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Abstract—The trajectory prediction is a critical and challeng-
ing problem in the design of an autonomous driving system. Many
AI-oriented companies, such as Google Waymo, Uber and DiDi,
are investigating more accurate vehicle trajectory prediction
algorithms. However, the prediction performance is governed
by lots of entangled factors, such as the stochastic behaviors
of surrounding vehicles, historical information of self-trajectory,
and relative positions of neighbors, etc. In this paper, we propose
a novel graph-based information sharing network (GISNet) that
allows the information sharing between the target vehicle and
its surrounding vehicles. Meanwhile, the model encodes the
historical trajectory information of all the vehicles in the scene.
Experiments are carried out on the public NGSIM US-101 and
I-80 Dataset and the prediction performance is measured by
the Root Mean Square Error (RMSE). The quantitative and
qualitative experimental results show that our model significantly
improves the trajectory prediction accuracy, by up to 50.00%,
compared to existing models.

Index Terms—GNN, Information Sharing, ADS, Vehicle Tra-
jectory Prediction

I. INTRODUCTION

Although the autonomous driving car is fully committed
to liberating human from the boring driving activities, its
safety and efficiency are still the primary concerns. In real
road traffic, the number of different possible trajectories a car
can take in just a few seconds may be countless. Figure 1
illustrates some examples. A precise trajectory prediction helps
the autonomous car take the correct action in next stage.

Trajectory prediction is a challenging problem, because it
does not only depend on the historical information of the target
vehicle, but also the historical information of the surrounding
vehicles. In recent years, lots of intricate problems become
solvable due to the growing application of the learning in many
fields, such as computer vision [1] [2] [3], natural language
processing [4], intelligence hardware [5] [6], etc. Many papers
have been published to improve trajectory prediction [7] [8]
[9]. Despite the efforts, the accuracy of the existing prediction
models is not high enough. This is because the surrounding
vehicles will also respond to its environment and adjust its
trajectory accordingly. Without considering this, the model can
not make an accurate trajectory prediction. It is necessary to
have information from all neighboring vehicles, and consider
the potential evolvements of their trajectories in the near
future. For example, the human drivers observe and surmise
other drivers’ latent intention from the mirrors of the car. To
emulate this behavior, an information sharing network should
be established among all vehicles.

Fig. 1: Trajectory Prediction Example

In the rest of the paper, we use the name “target vehicle”
to refer to the vehicle whose trajectory is to be predicted and
use the name “neighbors” to refer to the surrounding vehicles.
We propose a novel graph-based information sharing network
(GISNet), which allows the target and neighbor vehicles to
propagate and communicate the trajectory features among
themselves. Our proposed network is evaluated using the
NGSIM highway vehicle trajectory dataset. The RMSE of the
prediction is compared to several existing models. Compared
with other existing trajectory prediction methods, our approach
can reduce the prediction error by up to 50.00%. The following
summarizes the major contributions of our work:

• A new trajectory prediction model is developed, which
allows information sharing among vehicles using a graph
neural network.

• The prediction is based on the embedding feature, which
is derived from multi-dimensional input sequences in-
cluding the historical trajectory of target and neighboring
vehicles, and their relative social positions.

• The model allows us to consider the latent intention of
surrounding neighbors during the prediction. Compared
with other existing trajectory prediction methods, our
approach can reduce the prediction error by up to 50.00%
and achieve the state-of-the-art performance.

The rest of the paper is structured as follows: In Section
II, we review the existing methods, from which we got the
inspirations. This is followed by details of our GISNet in
Section III. Section IV and Section V describe our experiment
setup and report the results. Finally, Section VI concludes this
work and discusses possible future extensions.
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II. RELATED WORKS

Over the past several years, autonomous driving has become
increasingly critical [10] [11] [12]. Lots of researchers dedi-
cated their attention to accurate vehicle trajectory prediction
[13] [14]. Due to space limitation, in this section, we focus
on the pros and cons of some most recent works in this area.

The Long Short-term Memory (LSTM) network is an ef-
fective model to memorize the trajectory of vehicles. Several
works took the LSTM as the backbone network for the
trajectory prediction [15] [16] [17] [18]. In [19], the authors
proposed to use a convolutional neural network (CNN) to
replace the LSTM. Their work aimed at increasing the model
parallelism and efficiency. It shows that, without the LSTM,
the efficiency of the model can be improved significantly.
However, the input of the model is still formulated using the
sequence-to-sequence format. The historical trajectory input
are embedded into a fixed size of vector through the fully
connected (FC) layers. In order to preserve the temporal
information, the historical trajectory data are stacked together
based on their time order.

Recently, many researchers started to investigate the re-
lationship between the target vehicle and its surrounding
neighbors [20] [21]. Hand-crafted features were integrated into
the model for trajectory prediction [22] [23] [24]. Nonetheless,
the performance of the motion prediction highly depends on
the quality of the hand-crafted features. The method of social
pooling was first proposed in [13]. The interactions among all
individuals can be shared between multiple LSTMs through
the social pooling layer. As an extension of the original
social pooling, the convolution operation was introduced into
the model in [25]. The LSTM layer encodes the historical
trajectory of each vehicle into a feature vector. Each encoded
trajectory feature was put into the corresponding location in a
3D tensor, which is the same as its location in the background
scene. Finally, all the features were constructed as a 3D tensor.
Therefore, the reception field in the convolution operation
can explore the interaction between different objects. The
non-local multi-head attention mechanism was invented to
combine the relevant neighbor information [26]. The model
divides the road environment into grids. The learned attention
weight specifies the amount of attentions that need be placed
on the trajectory features associated to each grid during
the prediction. Instead of considering the interactions among
neighboring objects, [27] considers the relationship between
the object and its scene background. The authors concatenated
the multi-agent encoding and the scene context encoding as
the input of the trajectory prediction network. The predicted
trajectory was regulated by the constraints which was learnt
from the scene background.

In this work, we focus on enhancing the information sharing
between vehicles. By adopting Graph Convolutional Network
(GCN), the vehicles can learn the latent intention of its
surrounding neighbors. The experimental results show that our
proposed approach achieves the state-of-the-art performance.

III. METHODS

Our proposed network is an end-to-end model. Each com-
ponent module is fully differentiable. The loss is calculated by
measuring the difference between the predicted trajectories and
the ground truth trajectories. In this section, each component
of the network will be elaborated.

A. Historical Trajectory Formulation

The historical trajectory of each vehicle is formulated as a
sequence:

Xcoor = {Ct−1, Ct−2, ..., Ct} (1)

where,
Ct = {xt, yt} (2)

is the collection of the historical trajectory coordinates which
contain x, y values. The t is the time horizon of the historical
trajectory, which is set to be 3 in this paper. The unit of t is
”second”.

B. Vehicle Information Embedding

The LSTM model has the ability to memorizing the long
term dependency from the past information. So, it can be
used for extracting the features from the vehicle’s historical
trajectories, as shown in the left part of Figure 2. The LSTMs,
which are used for extracting the embedding trajectory features
from all vehicles, share the same weight. In this way, the
hidden states of all vehicles have consistent representations.
For each vehicle i, a 1-d embedding vector xtraj with size l is
extracted by the LSTM, which captures the trajectory features
of the vehicle. It will be placed into a m ∗ n grid system
to from a 3D tensor. The placement position is determined
by the grid location of the vehicle in the scene background.
Hence, the relative positional relationship of each vehicle can
be preserved. In this paper, the m and n are defined as 13 and
3 following the setting in [25]. Those grids that do not have a
vehicle will be filled with zeros. The tensor is processed by a
convolutional layers followed by pooling layers to extract the
1-d feature vector, xsocial. It contains the social relationships
among the vehicles, as shown in the middle part of Figure 2.

At the same time, we keep a separate copy of the trajectory
feature of the target vehicle, xtraj , as shown at the bottom
of Figure 2. It will be integrated with the xsocial later in the
prediction stage.

C. Graph-based Information Sharing

After the LSTM encoding, the embedding collection of all
vehicles’ historical trajectory is generated, which is denoted
as:

Xvehicles = {x1traj , x2traj , ..., xntraj} (3)

where n is the number of vehicles that can be observed in the
current scene. For better prediction, the target vehicle needs
to learn the latent intention from its surrounding neighbors.
However, the structure of the information sharing network are
generated from the non-euclidean domain.

In this paper, we employ the spectral graph convolutional
operation to allow the information sharing among all vehicles.
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Fig. 2: Graph-based Information Sharing Network (GISNet) Architecture

The spectral graph convolution is described as the multiplica-
tion of a graph signal with the filter in the Fourier space. The
graph Fourier transform is characterized as the multiplication
of a graph signal with the eigenvector matrix of the graph
Laplacian. Compared with the traditional CNN model, the
graph convolutional network has its talent in exploring the
meaningful features from the irregular structures [28]. The
equation of information propagation between layers in the
Graph Convolution Network (GCN) is defined as following:

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)) (4)

where,

Â = A+ I (5)

Â is the matrix contains the adjacency matrix A and the
identity matrix I . The Â matrix has two objectives: 1. allow
the information sharing between the node and its adjacent
neighbors. 2. each node can consider the lower level feature
from itself. The D̂ is a matrix that describes the degree of each
node. The feature of each node at layer l is defined as H(l). For
the input layer, the H is equal to X . The σ is the activation
function to improve the representability of the model. The
GISnet architecture applies a two-layer graph convolutional
network (GCN). The feature size in both layers is set to 64.
The Â is a zero-one matrix. Its ijth entry (âij) is zero if there
is no connection between vertices i and j, otherwise it is 1.
In our case, the vehicle which is being predicted is connected

with all surrounding vehicles. The forward path of the model
is defined as following:

f(X,A) = (D̂−
1
2 ÂD̂−

1
2ReLU(D̂−

1
2 ÂD̂−

1
2XW (0))W (1))

(6)
where the ReLU is the activation function between layers.
The W (0) and W (1) are the parameters within the two graph
convolution layers. The architecture of the information sharing
module is given in the top part of Figure 2. After the two layer
convolution operations, a 1-d feature xinfo that summarizes
the latent intention of surrounding neighbors is acquired.

In order to improve the training efficiency, we employ
the batch-wise operation for multi graph in the GCN, as
shown in the bottom right of Figure 2. First, all graphs
are concatenated together to build a fusion graph. Then, a
fusion block diagonal matrix is established. Each one of them
represents the connectivity of the graph instance.

D. Future Trajectory Generation

Finally, all three features, {xtraj , xsocial, xinfo}, are con-
catenated together to construct an embedding of the vehicle
future trajectory, which is to be predicted. Then, the embed-
ding feature is passed to the trajectory generation module, as
shown in the top right of Figure 2. In the generation module,
the LSTM based decoder is applied to generate the sequence of
x, y coordinates for the next 5 cycles, which is the prediction
horizon that we are interested. The output of the model is
denoted as the following sequence:

Ycoor = {Ct−1, Ct−2, ..., Ct} (7)



where,
Ct = {xt, yt} (8)

is the predicted x, y values of the target vehicle at time t.

IV. EXPERIMENTS

A. Dataset

Our proposed model is evaluated on the public Next Genera-
tion Simulation (NGSIM) dataset. The NGSIM dataset collects
the detailed vehicle trajectory information on eastbound I-80
in the San Francisco Bay area [29] and southbound US 101
in Los Angeles [30]. The study area for I-80 and 101 are 500
meters (1,640 feet) and 640 meters (2,100 feet), respectively.
Figure 3 shows the study area of the NGSIM dataset. All the
data are segmented into three 15 minute periods. The dataset
is splitted into three subsets: training, validation and testing.
We follow the same approach in [25] to split the vehicle
trajectories into 8 second segments. The first 3 seconds are
treated as the historical data, and the following 5 seconds
trajectories are to be predicted.

(a) I-80 study area
(b) I-101 study area

Fig. 3: Data Collection Procedure

B. Evaluation Metrics

In this paper, we use the Root Mean Square Error (RMSE)
[31] to evaluate the performance of our proposed approach.
This metric measures the difference between the predicted
trajectory and the observed trajectory (ground truth) using the
following equations:

RMSE =

√
1

n
Σn

m=1(xTm − x′mT )2 + (yTm − y′mT )2 (9)

where xtm and ytm are the predicted coordinates. The m is the
sample index. The total number of testing sample is denoted
as n, and x′m

t and y′m
t are the ground truth coordinates. T is

the prediction horizon of the model. In our experiment, T is
varying from 1 to 5 seconds.

C. Comparison Baselines

• Constant Velocity (CV) [32]: A baseline method that
uses the constant velocity (CV) Kalman filter to forecast
vehicle trajectory .

• GAIL-GRU [33]: A generative adversarial imitation
learning model that takes the ground truth trajectories

of all adjacent neighbors as the model input. The GRU
is like a long short-term memory (LSTM) but has less
network parameters than LSTM.

• Vanilla LSTM (V-LSTM): The typical LSTM based
encoder-decoder model. The vehicle historical trajectory
is fed into the model as the input. Then, the LSTM output
is decoded as the vehicle trajectory prediction.

• Social-LSTM (S-LSTM) [34]: The model applies the
social pooling layer, which allows the information sharing
between each individual LSTM.

• ConvSocial-LSTM (CS-LSTM) [25]: The model uses the
convolution operation to extract the features from the
social tensor. The prediction-centric vehicle’s feature is
concatenated with social feature.

• Non-local Social Pooling (NLS-LSTM) [26]: This model
is based on an LSTM encoder-decoder. The social pooling
is applied to capture the interactions between all vehicles.
Besides, non-local multi-head attention mechanism is
used to summarize the relevant information.

• Multi-Agent Tensor Fusion (MATS) [27]: This model
concatenates the background scene feature and the vehi-
cle historical trajectory feature into a multiagent tensor.
A generative adversarial networks (GAN) based module
is included for generating the future trajectory prediction.

D. Experiment Setup

We run our experiments on a desktop server running Ubuntu
16.04 OS with 3.60GHz Intel Xeon W-2123 CPU, 256GB
Memory and a NVIDIA 2080Ti GPU. During the training,
the Adam optimizer is applied with a 0.001 learning rate. The
graph-based information sharing model has a 64 dimensional
embedding state. We use the ReLU to be the activation
function. Batch normalization and dropout are also applied for
preventing the overfitting. The training and testing framework
is built in PyTorch. The Dataset split method is the same as
[25].

V. RESULTS

A. Predicted Trajectory Accuracy Improvement

Table I shows the RMSE results for the models being
compared. The first thing we can notice is that all the deep
learning based methods outperform the traditional model (CV).
It demonstrates the effectiveness of the deep learning based
model. The vanilla LSTM considers the temporal trajectory
of the target vehicle. And the generative adversarial imitation
learning - gated recurrent unit (GAIL-GRU) extends the lstm
architecture by importing the GAN. However, none of them
consider the impact of the neighbor cars. Hence, they also
perform poorly in the prediction.

The second thing we can observe is that, all the models
which consider the surrounding vehicles give the lower RMSE.
It proves that the neighbors information does help the ve-
hicle trajectory prediction. Moreover, our proposed method
outperforms all other baselines due to the information-sharing
mechanism. Compared with the original convolutional social
pooling (CS-LSTM) method, we can achieve 45.35%, 34.02%,



TABLE I: The evaluation of RMSE in meters on NGSIM dataset

Horizon (s) CV GAIL-GRU V-LSTM S-LSTM CS-LSTM NLS-LSTM MATS GISNet

1 0.73 0.69 0.68 0.65 0.61 0.56 0.66 0.33
2 1.78 1.51 1.65 1.31 1.27 1.22 1.34 0.83
3 3.13 2.55 2.91 2.16 2.09 2.02 2.08 1.42
4 4.78 3.65 4.46 3.25 3.10 3.03 2.97 2.14
5 6.68 4.71 6.27 4.55 4.37 4.30 4.13 3.23

(a) Fast Speed Traffic

(b) Low Speed Traffic

(c) Congested Traffic

(d) Crowded Traffic

Fig. 4: Trajectory Prediction Visualization. Black vehicle: the car which is being predicted. Yellow vehicles: surrounding
neighbors. Black dash lines: historical trajectory. Blue dash line: predicted trajectory. Red dash line: ground truth trajectory.

31.69%, 30.74% and 25.86% accuracy improvements when
prediction horizon varies from 1s to 5s. Compared with the
MATS, our model also achieves 50.00%, 38.06%, 31.73%,
27.95% and 21.79% accuracy improvements for the 5 predic-
tion horizons. Although CS-LSTM and MATS both considers
the features from neighboring vehicles, they were placed in
the social tensor and processed by a convolutional neural
network. The GISNet outperforms MATS and CS-LSTM due
to two reasons: 1) Small CNN kernels are used in these model,
therefore, they only consider the joint features of vehicles in
adjacent area. Although the covered area of the joint features
increases as the network goes deeper, the resolution of the
information is also reduced due to the pooling layers. 2)
The social tensor does not only have the useful features of
the neighboring vehicles, but also has lots of empty features
located at the grid location not occupied by any vehicles.

Finally, compared with the NLS-LSTM, the proposed model
reduces the RMSE by 41.07%, 31.97%, 29.70%, 29.37% and
24.88% in different prediction horizons, respectively.

B. Vehicle Predicted Trajectory Visualization

In this section, we visualize several predicted trajectories
and the ground truth to give a qualitative demonstration of the
prediction performance. All the results are sampled from the
NGSIM data set. And the data in the NGSIM is collected from
the real world. We select 4 different scenarios to reproduce
some typical scenes in daily-life: a) Fast speed traffic, b) Low
speed traffic, c) Congested traffic, d) Crowded Traffic. The
results are given in Figure 4. In the figure, the black vehicle
is the car which is being predicted, and the yellow vehicles
are the surrounding neighbors. The black dash lines are the
historical trajectory of each vehicle. The blue dash line is the



trajectory predicted by model, and the red dash line is the
ground truth trajectory.

As we can see that, our predicted trajectories are close to
the ground truth. In the high speed traffic scenario, the cars
are driving at a relatively high speed. The final location of
the predicted trajectory is almost the same as the observed
location, as shown in Figure 4.a. In the low speed traffic
scenario (Figure 4.b), the GISNet learns that the vehicle is in a
relative low speed, and the predicted trajectory is shorter. For
the congested traffic scenario, the result is given in Figure 4.c.
We can see that all vehicles on the left most lane are moving,
however, the car which is being predicted is in a congested
lane. Consequently, the model is not affect by the surrounding
cars and can predict the stationary trajectory. Last, the most
complex situation in daily life is the crowded traffic, where
the target vehicle is moving but crowded with many cars.
Figure 4.d shows the predicted result in this scenario, where
the vehicle is trying to make a lane change. In this scenario,
our model can still predict the motion. In general, our model
can output an accurate car location for the near future (1s, 2s
and 3s) and make good prediction of the trend of the trajectory
for the longer term (4s and 5s).

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel graph-based information
sharing network (GISNet). The network has the ability to
encode the historical trajectory of each vehicle and allow
the information sharing between the target vehicle and its
surrounding neighbors. Furthermore, the model can fuse the
features extracted from both Euclidean domain and non-
Eculidan domain to make the future trajectory prediction.
We apply our network to a public dataset to demonstrate
its capability to predict an accurate trajectory in the future.
Meanwhile, our method outperforms other reported trajectory
prediction methods and can reduce the prediction error by
up to 50.00%. The qualitive results also demonstrate that the
GISNet can capture the vehicle motion trend and generate the
accurate prediction result.

In future work, the background scene feature should also
be taken into account for the trajectory prediction. In [27],
the additional features are extracted from the image to help
making a more accurate prediction. However, the general
feature may not help the model a lot, in contrast, it may
introduce extra noises. Hence, a more detailed and targeted
feature need to be extracted and included in model prediction,
for example, the road segmentation information. Intuitively,
the additional feature could be used to further improve the
accuracy of the vehicle trajectory prediction.
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