both use back-propagation-style approaches, it is
clear that Whetstone gives more consistent resiliency results.
We speculate that this is likely due to the n-hot encoding for
output nodes that is used for Whetstone. This output encoding
approach is used for Whetstone to prevent dead output neurons
during training, but it appears that it can also help deal with
failures during inference.

Finally, it is worth that in calculating the performance at
each failure rate, we only evaulate one set of potential failures.
Figure 7 shows each of the failure curves for each algorithm
on the cancer dataset. As we can see in these figures, the
performance of Whetstone and SLAYER networks appears
to depend dramatically on the synapses selected to fail, as

0.
47

1

0.
67

5

0.
83

1

0.
89

1

AUC Resiliency Metric for 30% Failure Rate
Di

st
rib

ut
io

n
(G

au
ss

ia
n

Fi
t) EONS, wine

SLAYER-20, wine
Whetstone-20, wine
reservoir, wine

Fig. 5. Gaussian fitted distribution of g0.3 for each of the four algorithms
on the wine dataset.

0.
47

1

0.
73

4

0.
82

3

0.
92

0

AUC Resiliency Metric for 30% Failure Rate

Di
st

rib
ut

io
n

(G
au

ss
ia

n
Fi

t) EONS, cancer
SLAYER-20, cancer
Whetstone-20, cancer
reservoir, cancer

Fig. 6. Gaussian fitted distribution of g0.3 for each of the four algorithms
on the cancer dataset.

indicated by the vacillating behavior of the failure curves.
This is not surprising given previous work that has found that
certain neurons are critical to performance in convolutional
neural networks (as noted in Section II). In future work, we
intend to more fully explore the resiliency of these networks by
systemically introducing failures across various combinations
of synapses, rather than selecting random sets of synapses to
fail as we do in this work.

V. TRAINING FOR RESILIENCY

In the previous sections, we demonstrate the performance of
different algorithms in the face of synaptic failures. None of
these algorithms were adapted to account for future failures.
Much of the work in producing more fault tolerant neural
networks requires some sort of re-training step, which may

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
in

g
Ac

cu
ra

cy
EONS, cancer average SLAYER-20, cancer average

0.0 0.2 0.4 0.6 0.8
Fraction of Synapses Deleted

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

Ac
cu

ra
cy

Whetstone-20, cancer average

0.0 0.2 0.4 0.6 0.8
Fraction of Synapses Deleted

reservoir, cancer average

Fig. 7. Failure curves for each of the trained networks on the cancer dataset.

not be possible when the networks are deployed in real-world
environments. We propose instead to adapt the original training
algorithms in order to produce initially networks that are more
resilient to errors.

A. Optimizing for Resiliency

Here, we focus on the EONS algorithm, though, in Section
VI, we discuss how this work may be extended for the other
training approaches. The EONS approach, as described in
Section III-A, is based on evolutionary optimization. In the
original EONS algorithm, the structure and parameters of
SNNs are optimized to maximize the performance of the
network on the application, which is defined as the fitness
function in EONS. In the case of classification tasks, the fitness
function is typically defined as accuracy on the training set.
However, as has been shown in previous work [28], the EONS
fitness function can be adapted to include other objectives of
interest, including minimizing network size or resiliency to
small corruptions in the network. In [28], corruptions in the
network were limited to small perturbations in the synapse
weight values, which might be a result of a bit-flip in a digital
system or drift in an analog system. In this work, we extend
that approach by allowing for corruptions to include multiple
complete synapse failures.

Our approach is as follows. Rather than defining the fitness
function f(net) for EONS as the accuracy of the network
a(net) on the training set as was used in the previous baseline
results, we also create n corrupted versions of the network we
are evaluating. We impose a failure rate of fr on each of these
n networks neti, randomly selecting the synapses to fail for

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Synapses Deleted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

EONS-1.0, iris average
EONS-0.9, iris average
EONS-0.5, iris average
EONS-0.1, iris average

EONS-1.0, iris average
EONS-0.9, iris average
EONS-0.5, iris average
EONS-0.1, iris average

Fig. 8. Iris results for EONS trained with the fitness function described in
Equation 2 for varying values of ω. The original EONS results (ω = 1) are
also shown in the figure and are the same as those shown in Figure 1.

each type of network. Then, the fitness function is defined as
follows:

f(net) = ωa(net) +
1− ω
n

n∑
i=1

a(neti) (2)

In this equation, ω is a weighting factor that can bias the
fitness function to focus more attention on performance on the
original network or more on the performance of the corrupted
networks. When using this function, EONS requires both the
original network to perform well on the task and the corrupted
networks to perform well on the task. The intended goal is
to produce networks that will perform better in the face of
failures than a network trained without factoring in potential
for failures or corruptions in the network. In this work, we use
n = 10, but we evaluate different values for ω to understand
the effect of that parameter on performance.

B. Results

The results for EONS with the fitness function given in
Equation 2 are shown in Figures 8 through 10 for varying
values of ω. Note that for ω = 1, EONS with the fitness
function in Equation 2 is equivalent to the original EONS
fitness function. As such, the results for EONS with ω = 1
are the same as those shown in Figures 1 through 3.

As can be seen in these figures, by leveraging ω 6= 1, we
can improve the resiliency of networks produced by EONS.
Moreover, we can see that the value of ω = 0.1 gives
the best results of the different values of ω evaluated in
terms of resiliency. It is worth noting that using ω 6= 1 can
also result in slightly degraded performance of the original
network; however, with any failures, all of the ω 6= 1 networks
outperform the original EONS approach. The statistics for the
best performing networks for ω = 0.1 are compared with the
best performing original EONS networks in Table III. As we

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Synapses Deleted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
in

g
Ac

cu
ra

cy
EONS-1.0, wine average
EONS-0.9, wine average
EONS-0.5, wine average
EONS-0.1, wine average

EONS-1.0, wine average
EONS-0.9, wine average
EONS-0.5, wine average
EONS-0.1, wine average

Fig. 9. Wine results for EONS trained with the fitness function described in
Equation 2 for varying values of ω. The original EONS results (ω = 1) are
also shown in the figure and are the same as those shown in Figure 2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Synapses Deleted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

EONS-1.0, cancer average
EONS-0.9, cancer average
EONS-0.5, cancer average
EONS-0.1, cancer average

EONS-1.0, cancer average
EONS-0.9, cancer average
EONS-0.5, cancer average
EONS-0.1, cancer average

Fig. 10. Cancer results for EONS trained with the fitness function described
in equation 2 for varying values of ω. The original EONS results (ω = 1)
are also shown in the figure and are the same as those shown in Figure 3.

can see from this table, the networks produced using EONS
ω = 0.1 have better resiliency characteristics, comparable
testing accuracy with no failures and comparable network size
to those produced using the original EONS approach.

We compare the performance of EONS with ω = 0.1 to the
original EONS, Whetstone, and SLAYER results in Section
IV in Figures 11 through 13. (We omit the reservoir results
here because of their poor performance.) As we can see in
these figures, the ω = 0.1 EONS approach gives much better
performance overall than the original EONS approach. In the
case of the iris dataset, the new EONS approach has much
better performance than all of the approaches, whereas in
the case of the cancer dataset, the approach essentially meets
the performance of SLAYER, but is more consistent in its

0.
60

9

0.
66

5

0.
70

2

0.
81

2

AUC Resiliency Metric for 30% Failure Rate

Di
st

rib
ut

io
n

(G
au

ss
ia

n
Fi

t) EONS-1.0, iris
SLAYER-20, iris
Whetstone-20, iris
EONS-0.1, iris

Fig. 11. Gaussian fitted distributions of g0.3 for the original EONS approach,
SLAYER, and Whetstone, alongside the EONS approach with ω = 0.1 on
the iris dataset.

0.
67

5

0.
75

6

0.
83

1

0.
89

1

AUC Resiliency Metric for 30% Failure Rate

Di
st

rib
ut

io
n

(G
au

ss
ia

n
Fi

t) EONS-1.0, wine
SLAYER-20, wine
Whetstone-20, wine
EONS-0.1, wine

Fig. 12. Gaussian fitted distributions of g0.3 for the original EONS approach,
SLAYER, and Whetstone, alongside the EONS approach with ω = 0.1 on
the wine dataset.

performance than SLAYER. However, in the case of the wine
dataset (Figure 12), the new EONS approach still lags with
respect to SLAYER and Whetstone, indicating that there is still
room for improvement. As noted above, the EONS networks
are still at least an order of magnitude smaller than the
SLAYER and Whetstone networks. As such, this approach can
provide a way to produce well-performing, resilient spiking
neural networks that are also size, area, and energy efficient
neuromorphic deployments.

0.
73

4

0.
81

8
0.

82
3

0.
92

0

AUC Resiliency Metric for 30% Failure Rate

Di
st

rib
ut

io
n

(G
au

ss
ia

n
Fi

t) EONS-1.0, cancer
SLAYER-20, cancer
Whetstone-20, cancer
EONS-0.1, cancer

Fig. 13. Gaussian fitted distributions of g0.3 for the original EONS approach,
SLAYER, and Whetstone, alongside the EONS approach with ω = 0.1 on
the cancer dataset.

TABLE III
TRAINING FOR RESILIENCY BEST NETWORK STATISTICS

Accuracy fr = 0.1 fr = 0.2 fr = 0.3 δ0.3 Neurons Synapses

Iris EONS 94.0 89.4 75.2 62.4 0.81 20 19
EONS ω = 0.1 94.0 91.8 86.8 76.0 0.88 24 29

Wine EONS 96.6 82.4 70.3 66.0 0.78 39 56
EONS ω = 0.1 100.0 88.6 79.7 71.7 0.85 55 49

Cancer EONS 94.1 86.7 78.8 74.4 0.83 61 67
EONS ω = 0.1 94.7 92.7 89.4 82.5 0.90 74 49

Though there are key advantages in producing more resilient
networks by using this new fitness function for EONS, there
are also consequences to utilizing this approach. The major
issue associated with this approach is that it takes significantly
longer to train using this fitness function. In particular, using
the original EONS approach, for each fitness function we
are only evaluating the accuracy for one network. When
using the new approach, the accuracy must be calculated for
n+1 networks during the fitness function evaluation. Because
this accuracy calculation requires simulating the network’s
behavior on each of the training data instances, it is the most
time intensive part of the calculation. As such, it requires
approximately n + 1 times as long to train the same number
of generations using this new fitness function as the original
EONS fitness function. Also, as noted above, the testing
accuracy in the absence of failures can be slightly reduced
using the new approach as well.

VI. DISCUSSION AND CONCLUSION

In this work, we analyze the resilience characteristics of
four different types of algorithms for training spiking neural
networks for neuromorphic systems. We see that these differ-
ent algorithms have very different performance characteristics
with respect to resiliency. For example, liquid state machine
approaches have very poor resilience properties, while other
approaches can tolerate some failures and still operate fairly
well. As such, though robustness, resiliency, and fault toler-
ance are common cited reasons for utilizing neuromorphic
systems [1], it is clear that this characteristic can depend
significantly on the type of algorithm used. We show that
the two back-propagation algorithms that use fully connected
layers have the best resiliency.

In Section V, we describe an approach for training networks
that are more resilient to synapse failures using the EONS
framework, an evolutionary optimization-based approach. We
adapt the fitness function to include the evaluation of each
network with some number of failed synapses as part of
the overall performance of the network. As we showed in
Section V-B, by adding this as part of the training process,
we can improve the resilience of the network to failures.
This sort of augmentation is more difficult for other types
of algorithms, where there is not an equivalent of a fitness
function. However, evolutionary-based approaches have been
used as an optimization “outer-loop” to define hyperparameters
and network topologies of both liquid state machines [29]
and traditional, deep learning-style networks like those used

in Whetstone and SLAYER [30]. In future work, we intend
to apply the same sort of fitness function adaptation that we
use here to optimize for resilience in genetic algorithm or
evolutionary algorithm-based training for liquid state machines
and the structure and/or hyperparameters of back-propagation-
based training approaches.

ACKNOWLEDGMENT

This material is based in part upon work supported by
the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under contract
number DE-AC05-00OR22725, and in part by the Laboratory
Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC.

REFERENCES

[1] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[2] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola et al., “Neuromorphic
computing using non-volatile memory,” Advances in Physics: X, vol. 2,
no. 1, pp. 89–124, 2017.

[3] G. Chakma, M. M. Adnan, A. R. Wyer, R. Weiss, C. D. Schuman, and
G. S. Rose, “Memristive mixed-signal neuromorphic systems: Energy-
efficient learning at the circuit-level,” IEEE Journal on Emerging and
Selected topics in Circuits and Systems (JETCAS), vol. 8, no. 1, pp.
125–136, March 2018.

[4] R. Weiss, J. S. Najem, M. S. Hasan, C. D. Schuman, A. Belianinov,
C. P. Collier, S. A. Sarles, and G. S. Rose, “A soft-matter biomolecular
memristor synapse for neuromorphic systems,” in 2018 IEEE Biomedical
Circuits and Systems Conference (BioCAS). IEEE, 2018, pp. 1–4.

[5] S. Buckley, A. N. McCaughan, J. Chiles, R. P. Mirin, S. W. Nam, J. M.
Shainline, G. Bruer, J. S. Plank, and C. D. Schuman, “Design of super-
conducting optoelectronic networks for neuromorphic computing,” in
2018 IEEE International Conference on Rebooting Computing (ICRC).
IEEE, 2018, pp. 1–7.

[6] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based
neuromorphic design with high defects,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[7] N. C. Hammadi and H. Ito, “A learning algorithm for fault tolerant
feedforward neural networks,” IEICE TRANSACTIONS on Information
and Systems, vol. 80, no. 1, pp. 21–27, 1997.

[8] Z.-H. Zhou and S.-F. Chen, “Evolving fault-tolerant neural networks,”
Neural Computing & Applications, vol. 11, no. 3-4, pp. 156–160, 2003.

[9] B. E. Segee and M. J. Carter, “Fault tolerance of pruned multilayer net-
works,” in IJCNN-91-Seattle International Joint Conference on Neural
Networks, vol. 2. IEEE, 1991, pp. 447–452.

[10] P. Chandra and Y. Singh, “Fault tolerance of feedforward artificial neural
networks-a framework of study,” in Proceedings of the International
Joint Conference on Neural Networks, 2003., vol. 1. IEEE, 2003, pp.
489–494.

[11] C.-T. Chin, K. Mehrotra, C. K. Mohan, and S. Rankat, “Training
techniques to obtain fault-tolerant neural networks,” in Proceedings
of IEEE 24th International Symposium on Fault-Tolerant Computing.
IEEE, 1994, pp. 360–369.

[12] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[13] M. Lee, K. Hwang, and W. Sung, “Fault tolerance analysis of digital
feed-forward deep neural networks,” in 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2014, pp. 5031–5035.

[14] C. Yakopcic, R. Hasan, and T. M. Taha, “Tolerance to defective
memristors in a neuromorphic learning circuit,” in NAECON 2014-IEEE
National Aerospace and Electronics Conference. IEEE, 2014, pp. 243–
249.

[15] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty, “Design of fault-tolerant
neuromorphic computing systems,” in 2018 IEEE 23rd European Test
Symposium (ETS). IEEE, 2018, pp. 1–9.

[16] ——, “Fault tolerance in neuromorphic computing systems,” in Proceed-
ings of the 24th Asia and South Pacific Design Automation Conference.
ACM, 2019, pp. 216–223.

[17] C. Schorn, A. Guntoro, and G. Ascheid, “An efficient bit-flip resilience
optimization method for deep neural networks,” in 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 1507–1512.

[18] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2017, p. 8.

[19] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 979–984.

[20] C. Schorn, T. Elsken, S. Vogel, A. Runge, A. Guntoro, and G. Ascheid,
“Automated design of error-resilient and hardware-efficient deep neural
networks,” arXiv preprint arXiv:1909.13844, 2019.

[21] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” arXiv preprint
arXiv:1804.09081, 2018.

[22] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Training deep neural networks for binary communication with the
whetstone method,” Nature Machine Intelligence, vol. 1, no. 2, p. 86,
2019.

[23] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems, 2018,
pp. 1412–1421.

[24] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in 2016 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 2016, pp. 145–154.

[25] C. D. Schuman, J. S. Plank, G. Bruer, and J. Anantharaj, “Non-traditional
input encoding schemes for spiking neuromorphic systems,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–10.

[26] J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao,
J. Anantharaj, C. D. Schuman, M. E. Dean, G. S. Rose, N. C. Cady,
and J. Van Nostrand, “The TENNLab suite of LIDAR-based control
applications for recurrent, spiking, neuromorphic systems,” in 44th
Annual GOMACTech Conference, Albuquerque, March 2019. [Online].
Available: http://neuromorphic.eecs.utk.edu/raw/files/publications/2019-
Plank-Gomac.pdf

[27] X. Sun, X. Ren, S. Ma, and H. Wang, “meprop: Sparsified back
propagation for accelerated deep learning with reduced overfitting,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 3299–3308.

[28] M. Dimovska, J. T. Johnston, C. D. Schuman, J. P. Mitchell, and
T. E. Potok, “Multi-objective optimization for size and resilience of
spiking neural networks,” in 2019 IEEE Annual Ubiquitous Computing,
Electronics, and Mobile Communication Conference. IEEE, 2019, p.
In press.

[29] J. J. Reynolds, J. S. Plank, and C. D. Schuman, “Intelligent reservoir
generation for liquid state machines using evolutionary optimization,”
in 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2019, pp. 1–8.

[30] R. M. Patton, J. T. Johnston, S. R. Young, C. D. Schuman, D. D. March,
T. E. Potok, D. C. Rose, S.-H. Lim, T. P. Karnowski, M. A. Ziatdinov

et al., “167-pflops deep learning for electron microscopy: from learning
physics to atomic manipulation,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis. IEEE Press, 2018, p. 50.

