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Abstract—Neuromorphic computing is gaining momentum as
an alternative hardware platform for large-scale neural simula-
tion. However, with several major devices and systems available
and planned, often with very different characteristics, it is not
always clear which platform is suitable for which application.
Simulating the platform on conventional computers is typically
too slow to be of use, but an alternative approach is to implement
an ‘emulation’ of the hardware in FPGAs which can execute at
near-hardware speeds but does not commit to a specific hardware
architecture. We present an overlay model - a method which
superimposes bespoke features on top of a standard template
- in both hardware and software to implement neuromorphic
architectures using the POETS (Partially Ordered Event Trig-
gered Systems) system. This combination of overlays permits
very large-scale simulations to be performed in real time for
hardware exploration or application verification, while retaining
the flexibility to redefine either the hardware or software layer, if
results indicate potential to improve performance, or significant
design problems. Using this system we simulate up to 500,000
neurons on a single-box system, that can be scaled to ∼4,000,000
neurons in an 8-box configuration. Results indicate the crucial
constraint for real-time simulation: peak input spike rate per
neuron; and help to optimise both hardware and software around
neural application requirements. The preliminary architecture
demonstrates the feasibility of an overlay model, while indicating
directions for future neuromorphic systems. With POETS, we
introduce a platform that can help to shape and investigate the
neuromorphic architectures of the future.

Index Terms—neuromorphic, parallel, spiking, event-based

I. INTRODUCTION

NEUROMORPHIC chips are devices that implement spik-

ing neural networks directly in hardware. Such devices

offer unique hardware capabilities, particularly attractive for

embedded and robotic systems. Advances in both scope and

scale of neuromorphic designs have made them appear to be

one of the most promising new computing architectures of

the forthcoming decade. However, a potential limiting factor

in adoption is that such devices can be nondeterministic or

subject to process variation, and traffic patterns across the

chip may depend heavily upon the implemented network. As

This work is supported by EPSRC grant EP/N031768/1.

neuromorphic chips become larger, not only will design space

exploration prior to fabrication become crucial, it will also

be important to be able to simulate and explore the dynamic

characteristics of the system in real-world applications. Pure

software simulation is too slow for this purpose and cannot

usually interface with, e.g. sensors that may be providing

real-time data. It is therefore desirable to have a hardware

platform that abstracts as much of the neuromorphic design

as necessary to make sense of the internal operation, whilst

retaining enough of the dynamic features to be usable in a

real-time context. FPGAs seem like an obvious candidate for

such a plaform. We have created an FPGA-based system,

POETS, based on a series of hardware and software overlays

that can simulate large-scale networks of spiking neurons with

2 important advantages:

• the ability to experiment with design ideas without having

to commit to expensive custom silicon.

• scaling properties that permit networks to be simulated

at real-world speed and scale.

This system represents an intermediate between hard-

ware neuromorphics and software simulation: a proto-

typing platform to facilitate design space exploration at large

scales for neuromorphic systems.

II. NEUROMORPHIC PLATFORMS

A. ‘Classical’ Neuromorphic Chips

Neuromorphic computing has its origins in the work of

Carver Mead’s group in the early 1990’s developing analogue

hardware implementations of neural networks thought to repli-

cate the physics of neurons directly in silicon [1]. Initially

small-scale, these devices have grown in both size (in terms

of number of neurons or number of connections) and features

(e.g. on-chip learning [2] and multi-model support [3]) Modern

large-scale analogue neuromorphic systems are capable of im-

plementing many thousands of neurons [4], often with several

choices of neuron and synapse model [5]. Analogue neuromor-

phics offer two important advantages: direct implementation
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of potentially complex exponential and multiplication func-

tions, and very low power consumption. On the other hand,

historically, such devices have encountered challenges with

device variability [6], precise implementation of particular

dynamics [7], hardware interfacing, and scaling to very large

sizes (hampered by analogue process technology constraints).

It is possible to build functional analogue neuromorphic sys-

tems [8], but locating and matching on-chip devices with

desired transfer characteristics for a given problem may be

hard [9], and there are inevitably model compromises that

make such chips less attractive for computational neuroscience

than had been originally hoped.

B. Digital Neuromorphic Devices

Faced with these issues, and also with the vexing problem

of toolchain support with often nonstandard devices, many

researchers have turned to digital technology to implement

neuromorphic-like devices [10]. Some early attempts simply

co-opted more general-purpose parallel processing platforms

and implemented neural networks as an application overlay

on the hardware [11]. At around the same time as Mead’s

pioneering work, another community was exploring hard-

ware implementations of classical machine-learning neural

networks [12]. While not strictly ‘neuromorphic’, the recent

explosion of discoveries in deep learning has revived interest in

such devices, with several convolutional neural network chips

available today giving various levels of acceleration [13], [14].

By contrast, in the mid-2000s, a new style of digital neuro-

morphic chip emerged using low-power embedded cores con-

nected via a network-on-chip [15]. The two leading examples

of this approach are the SpiNNaker system from the University

of Manchester [16] and IBM’s TrueNorth [17]. These chips

exemplify different choices of operating regime and design

intent: SpiNNaker features a flexible internal architecture

using industry-standard ARM cores to allow for wide choice

of neural model and simulation approach, while the IBM

system uses fixed-function cores implementing specific neural

processing functions which can be configured much like an

FPGA to achieve a given application. Recently, the work of

Eliasmith, et al. in the Neural Engineering Framework [18] has

been implemented using a hardware accelerator [19], which in

some respects represents a hybrid of the two approaches.

However, it is an open question which architecture is

optimal in a given application, and there is a complex tradeoff

between local serialisation vs. global parallelism which has

revealed many issues but thus far few definitive solutions [20].

There is a need for design-space exploration for future such

devices, but traditional hardware platforms are too slow to

implement them effectively, and thus to date, much of digital

neuromorphic design has been by ad-hoc choices made using

‘back-of-the-napkin’ calculations or average-case estimates of

packet traffic, processing time, and numerical range.

C. Alternative Platforms

Finally, there is a group of quasi-neuromorphic platforms at

various stages of development which either leverage commer-

cially available parallel hardware, or advanced technologies

that may yield larger-scale designs in future. The memristor

is the quintessential representative of the latter with several

designs proposed or implemented, although systems remain at

small scale; this is a research technology for the future [21].

Several groups have explored using GPUs as a neural comput-

ing platform, with some success, albeit requiring very careful

mapping of network to the target architecture [22]. A large

community has been using FPGAs as a convenient platform

either for large-scale implementation [23] or design space

exploration [24]. FPGAs are particularly attractive because

they provide many of the underlying architectural facilities

of neuromorphics, benefit from the latest process technology

advances, run at hardware speed without the development

commitment of a full-custom ASIC [25], and can always be

reused for a different project or design attempt if the initial

design does not work out as expected. Notwithstanding, FP-

GAs present a major challenge to neuromorphic implementa-

tions: an extremely generic hardware substrate which does not

yield immediately clear design choices. What would be ideal

would be a standardised configuration for an FPGA or digital

device that implements the underlying hardware model of

neuromorphics but facilitates design space exploration - with

the capability to scale to (and simulate) large scale networks

without imposing overly restrictive model assumptions.

III. THE POETS OVERLAY

POETS describes a general, abstract hardware model that

could be implemented in various ways, with the following

specific properties amenable to a representation as a graph:

Self-contained compute elements A POETS platform con-

sists of a number of possibly heterogeneous processors

whose execution is entirely independent and have no

explicit timing relation.

Processor hierarchy POETS defines a system with ‘worker’,

‘supervisor’, and ‘executive’ processors having succes-

sively greater levels of global visibility and operating

system support.

Message-based interprocess communication A message: a

64-byte data item with application-defined contents, is

the atomic unit of communication.

Local memory Each processor has private access to its own

memory. There are no shared memory regions, and no

coherency mechanisms in the hardware.

Guaranteed message delivery Once a message has been is-

sued from a given processor, it is guaranteed to reach its

target in finite time.

Asynchronous message timing Delivery is guaranteed, but

messages may arrive out of order and at any time.

A. The POETS hardware system - background

The POETS hardware model is designed to implement a

scalable many-core platform using very small, simple cores.

This favours large numbers of simple devices with low com-

puting complexity and high parallelism - an ideal case for

neural modelling.
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Fig. 1: Default configuration of a Tinsel tile, in which four

cores share a floating-point unit, a mailbox, and a data cache.

A tile connects to its surrounding context via the debug bus,
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Fig. 2: Default configuration of the Tinsel NoC on a single

FPGA. Tiles are connected together by dimension-ordered

routers, and inter-FPGA links (4× 10G SFP+) are connected

to the NoC rim. Each off-chip RAM block contains a DDR3

controller and two 8MB QDRII+ SRAM controllers.

In [26] we have introduced the details of the current im-

plementation - called Tinsel. Tinsel is a highly-parameterised

manycore design with a regular structure, consisting of a

scalable grid of tiles connected by a reliable communication

fabric (Fig. 2). It can be configured for various architectural

tradeoffs. The default configuration is currently implemented

on an 8-box cluster, each with 6 DE5-Net FPGAs supporting

64 cores. The comms fabric extends both within each FPGA

and throughout the cluster. A tile, depicted in Figure 1,

contains one or more instances of each of the following:

Core This is a custom 32-bit floating-point-enabled core

implementing a subset of the RV32IMF profile of the

RISC-V instruction set. It is a heavily-threaded barrel-

scheduled core (context switching on every clock cycle),

implementing 16 hardware threads by default.

Mailbox A mailbox contains a memory-mapped scratchpad

that stores, by default, up to 1KB of incoming and

outgoing messages for each thread that it serves. The

mailbox allows threads to trigger transmission of outgo-

ing messages, to allocate space for incoming messages,

and to consume those messages when they arrive.

Data Cache This is an 8-way set-associative writeback cache

that optimises access to the large off-chip memories avail-

able on each FPGA board. Communication via shared

memory is unsupported in POETS, so we partition the

cache by thread id (threads do not share cache lines).

FPU Each Tinsel tile implements the ‘F’ part of the RV32IMF

profile via a 32-bit FPU shared between all the cores on

the tile. However, to compare with existing hardware, we

use a neural model that does not require floating-point

processing.

B. The general POETS application model

The POETS application model describes a processing ab-

straction independent of the physical hardware implemen-

tation. One of the important tasks in developing a neural

simulation (or, indeed, any application) on POETS, therefore,

is mapping the problem to the application model.

POETS assumes an application can be described in terms

of a graph of vertices and edges. Vertices, called devices, en-

capsulate some simple atomic unit of processing, edges carry

event-based information (asynchronously) between devices.

A graph-based application (‘Graph Schema’) transforms the

abstract representation into an XML specification containing

a GraphType and a GraphInstance section.The general map-

ping approach decomposes the graph into clusters of devices

dominated by intra-cluster edges over inter-cluster edges. The

POETS configuration system, called the ‘Orchestrator’, han-

dles the intermediate translation from high-level specification

to machine-executable code (Fig. 3).

A device is a purely event-driven process that responds

via handlers to messages delivered over edges. An event is

triggered, and a handler executed, when one of the following

4 conditions occurs:

• A message arrives on an input edge (OnReceive).

• A message is sent on an output edge (OnSend).

• A change in internal state, as a result of another event,

makes a particular output edge ready to send a message

(OnRTS).

• None of the other conditions has occurred, but the device

has reached an ‘interesting’ state (OnIdle).

To conserve power and avoid unnecessary spinning, OnIdle

exits with a result that indicates whether something ‘inter-

esting’ happened that should trigger further events (such as

OnRTS). If it exits without such a flag, the system waits for

the next real event and does not execute OnIdle.

Devices and edges may have internal state, split into 2 com-

ponents: properties, fixed over the lifetime of the application;

and state, that may vary over the lifetime of an application. A

given event may have only 2 effects: it can change the state,

and/or it can cause a message to be sent. Messages, state, and

properties all have an associated type that describes their data

layout. Messages have a fixed, small maximum size (currently



Fig. 3: Translation of the high-level software representation

of the network to the low-level implementation on the POETS

hardware.

64 bytes). Properties and State may have unlimited-size types,

but the assumption is that they are small and simple types.

The actual implementation of devices uses a boilerplate

code template, the Softswitch. In abstract form, a softswitch

is nothing more than a polled event loop with an attached

data structure. Most of the event loop and the data structure is

predefined; the specific application is an overlay that replaces

stub sections: the handlers and internal state pointers, with

actual data values or code. The GraphType section in the XML

specification contains the additional data definitions and code

fragments necessary to define the application overlay, while

the GraphInstance section generates individual devices and

edges. A single softswitch normally resides on a thread and

may instantiate multiple devices; if it does, the devices within

it are serialised, although softswitches execute concurrently.

C. The neuromorphic overlay

We have developed a neuron node based on four events

to handle fan-in, fan-out, clock, and state update. As a first

model implementation, we have used an approach inspired by

the comparable SpiNNaker system. This model is based on

a fixed-timestep ODE (Ordinary Differential Equation) solver

and a target-annotated delay applied to synaptic inputs. Such

a model assumes the following:

• Hardware delays are trivial compared to (simulated)

model delays.

• All devices can complete their timestep update within the

timer interval.

• Synaptic delays are in a fixed, discrete, nonzero range.

• Spikes are sent immediately upon exceeding threshold.

A further set of assumptions are not fundamental, but

establish the intended regime of operation of the model:

• Simulated neurons execute in wall-clock real time.

• All values are representable as 64-bit fixed-point num-

bers.

• Maximum input fan-in per device (neuron) is ∼ 1000.

• Number of input spikes/device/time tick is small (∼ 10).

• Only a small subset of neurons (∼ 1000) need to be

recorded externally.

1) Synaptic injection: Synapses inject a value (whether

current or conductance) into the neural model after a certain

synaptic delay. To account for different delays, a neuron

contains a circular buffer of aggregate synaptic injections with

one slot for each supported delay value. Each delay is an offset

from a buffer pointer, incremented as time progresses, to the

slot associated with ‘now’. Inputs to synapses trigger buffer

updates depending upon the synapse type, one of:

‘Current Jump’ synapse type: This, the simplest rule, simply

injects the current value in state directly into the bin at the

offset position.

Exponential Current synapse type: The synapse’s value is

treated as a peak injection at the offset position, from which the

handler computes values for successive bins by exponentially

decaying the injection according to a term

τs
dIsyn

dt
= −Isyn

up to the point where either all available bins have an injection

value, or the residual current is below the representational

precision of the current bin.

Exponential Conductance synapse type: This type works

like the exponential current type, only the value looked up

for the edge is a conductance gs varying in the same way:

τs
dgs

dt
= −gs

whose injection will be determined when the neuron state

update is performed (and generally depends upon it). Synapse

types cannot generally be mixed in a given device (neuron).

2) Simulation timer: The model requires a timer to drive

the simulation. Therefore, the POETS system must generate a

regular source of timing events. To implement this, we use

the OnIdle event in combination with a hardware feature,

TinselCycleCount(), which returns the local clock count as

a 32-bit wrapping unsigned integer. To get a desired timing

value, we implement an internal counter within each device

and perform a modulo-timer computation on the cycle count.

Although each device executes its own timer, the time step is

considered a global property of the simulation.

3) Event handlers: Processing for each of the 4 events is

as follows:

OnReceive: This is normally the highest-priority event.

When a spike arrives, OnReceive first performs any STDP

update, if enabled, then injects the appropriate value(s) into the

circular buffers according to the method described in III-C1.



Fig. 4: Implementation of the POETS neural model overlay.

The 4 main events trigger processing as described in III-C3.

Maiboxes automatically send and receive messages through

the hardware overlay. Synaptic rows are implemented as Edge

State. Neural parameters are Device Properties. The STDP

update is optional.

OnRTS: This event is executed immediately after any On-

Receive, OnSend, or OnIdle event that yields an ‘interesting’

result. It simply detects if the critical neuron state value

(typically, the voltage) is above spiking threshold (in device

properties), then raises a ReadyToSend flag if it is.

OnSend: If the ReadyToSend flag is set, this event will reset

state values to their ‘reset’ value (in device Properties), and if

the synaptic type is one of the Current types, and a refractory

period is specified, will set the refractory period counter to

the number of time steps specified in τf . OnSend does not

issue the spike explicitly; this is automatically performed by

the generic softswitch machinery.

OnIdle: This first checks the timer as specified in III-C2. If

the cycle count modulo-timer-interval is 0 (which can be done

by simple masking operations, no division is required), OnIdle

updates the neural state. In the case of current-type synapses

the value in the current bins is used explicitly wherever

Isyn, the synaptic current, is included in the computation. For

conductance-type synapses, the value to be used to update

voltage-dependent terms is computed as

dIsyn

dt
= Gt(V − Vrev)

where Isyn is the synaptic input current, Gt is the aggregate

conductance value in the bin at time step t, V is the membrane

voltage, and Vrev is the synaptic reversal potential.

IV. NEURAL SIMULATION RESULTS

A. Spiking Neural Model

1) Neurodynamic details: What we have described thus far

is the general model - the overlay - for spiking neural simu-

lation. This can accommodate a wide variety of neural types.

Some model parameters are global to the entire simulation and

are stored as Graph Properties, as follows:

Variable Meaning Type Units

tend End Time uint32_t ms

ttick Clocks Per Tick uint32_t 4ns

log2τ Time Scaling Factor int8_t log2Hz

τSTDP STDP Window Size uint32_t ms

STDP En Enable STDP uint8_t (bool) -

For preliminary testing, we chose 2 models: the leaky-

integrate and-fire (LIF) neuron and the Izhikevich neuron,

with fixed, current-based synapses (no STDP). The basic LIF

equation is:

τm
dV

dt
= Vs − V +RIsyn

with the auxiliary conditions

if V ≥ θ, V → Vr

and

if t− tlast < τf , V = Vr

This form specifies an LIF neuron with time constant τm
voltage threshold θ, membrane resistance R, rest voltage Vs,

reset voltage Vr and refractory period τf . Isyn is the total

synaptic current input. The model implements a simple form of

refractoriness, clamping the voltage at reset until the refractory

period is finished (the specified period is the time of absolute

refractoriness, from which point the neuron is in a relative

refractory state until the voltage relaxes from Vr to Vs). tlast
indicates the time of the last spike.

The ‘standard’ Izhikevich form [27] is

dV

dt
= 140 + (5 + 0.004V )V − U + Isyn

dU

dt
= a(bV − U)











(1)

with the auxiliary conditions

if V ≥ θ,
V → c,

U → U + d

}

(2)

As usual, a, b, c and d in the Izhikevich model are purely

numeric parameters which tune the model for a particular



spiking behaviour. U is a relaxation term that sets the rate

at which the model relaxes back to equilibrium.

Both models have the following common variables for

neural state (Device State) and parameters (Device Properties):

State:

Variable Meaning Type Units

V Membrane Voltage int32_t µV

IsynR Injection Buffer int32_t[16] µV

φ Circular Buffer Offset uint8_t -

t Simulation Time uint32_t ms

tspikes Spike Times Bitmap uint32_t -

tlast Last Spike Time uint32_t ms

Clk0 Start Clock uint32_t 4ns

Properties:

Variable Meaning Type Units

θ Threshold Voltage int32_t µV

Vr(c) Reset Voltage int32_t µV

id Neuron ID uint32_t -

record Record neuron? uint8_t (bool) -

with the LIF model introducing the following additions:

Properties (LIF):

Variable Meaning Type Units

Vs Rest Voltage int32_t µV

ω Characteristic Frequency uint32_t Hz

τf Refractory Period uint32_t tick bitmask

and the Izhikevich model the following:

State (Izhikevich):

Variable Meaning Type Units

U Relaxation Variable int32_t µV

Properties (Izhikevich):

Variable Meaning Type Units

a Relaxation Gain int32_t -

b Relaxation Scaling int32_t -

d Relaxation Reset Offset int32_t µV

For computational simplicity, especially avoiding divisions

and excessive multiplications, we transform some of the vari-

ables: τm is inverted to produce ω, and the fixed membrane

resistance R is multiplied by the synaptic current Isyn and

stored directly in synaptic state (In the Izhikevich model this

is built into the equation itself). Synapses (edges) have the

following Edge State and Edge Properties:

State:

Variable Meaning Type Units

IisynR Synaptic Current int32_t µV

ti
spikes

Presynaptic Spike Times Bitmap uint32_t -

ti
last

Last Presynaptic Spike Time uint32_t ms

Properties:

Variable Meaning Type Units

δ Synaptic Delay uint8_t ms

ωPot Potentiating Decay Frequency uint32_t Hz

ωDep Depressing Decay Frequency uint32_t Hz

APot Potentiating Weight Increment int32_t µV

ADep Depressing Weight Decrement int32_t µV

Fig. 5: Synfire ring network for testing. The network consists

of rings of distinct depths (of 3, 5, 7, 11, 13, 17, and 19

layers) and widths (arbitrary). Open circles indicate (potential)

synapses. Open squares indicate probabilistic connections.

For static synapses, only the delay and synaptic current

are used, other variables relate to STDP parameters. (These

additional variables are optimised out by the compiler at

instantiation time if STDP is not enabled).

2) Network model: To test the functionality of the model

we have created a network designed in the limit to be a ‘model

breaker’: one with dynamics that stress test the hardware and

software overlay to the maximum. The model we created

(Fig. 5) is inspired by the ‘synfire chain’ spiking networks

and follows the general pattern of the model in [28]. To

recap this model, it consists of a number of rings of neural

populations (pools), of varying ring lengths and pool sizes,

with inter-pool connectivity set by a probabilistic connection

parameter that ensures no ring has an ‘open link’ with no

connections between a population and the successive one

in the ring. All of the rings connect at one stage to an

output neuron, whose threshold is set to fire only when all

its inputs fire synchronously (in the same time tick). The

appearance of a spike at the output indicates that the network

is functional. Since by design, spikes from each population are

issued synchronously to neurons in the successive population,

each receiving neuron will receive a worst-case event rate:

all synapses will become active in the same timer tick. This

pattern of highly synchronous firings is the most challenging

case for the simulator to handle, whilst the potentially large

network sizes that can be produced by selecting a large number

of rings and large number of neurons per population stage in



Fig. 6: Run time for the network sizes given in table I. For

sizes less than 15004 neurons (< 1000 neurons/layer), the

simulation ran in real time, completing in 1430 ms. For widths

of 1000 and 2500 neurons/layer, simulation time had to be

slowed by a factor of 10 for the network to function, finishing

in 14300 ms. For widths of 5000 and 10000, we slowed

simulation time and reduced connection probability to 0.001

(so that each neuron has a small fan-in of 5-10 connections).

a ring, make it an excellent test of the hardware capabilities

of the system. It should be kept in mind that where activity

rates fall outside of the design intent of the system, we should

not expect the simulation to succeed; if it does, the hardware

and software is doing better than planned.

B. Functionality Tests

We ran the synfire ring model with 3 rings of depth 3,

5, and 7 layers respectively, using various widths as shown

below in table I. Given that the ring depths are the same, the

output neuron should produce a spike at the same time for

each network (i.e. the network size should be immaterial).

We ran the network until it either 1) produced an output

spike; 2) reached the end of simulation without producing

a spike; or 3) terminated abnormally (e.g. because the timer

tick could not be serviced in time). For conditions 2) and

3) we attempted to modify network parameters until it did

succeed, first trying to alter the mapping to pack more threads

per core and fewer neurons per thread, next slowing the timer

tick (so that simulation time was a fraction of real time), finally

reducing the connection probability in the ring. Results are in

fig. 6.

Neurons/layer Total Neurons Neurons/layer Total Neurons

1 19 200 3004

2 34 300 4504

5 79 500 7504

10 154 1000 15004

20 304 2500 37504

50 754 5000 75004

100 1504 10000 150004

TABLE I: Synfire network sizes

As can be seen, for small to medium scales, real time could

be preserved, at least with an astute choice of mapping; at the

largest real-time scale (7504 neurons) the network succeeded

with 2 neurons/thread and 16 threads/core - the largest network

we could model at this degree of device sparseness on the

available hardware: 1 box, 384 cores. At larger scales it was

still possible to run the network successfully by slowing real

time, and at the very largest scales, 150004 neurons maxi-

mum, we were able to get the model to succeed by severely

constraining the connectivity, packing 32 neurons/thread on

16 threads/core. The evidence strongly indicates, however, that

larger networks at any desired timescale factor can be achieved

by increasing the size of the hardware system and packing

fewer neurons per thread. 32 neurons/thread appears to be the

maximum supportable limit; we tried various configurations

with 64, 128, and 256 neurons per core, and all failed.

C. Performance Tests

We implemented a random recurrent neural network with

sizes from 50 to 500,000 nodes and placed on one box. 80

percent of neurons were excitatory (having only excitatory

target synapses) while 20 percent were inhibitory neurons.

We tested both Izkikevich and LIF neural models and found

that total simulation time was largely independent of both the

model and number of synapses per neuron from 100-1000

synapses/neuron. Maximum run time was 20 s for the largest

networks (Fig. 7).

As a reference for comparison with other systems, we

looked up the best reported results in terms of synaptic

events/core/s for SpiNNaker [29] and TrueNorth [30] and

compared them with the best POETS result as seen in Table II.

System events/core/s

SpiNNaker 7.69× 106

TrueNorth 14.2× 106

POETS 16.0× 106

TABLE II: Maximum event rate for neuromorphic systems

These numbers should be treated with caution. Figures in

each case were obtained from different simulations, mapped

in different ways with different neural model implementations,

and reported differently for each platform. What constitutes

a ‘core’ in each system is different and may not be exactly

comparable. Therefore, these results should be considered

at best indicative rather than conclusive. However, it does

demonstrate that all 3 platforms have approximately the same

order-of-magnitude peak performance.

V. IMPLICATIONS

In simulation, the number of input events per neuron per

time step clearly dominates the time fidelity (and simulation

size). Run time from 50 to 7500 neurons was almost the same,

as the nodes could be assigned to different threads on each

core simultaneously. Efficient communication between thread-

local memory and CPU allows performance to be largely

independent of the size of the synapic block from 1-1000



(a) Small networks (b) Large networks

Fig. 7: Total runtime for LIF and Izhikevich neural models on POETS for various network sizes and connectivities. Run time

includes the time to build and compile the model, and place it on the hardware, in addition to the simulation time proper.

synapses/neuron. However, time significantly increased as the

event rate went up, and this will be magnified with STDP

enabled, still more with higher-fidelity plasticity rules. We

further note that it is worst-case, not average-case, event

rate that matters. If at any point, the number of inputs to

service take longer than the time step interval to process,

the simulation will lose real-time fidelity, unless the time

step is increased (sacrificing either simulation accuracy or

speed). Simulations where threads could stay below a max-

imum message rate of 1000 messages/thread/ms tended to

succeed, simulations where this maximum was exceeded, even

occasionally, typically failed. This has important placement

implications; it makes sense to use a connection-oriented

placement which keeps the number of inputs per thread (or per

core) approximately constant and below some maximum limit.

The synfire ring is a somewhat contrived example that exposes

this limit particularly vividly, but in more realistic networks

one might expect that a similar placement strategy will be

effective. This is likely to apply to almost any neuromorphic

device which does not have fixed connectivity, and results in an

elegant and simple general placement rule that can minimise

total simulation time in systems where it must be remembered

that the cost of simulation includes setup and configuration,

not just run time.

The strength of an overlay platform like POETS is that

it is able to reveal such behaviour early and inform design

decisions, whether for a custom neuromorphic IC or for futher

iterations of the overlay. Given the results seen, for example,

it makes sense for future neuromorphic designs to devote

resources to optimise spike-receive efficiency [31]. A future

neuromorphic chip could, for example, benefit by having

dedicated hardware or threads to run the spike-receive process

whilst other hardware concurrently deals with periodic (or

continuous-time) state updates [29]. This is an area for future

exploration in POETS, where we are working on dedicated

‘hard cores’ to offload time-critical processing from the Tinsel

general-purpose cores. Currently, sending was also constrained

by the point-to-point send protocol, requiring a separate mes-

sage for each target in a neuron’s fanout; we have recently

implemented a multicast routing capability which will relieve

this bottleneck by allowing a single packet to reach all targets,

like the SpiNNaker chip. We are also working on a general-

purpose PyNN [32] front-end for POETS that can generate

the XML overlay for arbitrary spiking networks as per the

PyNN specification. Finally, in the current work, we have not

yet explored STDP or learning; we are actively working on

STDP implementations for learning spiking networks.

VI. CONCLUSIONS

What is the ‘right’ architecture for a neuromorphic chip, and

how can one gain confidence that it will work as expected?

While it is not clear that there is any one ideal architecture,

a system like POETS allows different choices to be explored

and debugged while still maintaining hardware speed. Many

behaviours, whether intentional or faulty, do not emerge until

real networks are tried running at real-time speeds, and we

have identified with POETS at least one behaviour: packet-

servicing capacity, that may be crucial for successful oper-

ation and which could explain previously-unclear limitations

of existing neuromorphic platforms. This moves towards an



effective hardware prototyping model for new neuromorphic

designs, where expensive custom silicon can be de-risked

at the design exploration stage and chips fabricated with

reasonable confidence in the validity of the design decisions.

POETS may not be, strictly, neuromorphic hardware, but it is

‘close enough’ in its architecture to be an effective proxy for

large-scale neuromorphics.
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