Survey on Automated End-to-End Data
Science?

Djallel Bouneffouf Charu Aggarwal Horst Samulowitz Beat Buesser Thanh Hoang Udayan Khurana

IBM Research
Yorktown, USA

IBM Research
Yorktown, USA

Sijia Liu

MIT-IBM IBM Research

Abstract—Data science is labor-intensive and human
experts are scarce but heavily involved in every aspect of
it. This makes data science time consuming and restricted
to experts with the resulting quality heavily dependent
on their experience and skills. To make data science
more accessible and scalable, we need its democratization.
Automated Data Science (AutoDS) is aimed towards that
goal and is emerging as an important research and business
topic. We introduce and define the AutoDS challenge,
followed by a proposal of a general AutoDS framework
that covers existing approaches but also provides guidance
for the development of new methods. We categorize and
review the existing literature from multiple aspects of the
problem setup and employed techniques. Then we provide
several views on how Al could succeed in automating end-
to-end AutoDS. We hope this survey can serve as insightful
guideline for the AutoDS field and provide inspiration for
future research.

Index Terms—Machine learning, Data science, Automa-
tion

I. INTRODUCTION AND MOTIVATION

Data science covers the whole spectrum of data
processing, beginning from data integration, distributed
architecture, automating machine learning, data visual-
ization, dashboards and BI, data engineering, deploy-
ment in production mode, and automated and data-
driven decisions (Figure 1). A key part of data science
is machine learning in which the system learns from
data-driven examples in order to make predictions about
examples in which some of the attributes are missing.
In supervised learning, this process of modeling uses
fully specified examples, referred to as training data,
whereas in unsupervised learning, this process is done
with incompletely specified examples. Beyond these core
areas, many parts of data science such as data acqui-
sition, data integration, and data visualization (which
are traditionally not considered machine learning) are

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

IBM Research
Yorktown, USA Dublin, Ireland Dublin, Ireland Yorktown, USA

IBM Research IBM Research IBM Research

Tejaswini Pedapati Parikshit Ram Ambrish Rawat Martin Wistuba Alexander Gray
IBM Research
Cambridge, USA Yorktown, USA Yorktown, USA Dublin, Ireland

IBM Research IBM Research

Dublin, Ireland

IBM Research
Yorktown, USA

Ground Truth
Gathering

Data Cleansing|

Feature
Engineering

Model
Selection
Parameter
Ontimizath

Model
Improvement

Runtime
Monitoring
Model
Deployment

Ensemble

Fig. 1. Steps involved in a typical data science workflow.

essential to the effective deployment of data science and
machine learning solutions.

Much of data science requires manual intervention
in the form of the choice of software (and its set up)
and the overall learning pipeline; this makes the use
of available resources over diverse settings very chal-
lenging. For example, machine learning often requires
significant manual exploration of the input data before
the data science pipelines are experimented for various
tasks. This is a time consuming task, and is often the
primary bottleneck in the ad hoc effort required from the
analyst. Given a set of machine learning tools and a set of
problems, how does one choose what type of resource to
deploy in a particular setting? How does one decide how
to set its parameters? When training has been performed
with a particular data set, how does one decide that the
constructed model has now become stale? All these ques-
tions often require manual intervention from a user who

must experiment with various settings in trial-and-error
mode, until decisions on deployment have been made.
This type of situation militates against the successful
use of wide resources over many settings. A fundamental
question in automated data science is whether one can
automate large parts of the learning process so that
key meta-decisions on model choice, (hyper)parameter
tuning, and model freshness can be made with minimal
user intervention. Indeed, the holy grail of being able
to make machines truly intelligent is to automate large
portions of machine learning that remain hand crafted to
a large extent even today. Even though deep learning has
already helped in automating many tasks such as feature
engineering (that were earlier hand crafted in traditional
machine learning), there remain significant lacunae in
what is truly possible in terms of reducing the need for
human intervention.

The challenges in automating data science may arise
at individual stages of the pipeline, or in the construction
of the entire pipeline itself. Furthermore, each stage in
the pipeline poses its own set of unique challenges —
for example, challenges in the data integration stage
are quite different from those in the machine learning
stage. We will discuss these challenges in the context
of automated data science solutions. Rather than an
exhaustive survey, our purpose in this paper is mainly
to provide a qualitative overview and editorial outlook
for the topic of end-to-end automation of data science.
We begin by describing what artificial intelligence (AI)
currently automates in the parts of the data science
pipeline, then highlight some general approaches that
could address the entire process more holistically.

II. WHAT DOES Al AUTOMATE TODAY?

Although the goal of end-to-end automated data sci-
ence is still quite far, many parts of the data science
pipeline have been automated with significant success.
Here we provide a broad overview of many such cases.

A. Automated Data Collection

Data engineering is the aspect of data science that
focuses on the ground truth gathering step with the focus
on data collection and analysis. For all the questions
that data scientists answer using large data sets, there
have to be mechanisms for collecting and validating
those relevant information. In this context, much of
modern hardware technology has already automated data
collection; simple transactions today such as phone usage
or credit card swipes lead to data collection behind the
scenes. The real issue is that there is a cost in even using
the data collected unless there are ways of parsing out

parts of the data relevant and useful for the application at
hand. The field of active learning [1] provides methods
capable of selectively collecting appropriate and relevant
data for a particular application. This process integrates
data collection and knowledge discovery, and automates
large parts of the process to minimize manual effort.

B. Automated Data Integration

The process of integrating data from heterogeneous
sources into a single, unified view has been a signif-
icant barrier to many data science tasks — a variety
of infrastructures generate different data formats with
varying levels of contamination in the raw data. This
necessitates custom ETL (Extract, Transform, Load)
code for data cleaning and integration.. This process
has been automated with a declarative interface [2] al-
lowing for extendable domain-specific data models; a Al
planner performs the integration, optimizing for the plan
completion time. This tool is designed for schema-less
data querying, code reuse within specific domains, and
is robust to messy unstructured data, demonstrated by its
capability of integrating data from diverse sources such
as web click-stream logs and the census. However, the
application of such data cleaning and integration tools
have been relatively limited, and there is various open
research challenges to wider automation. For example,
for any given set of data sources, a truly autonomous
system should be able to automatically detect the nature
of the data and the ETL steps required for the application
at hand.

C. Automated Feature Engineering

The use and effectiveness of different approaches to
feature engineering is heavily dependent on the nature
of the data and the learning task. Problems involving
images, videos and texts have seen significant success
with deep neural networks where the feature engineering
is an integral part of the modeling step, and explicit
separate feature engineering has received less attention.
In contrast, tabular and relational data rely heavily on
explicit feature engineering (automated or otherwise)
— it is often the most crucial step in terms of the
downstream predictive performance, and consequently
being the most time consuming, making it a prime
candidate for automation. We categorize the automation
schemes based on the type of data they are applied to:
Tabular data: For tabular data, the basic set of features
can be extended to transform the data into a feature
space that benefits specific models. The set of transfor-
mations is usually very large and efficient automation
cannot be achieved by exhaustively trying all possible

transformations. One way of reducing the size of the
set is by learning the effectiveness of different trans-
formations for a given “type” of prediction problem on
data seen in the past by the system [3]. This relies
on characterizing the problem (data features, targets,
objectives) and effectiveness of each transformation.
For any new data, the system suggests transformations
based on its learned experience. It does so by learning
meta-predictors (which themselves are classification or
regression models) on the historical data and statistics.
The meta-learning step requires essential preprocessing
of the data through quantile sketching which converts
data of different shapes and sizes to a canonical format.
The prominent advantage of this approach is the low
runtime cost, which is due to a handful of inference
steps.

Relational data: According to a recent survey among
more than 8000 data scientists [4], 65% are frequently
working with relational data, making it the most popular
data type. However, manual feature engineering with
relational data is a tedious task requiring multiple SQL
queries in an error-prone trial-and-error fashion until
desired results are obtained. Therefore, automated fea-
ture engineering for multi-relational data has recently
received increasing attention. There are two basic prob-
lems: the first involves the choice of appropriate joining
paths in entity relation graphs to collect relevant data
for a given prediction target, and the second requires
choice of the right transformations/aggregations to turn
the joined tables into useful features. An early method
learned inductive decision trees by propositionalizing
relational data (transforming relational data with multiple
tables into a single table with features) [5]. The problem
has been recently revisited with Deep Feature Synthesis
(DES) [6], but limited to numerical data. The One Button
Machine (OneBM) extends support for complex trans-
formations on non-numerical data [7]. Both automated
schemes are rule-based where the transformations and
joining path choices are predefined based on heuristics.
While choosing the right join is a computationally in-
tractable problem, transformations can be learned from
relational data using deep neural network [8].

D. Automated Machine Learning

Automated Machine learning (AutoML) has received
increasing attention, starting with hyper-parameter op-
timization (HPO) to determine the most appropriate
parameters for a ML model (for example, the number
of trees in a random forest), to automating selection of a
ML pipeline (such as feature transformation & selection
combined with predictive modeling). AutoML automates

the model selection, (hyper)parameter optimization, and
even ensembling steps of the data science workflow,
addressing a wide range of difficult technical challenges
ranging from HPO, automated feature engineering, to
neural network design. The neural network paradigm
has itself been a fillip to the development of automated
data science by enabling automated feature engineering
to a large extent, and has provided successful end-to-
end solutions in specific domains like machine transla-
tion [9] which traditionally relied on large amounts of
hand-crafted features. Nevertheless, the move to fully
automated systems has been incomplete because they
continue to require human-centric tuning of large num-
bers of parameters or design choices. AutoML bridges
this additional gap to a large extent; in addition, newer
technologies such as reinforcement learning can play
a significant role. Auto-WEKA [10] and Auto-sklearn
[11] are the main representatives for solving AutoML by
so-called sequential parameter optimization. Both apply
Bayesian Optimization to find useful ML pipelines.
Auto-sklearn improves upon Auto-WEKA by utilizing
meta-learning [12] and ensembling.

E. Visualizations and Decision Making

At the end of the day, the results of machine learning
are often fed into visualization and/or decision making
tools. This is a particularly tricky part of the process,
since the nature of the visualizations and decisions are
highly application-specific. This makes automation less
feasible. Nevertheless, progress has been made in some
partial respects.

The ability to create good visualizations became a
must-have skill for all data analysts. In current data
visualization tools, users need to know their data well in
order to create good visualizations. However, the users
need tools to automatically recommend visualizations
rather than hand-craft highly customized tools. The
authors in [13] propose a system for automatic data
visualization that tackles the problem of Visualization
recognition where given a visualization, it provides a
prediction of whether it is “good” or “bad”. This is
achieved by training a binary classifier to model the
quality of visualization. They also study the Visualiza-
tion ranking problem, which provides a relative order-
ing of two given visualizations. This is achieved with
a supervised learning-to-rank model, although expert
knowledge is also considered with the use of expert
rules. Therefore, the approach is not a fully automated
system yet, and it uses human criteria in the form of
expert rules. Nevertheless, this still provides a modicum

of automation in the drive towards automated visual
systems.

Beyond visualization, the final goal of data science
is to support decision making. Automated Business
Intelligence systems are software applications that uti-
lize automated processes in order to extract actionable
organizational knowledge. Authors in [14] proposes an
architecture to guide the development of such systems
and in so doing outlines a feasible approach by which
organizations can adopt them in support of their strate-
gic decision making processes. The goal is to gain a
competitive advantage by utilizing information garnered
from web sources to inform corporate decision making.
Similar to [14], the authors in [15] proposed to automate
the extraction, processing, and display of indicators
provide useful and current data for operational meet-
ings. The feasibility of extracting specific metrics from
information systems was evaluated as part of a longer-
term effort to build a business intelligence architecture.
Analytics were performed on the data, a process that
generated indicators in a dynamic Web-based graphical
environment that proved valuable in discussion and root
cause analysis. However, this type of decision making is
still not fully automated. A key aspect that distinguishes
it from truly intelligent (human-like) systems is the
trial-and-error process that is endemic to all forms of
intelligent decision making. This will be the topic of
discussion in the next section.

III. HOw CAN AI AUTOMATE END-TO-END DATA
SCIENCE?

Much of what Al automates today remain as parts
of the data science pipeline. However, to be able to
work from raw sensory inputs to final decisions is a key
challenge that is required for a high level of automation.
This forms the basic goal of end-to-end data science, as
opposed to the automation of individual parts of the data
science process, discussed in the previous sections. Here
we highlight general frameworks and approaches which
offer possible avenues for considering more holistic
automation.

A. Reinforcement Learning

The main challenge that arises in building fully au-
tomated systems at the level of humans is the fact that
the construction of a machine learning system requires
a large number of design choices, and the specific
combination of these design choices can regulate the
effectiveness of the system at hand. In many cases, these
decisions need to be made sequentially. For example,
if one is to construct a neural network for a particular

task, then the choice of the number of layers naturally
precedes the choice of the number of units in each layer.
Humans are naturally prone to experimenting with these
large numbers of decision choices, and are often able to
construct a reasonably accurate system with a relatively
modest number of iterations of trial and error. Therefore,
creating systems that automatically perform trial and
error, and learn from successes and failures is the key
to creating a truly intelligent automated system. This
type of setting is naturally the domain of reinforcement
learning in which a system can learn from the success
and failure of trials [16]. Reinforcement learning is used
extensively for video games [17], [18], in which one
makes a set of sequential decisions in order to win
virtual rewards in the form of game points or victories,
and the success of a particular set of decisions can
be easily judged. It is noteworthy that many of these
solutions work with raw sensory inputs (e.g., pixels) and
provide the final decisions as the result, which is a high
level of end-to-end automation. This situation applies
perfectly to the automated machine learning paradigm
where the success of a particular design choice can be
easily evaluated.

Reinforcement learning is also used through the bandit
framework [19]-[23]. For instance, the authors in [24]-
[28] introduce an algorithms that tackles this dilemma
in Context-Based Information Retrieval, Context-Based
recommender system and in active learning. It is based
on dynamic exploration/exploitation and it can adap-
tively balance the two aspects by deciding which sit-
uation is most relevant for exploration or exploitation.
Using combinatorial bandit frameworks, authors of [29]
tackle the online feature selection problem by addressing
the combinatorial optimization problem in the stochastic
bandit setting with bandit feedback, utilizing the Thomp-
son Sampling algorithm.

B. Deep Learning

The problem of Automated Deep Learning (ADL)
boils down to designing a strategy that given a dataset
and a task along with some constraints, yields a well-
trained deep learning model that can be used for solving
the task. Designing an optimizer that given a search
space, looks for an optimal architecture, forms the key
component of ADL methods. The current trends in ADL
methods explore a variety of approaches to solve this
optimization problem, most of which build upon the
well established theories in reinforcement learning (RL)
and evolutionary algorithms (EA). It should come as no
surprise that both of these ideas borrow heavily from the
success of the biological paradigm.

As a specific example, consider the case where one
wants to learn the best neural architecture for a particular
data domain in a problem-specific way. The RL-based
optimizers involve learning a controller which is trained
to output actions that lead to architecture encodings
which correspond to high-performance deep learning
models. [30] and [31] were one of the first works to
explore RL-based approaches for architecture search.
Both these works build networks by sequentially choos-
ing its layers and its set of operations. The validation
accuracy of the final trained network is used as a reward
to update the controller. [32] take a different approach.
Starting from a given architecture, they learn how to
modify it in order to improve its performance. In this
context, an interesting reinforcement learning system is
proposed in [31], which creates an optimal convolutional
neural network architecture for image classification. The
convolutional neural network whose architecture is to be
constructed is considered the child network, whereas the
neural network that creates the architecture is referred
to as the controller network. The controller network is
a recurrent neural network. The controller network is
used to make decisions about the parameters of the child
network, and correct decisions are rewarded by higher
accuracy of prediction. These types of controller-child
combinations are coupled with a boiler-plate reinforce-
ment learning algorithm such as policy gradients [33].
The basic idea is that the controller network (together
with the reinforcement learning algorithm) experiments
with the parameters of the child network and encodes
correct decisions within the parameters of the controller
network. The controller network is essentially a policy
network that outputs probabilities of specific decisions
about the design of the neural architecture. This broad
approach is very similar to how a human experiments
with the parameters of a neural network and learns from
the experiences obtained with the resulting performance.
Other variants of techniques that use reinforcement
learning to design neural architectures are discussed
in [30]. The main drawback of the reinforcement learn-
ing paradigm is that it is computationally expensive, and
it can sometimes be difficult to repeatedly train systems
with different sets of parameters in order to judge the
success of a particular setting.

A key bottleneck in these methods that the evalua-
tion of an architecture requires expensive and repeated
training. This problem can be alleviated by reusing pa-
rameters of smaller or shallower networks with function-
preserving operations [34]. The resulting “warm-start”
model requires fewer epochs to train a new network [32],

[35]. In another line of work, a large common network
is trained, and it is hypothesized that sampling archi-
tectures from this large network (either uniformly [36]
or according to an optimizer [37]) will yield a useful
ranking of the sampled architectures. Some works relax
the assumption that the choice of operations has to be
discrete and learn a parameterized architecture choice
jointly with model parameters [38], [39]. Other works
extrapolate the learning curve of a network [40] by pre-
dicting whether a training run will improve the current
best solution (and terminating the run early).

It is worth noting that high accuracy is often not the
only objective of a deep learning model. Often addi-
tional practical constraints like number of parameters
or inference time need to be incorporated. This task
is either solved by aggregating all objective functions
to a single one and solving it with standard ADL
optimizers [41] or approaches which search for pareto-
optimal solutions [42].

Search spaces are a useful component in defining the
“‘scope” within which an optimizer will look for an
optimal architecture. For example, in the convolutional
neural network setting, does one use a conventional
network like VGG as the “base” model, or does one
use a modern skip-connection-based ResNet as the base
model? The nature of the search space in the latter is
more complex. The search spaces have progressively
become complex in their definitions over the course of
developments in automated deep learning approaches.
The cell-based search space, initially proposed by [43],
enables an easy transfer of deep learning models across
datasets and tasks. The task for the ADL optimizer
reduces to select cells which are stacked to derive the
final architecture. A cell is built as a combination of
blocks, each block has two inputs and two corresponding
operations and a combination operator to output a new
state. The flexibility of picking input states allows for
learning artifacts like parallel convolutions, branches,
and skip-connections.

Architecture search is not the only component of deep
learning modeling pipeline that has benefited from au-
tomation. Additional components like search for heuris-
tics of optimization methods [44], a search for suitable
activation functions [45], storing few experiences [46],
and automated data augmentation [47] has also been
investigated for automation in some of more recent
works.

C. Black-Box Optimization

One of the major challenges in designing automated
learning system is its black-box optimization nature

when explicit expressions of the gradients are difficult to
obtain. For example the problems of architecture search
and feature engineering do not offer a continuous loss
function that can be optimized with gradient descent.
The only mode of interaction with the learning system
is by submitting inputs and receiving feedback. In Au-
toDS, the commonly-used black-box optimization meth-
ods include Bayesian optimization (BO) [48], zeroth-
order (ZO) optimization [49], derivative-free trust region
method (DF-TRM) [50]. BO has been largely used in
AutoDS for the model selection and hyper-parameter
tuning tasks [10]. However, it suffers from poor scal-
ability with increasing dimensionality. ZO optimization
mimics first-order descent-type methods and have been
applied in AutoDS for solving multi-armed bandit prob-
lems [51]. In contrast to BO, ZO optimization has
provably favorable convergence. However, it suffers from
high query complexity and the smoothness requirement
in the objective function. DF-TRM approximates the
black-box function with a parametric surrogate func-
tion (such as linear or quadratic functions) fit on the
available function evaluations, which allows for efficient
constrained optimization on the surrogate [50], [52]-
[54]. For the continuous variables they are restricted to
a neighborhood of the current point (the trust region)
and for the discrete variables the number of changes
is restricted. The size of the trust region corrects for
the discrepancy between the parametric surrogate and
the black-box. DF-TRM is computationally intensive,
impeding its widespread use compared to BO and ZO
optimization. At this point its also worthwhile mention-
ing that one can combine multiple Al technologies such
as leveraging Al planning in this context [55] to tackle
the various challenges.

D. Evolutionary Algorithms

Reinforcement learning methods follow the ubiquitous
biological paradigm of reward-based trial and error in or-
der to create automated systems for AIl. Another natural
paradigm that copies biological principles is that of evo-
lutionary algorithms. These methods encode solutions to
problems (e.g., neural architectures) as codes that are
akin to chromosomes in the biological DNA. Just as bio-
logical organisms evolve and become intelligent through
(Darwinian) reward-driven trial-and-error, evolutionary
algorithms (EA) use a Darwinian approach of selecting
highly-performing architectures and recombining their
best characteristics to explore the search space. It is not
difficult to see that this is a rough simulation of how
the biological brain has evolved over the millenia. EA-
based optimizers follow a standard optimization strategy

wherein a population of networks is maintained and a
set of evolution steps are carried out until termination.
This traditionally involves 1) selecting “parents” (i.e.,
highly performing architectures) in a “Darwinian” way
2) applying mutation and recombination operations to
create new “individuals” 3) evaluating the “fitness” of the
recombined individuals. This is followed by repeating
the Darwinian process of selecting the most fit sur-
vivors of the population and recombining them again.
Evolutionary approaches span a highly diverse set of
ADL methods each of which vary in their definitions
of encodings, set of mutations and selection strategies,
notable ones being [56], [57]. The main challenge arises
from the large search space and over which one must
optimize the population. Indeed, the success of biological
evolution is owed to the fact that the evolution of the
ecosystem can be viewed as a massively (but loosely)
parallel process that has occurred over hundreds of
millions of years over millions of species. We have
nothing approaching that kind of computational power
today.

E. Meta-Learning

A truly automated system can make reward-driven
decisions, just like any intelligent organism. Although
this goal is achieved to some extent by reinforcement
learning, the main problem with reinforcement learning
solutions is that they require massive amounts of data,
and are therefore mostly good for learning in artificial
settings like board/video games, where one can generate
unlimited amounts of data with self-play. Similarly,
although reinforcement learning robots can learn to work
on their own in virtual simulators relatively easily, this is
much harder to generalize to physical robots, where the
speed of data collection is constrained by the limitations
of the number of tasks a physical robot can perform in
a specific period of time, and also by the fragility of
physical robots to the consequences of “bad” trials. On
the other hand, most humans can learn from relatively
limited amounts of data. For example, a child does
not need too many examples of a toy truck to learn
what it is, and can easily generalize the idea to real-
world trucks of completely different shape, size, and
color. This difference between humans and automated
learning systems can be partially explained by the fact
that the former is far more powerful in terms of its
ability to perform unsupervised learning. Humans take
in massive amounts of sensory input, which is processed
in an unsupervised way in order to perform continu-
ous learning over time. This unsupervised learning can
be viewed as a continuous process of massive “pre-

training” that makes it easier to learn specific tasks with
a smaller amount of data. Furthermore, much of the
unsupervised and supervised learning is encoded in the
highly “regularized” neural structure of the brain, which
has evolved over millions of years and is inherited from
one generation to the next. This inheritance from one
generation to the next is a form of transfer learning [58],
which is required to be incorporated more seamlessly
in automated systems than is possible with the highly
customized systems available today. Ideas surrounding
learning over many past problems in order to learn more
efficiently for the current problem is often called meta-
learning or learning to learn [59].

IV. OUTLOOK AND PERSPECTIVE

Whatever Al approach will succeed in automating
end-to-end data science it will need to overcome a num-
ber of challenges: Generalization. The first is the issue
of overfitting that is further amplified by automation
since a machine can essentially fine-tune the flow until
generalization is non-existent. In some cases, the original
goals of the application are compromised due to an
automated system, such as an RL system, overfitting
to difficult-to-specify rewards. While generalization has
been widely studied, the implications of fully automated
systems in this respect are not quite as well studied [60].
Safety. An alarming observation in this respect cor-
respond to safety issues— RL systems regularly learn
cheats and hacks in video games that were not originally
intended. It is not useful to have a robot that makes
messes and then cleans them up— or, more darkly, a robot
nurse with similar behavior.

Deep vs Non-Deep Learning. Many of the ideas de-
veloped solely in the context of deep learning can be
applied more generally to data science with any ML
method, and vice versa. We expect and hope to see
more transfer between these bodies of work. In some
data modalities, such as images, what might otherwise
be considered data preparation transformations (at least
certain ones) are handled by layers in the network itself,
blending data preparation and model into one end-to-
end training process. This general idea can be extended
beyond deep learning. Likewise, in practice, not all of the
data preparation needed for practical problems is always
effectively captured in network layers, and thus the kinds
of treatments of the data preparation transformations
outside of deep learning can be applied to systems that
employ deep learning as well.

Domain Knowledge. It is notable that this survey has
given little discussion to the notion of domain knowl-
edge, which is so important to most data scientists. Do-

main knowledge can range from simple derived features
such as the body mass index (BMI) of a person, to en-
coding the syntax of a language for an NLP application.
While it is an article of faith among data scientists that
data science solutions benefit from domain knowledge,
its role in fully automated data science remains an open
question. A key observation is that its track record has
been mixed in more advanced forms of AIl. With limited
data, domain knowledge has indeed been extremely
useful as a natural regularizer. However, with increased
data, a surprising observation has been that completely
data-driven learners (with zero domain knowledge) have
consistently outperformed systems with encoded domain
knowledge. For example, machine translators with zero
knowledge of syntax now routinely outperform domain
rule-based machine translators, and chess learners with
zero knowledge (e.g., AlphaZero) now routinely out-
perform chess programs like Stockfish in which chess
grandmasters have spent years in fine tuning the eval-
uation function. This is simply due to the fact that
domain knowledge can be a “biased” upper-bound to
the intelligence we expect the system to eventually have.
To give a biological analogy, a child can learn a lot
from the domain knowledge given by parents, but it is
a poor substitute to what the child can learn through
their own experiences. There is also no common-sense
reasoning in a machine setting — let alone reasoning at
an domain expert level. However, there will always be
some situations in which domain knowledge is useful.
Early work already exists [61], but it still has a long
way to go.

Lifelong learning and unsupervised learning. Another
is that of life-long learning - while various works ex-
ists on this topic already it is incredibly complex to
automatically facilitate life-long learning. One reason is
the missing taxonomy of data. For instance, when the
predictions of the model influence the newly incoming
data it is often not valid to use those data points for
retraining. Unsupervised learning remains a significant
challenge, because it is hard for systems to know which
parts of the massive amounts of unsupervised data will
be useful in future applications. To a large extent, it
is expected that truly automated and intelligent systems
will be obtained by combining reinforcement learning,
unsupervised learning, and transfer learning in a way
that is not fully understood today. While reinforcement
learning systems require massive amounts of data, this
problem will be alleviated by unsupervised learning over
large periods of time that can take in massive amounts
of data, and learn the portions that can obtain rein-

forcement rewards. At the same time, transfer learning
will be required in order to inherit the generalizable
knowledge over different situations in much the same
way as humans inherit the highly regularized structure
of their neurons across generations. In this sense, transfer
learning can be viewed as a simpler and faster alternative
to what one tries to achieve with the use of evolutionary
algorithms. This ability to combine unsupervised learn-
ing, supervised learning, and reinforcement learning in a
reward-driven context has remained the most important
problem in artificial intelligence in recent years. Recent
successes in unsupervised learning, such as the ability to
realistically replicate intricate data objects like images
with the use of generative adversarial networks has
brought significant advancements to unsupervised learn-
ing — however, a complete and seamless integration
of supervised, unsupervised, and reinforcement learning
remains elusive.

Computational cost. The single largest impediment to
automated data science is the computational aspect of it.
One must view the limited success of automated data sci-
ence by comparing it to what biological organisms have
benefited from— we have nothing close to the computa-
tional power that simulates the massively parallel “com-
putations” that have occurred in the (implicit) “compu-
tational” process of biological evolution over billions of
organisms. One should view our relative successes and
failures to biological learning and automation from the
perspective of the humbling limitations we work with
today. However, with new hardware paradigms on the
horizon, such as quantum computing, it is difficult to
know how much progress we will make along these
lines— the only certainty is that one should expect the
unexpected.

REFERENCES

[1] C. C. Aggarwal, X. Kong, Q. Gu, J. Han, and S. Y. Philip,
“Active learning: A survey,” in Data Classification, Chapman
and Hall/CRC, 2014.

[2] G. Kougka, A. Gounaris, and A. Simitsis, “The many faces of
data-centric workflow optimization: a survey,” IJDSA, vol. 6,
no. 2, pp. 81-107, 2018.

[3] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and
D. Turaga, “Learning feature engineering for classification,” in
1JCAI 2017.

[4] Kaggle, “The state of data science & machine learning,”
https://www.kaggle.com/surveys/2017, 2017.

[5] A. Knobbe, A. Siebes, and D. van der Wallen, “Multi-relational
decision tree induction,” in PKDD, 1999.

[6] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis:
Towards automating data science endeavors,” in DSAA, 2015.

[7]1 T.L.Hoang,J. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan,
“One button machine for automating feature engineering in
relational databases,” CoRR, vol. abs/1706.00327, 2017.

[8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. L. Hoang, T. N. Minh, M. Sinn, B. Buesser, and
M. Wistuba, “Learning features for relational data,” CoRR,
vol. abs/1801.05372, 2018.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:09.144, 2016.

C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Auto-
weka: Automated selection and hyper-parameter optimization of
classification algorithms,” CoRR, vol. abs/1208.3719, 2012.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient automated machine learning,” in
NeurlPS, 2015.

J. Vanschoren, “Meta-learning: A survey,” arXiv preprint
arXiv:1810.03548, 2018.

Y. Luo, X. Qin, N. Tang, and G. Li, “Deepeye: Towards automatic
data visualization,” in /ICDE, 2018.

D. S. Soper, “A framework for automated web business intelli-
gence systems,” in HICSS, 2005.

P. G. Nagy, M. J. Warnock, M. Daly, C. Toland, C. D. Meenan,
and R. S. Mezrich, “Informatics in radiology: automated web-
based graphical dashboard for radiology operational business
intelligence,” Radiographics, vol. 29, no. 7, pp. 1897-1906, 2009.
R. S. Sutton and A. G. Barto, Reinforcement learning - an
introduction. Adaptive computation and machine learning, MIT
Press, 1998.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep rein-
forcement learning,” arXiv preprint arXiv:1312.5602, 2013.

R. Noothigattu, D. Bouneffouf, N. Mattei, R. Chandra, P. Madan,
K. R. Varshney, M. Campbell, M. Singh, and F. Rossi, “Teaching
Al agents ethical values using reinforcement learning and policy
orchestration,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pp. 6377-6381, 2019.

R. Allesiardo, R. Féraud, and D. Bouneffouf, “A neural networks
committee for the contextual bandit problem,” in Neural Informa-
tion Processing - 21st International Conference, ICONIP 2014,
Kuching, Malaysia, November 3-6, 2014. Proceedings, Part I,
pp. 374-381, 2014.

B. Lin, D. Bouneffouf, G. A. Cecchi, and I. Rish, “Contextual
bandit with adaptive feature extraction,” in 20/8 IEEE Interna-
tional Conference on Data Mining Workshops, ICDM Workshops,
Singapore, Singapore, November 17-20, 2018, pp. 937-944,
2018.

D. Bouneffouf and R. Féraud, “Multi-armed bandit problem with
known trend,” Neurocomputing, vol. 205, pp. 16-21, 2016.

A. Balakrishnan, D. Bouneffouf, N. Mattei, and F. Rossi, “In-
corporating behavioral constraints in online AI systems,” in
The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019., pp. 3—
11, 2019.

D. Bouneffouf, S. Parthasarathy, H. Samulowitz, and M. Wistuba,
“Optimal exploitation of clustering and history information in
multi-armed bandit,” in Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, pp. 2016-2022, 2019.

D. Bouneffouf, A. Bouzeghoub, and A. L. Gancarski, “A
contextual-bandit algorithm for mobile context-aware recom-
mender system,” in International Conference on Neural Infor-
mation Processing, pp. 324-331, Springer, 2012.

D. Bouneffouf, A. Bouzeghoub, and A. L. Gangarski, “Ex-
ploration/exploitation trade-off in mobile context-aware recom-

[26]

[27]

[28]

[29]

[30]

[31]
(32]

[33]

[34]

[35]

[36]

(371
[38]
[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

mender systems,” in Australasian Joint Conference on Artificial
Intelligence, pp. 591-601, Springer, 2012.

D. Bouneffouf, A. Bouzeghoub, and A. L. Gangarski, “Contex-
tual bandits for context-based information retrieval,” in Interna-
tional Conference on Neural Information Processing, pp. 35-42,
Springer, 2013.

D. Bouneffouf, A. Bouzeghoub, and A. L. Gancarski, “Hybrid-
e-greedy for mobile context-aware recommender system,” in
Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing, pp. 468—479, Springer, 2012.

D. Bouneffouf, R. Laroche, T. Urvoy, R. Féraud, and R. Alle-
siardo, “Contextual bandit for active learning: Active thompson
sampling,” in International Conference on Neural Information
Processing, pp. 405412, Springer, 2014.

D. Bouneffouf, I. Rish, G. A. Cecchi, and R. Féraud, “Context
attentive bandits: Contextual bandit with restricted context,” in 1J-
CAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 1468—
1475, 2017.

B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neu-
ral network architectures using reinforcement learning,” arXiv
preprint arXiv:1611.02167, 2016.

B. Zoph and Q. V. Le, “Neural architecture search with rein-
forcement learning,” arXiv preprint arXiv:1611.01578, 2016.

H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient
architecture search by network transformation,” in AAAZ 2018.
R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine learning,
vol. 8, no. 3-4, pp. 229-256, 1992.

T. Chen, 1. J. Goodfellow, and J. Shlens, “Net2net: Accelerating
learning via knowledge transfer,” CoRR, vol. abs/1511.05641,
2015.

M. Wistuba, “Deep learning architecture search by neuro-
cell-based evolution with function-preserving mutations,” in
ECML/PKDD, 2018.

G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in
ICML, 2018.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in /CML, 2018.

H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable
architecture search,” CoRR, vol. abs/1806.09055, 2018.

S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic neural
architecture search,” in ICLR, 2019.

B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating
neural architecture search using performance prediction,” CoRR,
vol. abs/1705.10823, 2017.

C. Hsu, S. Chang, D. Juan, J. Pan, Y. Chen, W. Wei, and
S. Chang, “MONAS: multi-objective neural architecture search
using reinforcement learning,” CoRR, vol. abs/1806.10332, 2018.
T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” in ICLR,
2019.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in
ICLR, 2018.

1. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer
search with reinforcement learning,” in /CML, 2017.

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activa-
tion functions,” in ICLR, 2018.

M. Riemer, T. Klinger, D. Bouneffouf, and M. Franceschini,
“Scalable recollections for continual lifelong learning,” in The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019., pp. 1352—
1359, 2019.

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V.
Le, “Autoaugment: Learning augmentation policies from data,”
CoRR, vol. abs/1805.501, 2018.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Fre-
itas, “Taking the human out of the loop: A review of bayesian
optimization,” IEEE, vol. 104, no. 1, pp. 148-175, 2016.

Y. Nesterov and V. Spokoiny, “Random gradient-free minimiza-
tion of convex functions,” FCM, vol. 2, no. 17, pp. 527-566,
2015.

A. R. Conn, K. Scheinberg, and L. Vicente, “Global conver-
gence of general derivative-free trust-region algorithms to first-
and second-order critical points,” SIAM Journal, vol. 20, no. 1,
pp. 387415, 2009.

A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for
online convex optimization with multi-point bandit feedback,” in
COLT, 2010.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
derivative-free optimization, vol. 8. Siam, 2009.

A. Choromanska, B. Cowen, S. Kumaravel, R. Luss, M. Rigotti,
I. Rish, P. Diachille, V. Gurev, B. Kingsbury, R. Tejwani, and
D. Bouneffouf, “Beyond backprop: Online alternating mini-
mization with auxiliary variables,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, pp. 1193-1202,
2019.

S. Liu, P. Ram, D. Bouneffouf, G. Bramble, A. R. Conn,
H. Samulowitz, and A. G. Gray, “Automated machine learning
via ADMM,” CoRR, vol. abs/1905.00424, 2019.

A. Biem, M. Butrico, M. Feblowitz, T. Klinger, Y. Malitsky,
K. Ng, A. Perer, C. Reddy, A. Riabov, H. Samulowitz, D. M. Sow,
G. Tesauro, and D. S. Turaga, “Towards cognitive automation of
data science,” in AAAI, 2015.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan,
Q. V. Le, and A. Kurakin, “Large-scale evolution of image
classifiers,” in ICML, 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Aging evolution
for image classifier architecture search,” in AAAL 2019.

S. J. Pan and Q. Yang, “A survey on transfer learning,” /EEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pp- 1345-1359, 2010.

S. Thrun and L. Pratt, Learning to learn. Springer Science &
Business Media, 2012.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and
A. Roth, “The reusable holdout: Preserving validity in adaptive
data analysis,” Science, vol. 349, no. 1, pp. 636-638, 2015.

Z. Hu, Z. Yang, R. R. Salakhutdinov, L. Qin, X. Liang, H. Dong,
and E. P. Xing, “Deep generative models with learnable knowl-
edge constraints,” in Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pp. 10522-10533, 2018.

