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Abstract—Algorithm selection is a challenging task in ma-
chine learning. Meta-learning treats algorithm selection as a
supervised learning task, in which training examples (i.e., meta-
examples) are generated from experiments performed with a set
of candidate algorithms in several datasets. The small availability
of real datasets in some domains can make it difficult to
generate good sets of meta-examples. An alternative is the use of
synthetic datasets. Unfortunately, not all synthetic datasets can
be considered equally relevant and representative compared to
real datasets. Thus simply adopting a high number of arbitrary
synthetic datasets increases the computational cost of performing
experiments, without necessarily improving the quality of meta-
learning. In this paper, we treat the selection of relevant synthetic
datasets for meta-learning as an One-Class Classification (OCC)
problem. In this problem, it is assumed the availability of
instances associated to a single class of interest (the positive
class) and a large set of unlabelled instances (the unknown
class). The objective is to classify which unlabelled instances
most likely belong to the positive class. In our context, OCC
techniques are used to select the most relevant synthetic datasets
(unknown class), by considering the real datasets (positive class)
available. In our work, we conducted experiments in a case study
in which we adopted a data manipulation procedure to produce
synthetic datasets and two OCC techniques for dataset selection.
The results revealed that it was actually possible to select a
reduced number of synthetic datasets while maintaining or even
increasing meta-learning performance.

Index Terms—meta-learning, algorithm selection, one-class
classification

I. INTRODUCTION

It is a commonplace that we are currently facing a spe-
cial moment of massive application of machine learning in
different domains of science and industry. The increasing
interest demands for solutions to support the design of learning
systems and to address relevant issues like which algorithms
to use, how to tune them and how to process training data.
Such solutions are crucial specially for non-expert users of
machine learning techniques.

This paper is focused on the algorithm selection problem,
which has been successfully dealt with using meta-learning
[1]. In this solution, algorithm selection models are built
by acquiring knowledge from benchmarking experiments in
different datasets. In meta-learning, each training example
(i.e., a meta-example) is associated to a dataset of interest
(e.g., a classification task) and usually stores: (1) the dataset’s

characteristics (the meta-attributes), such as number of ex-
amples, number of instances, correlations between attributes,
among others; (2) a meta-label, indicating the best algorithm
for that dataset, assigned from empirical evaluation of a set
of candidate algorithms. Based on a set of meta-examples
generated from several problems, a meta-learner is constructed
for selecting the best algorithm for new datasets based on their
characteristics. The interest in meta-learning has increased
along the years due to its broad applicability (e.g., for hy-
perparameter optimization and workflow design) [1].

The quality of a meta-learner, as in any other machine learn-
ing model, depends on the quantity and quality of the training
examples. In meta-learning, each meta-example is constructed
from a dataset, usually stored in benchmark repositories. The
difficulty in this context is that the number of datasets available
in repositories is typically limited and thus the number of
meta-examples produced is not always suitable for obtaining a
good meta-learner [1]. To minimize this difficulty, synthesized
datasets can be used, in combination with real datasets, to
increase the number of meta-examples [2]. The use of synthe-
sized data, however, may generate another difficulty: many of
the synthetic datasets may be irrelevant when one considers
the characteristics of real problems. The distribution of meta-
attributes observed in the synthetic examples may be quite
different compared to real problems. Selecting only the most
relevant synthetic datasets would save computational costs of
performing experiments at the same time maintaining (or even
improving) meta-learning performance.

In our work, we propose a novel solution for selecting
relevant synthetic datasets for meta-learning, by adopting One-
Class Classification (OCC) techniques [3]. In OCC, it is
assumed the availability of instances belonging to a class of
interest (the positive or target set), while the other instances
are unlabelled (referred to as the unknown set). OCC is
applicable in scenarios in which instances in the negative class
are difficult to collect or are costly to label. The selection of
synthetic datasets for meta-learning is directly treated in our
work as an OCC task. The real available datasets available
(e.g., benchmark datasets in repositories) are considered as
representatives of relevant problems, thus forming the positive
set. Synthetic datasets, in turn, form the unknown set of
instances. In fact, although it is relatively easy to produce a
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large base of synthetic datasets, it is not known a priori which
ones can be safely adopted as relevant benchmark problems
in experiments. In our proposal, an OCC technique receives
as input the positive set of meta-examples and is then used to
select the relevant synthetic datasets in the unknown class.

In order to test the feasibility of the proposal, we carried out
a case study in which a data manipulation technique [4] was
used to generate 983 synthesized datasets from 64 real datasets
and two OCC techniques were adopted for dataset selection:
the Positive and Unlabelled learning (PU learning) proposed
in [5] and the Nearest Neighbor Data Description (NNDD)
[6]. In the experiments, algorithm selection performance was
actually improved when the synthetic datasets were adopted to
produce meta-examples. Additionally, the proposed approach
was able to reduce the number of meta-examples (about 32%
and 62% respectively for PU and NNDD), while maintaining
or even increasing meta-learning performance obtained when
all synthetic datasets were adopted.

Section II presents a brief overview of meta-learning applied
to algorithm selection, while Section III presents the OCC
problem. Section IV describes the proposal and implemen-
tation. Section V presents the experimental results. Finally,
Section 6 presents the general remarks and future work.

II. META-LEARNING FOR ALGORITHM SELECTION

Meta-learning aims to improve learning performance by
exploiting knowledge acquired from experience on different
applications and case studies [1]. This is a broad objective. In
our work, we focus on meta-learning for algorithm selection
by investigating how to relate learning algorithms and the
features of problems which they are applied to [7]. The central
defiance, however, consists of choosing a particular method or
finding out which tool will be used for a new classification
problem, represented by a specific dataset, in such a way
that the solutions presented are adequate and efficient. Each
problem has its peculiarities, considering the nature of the
dataset represented.

Fig. 1 illustrates the general meta-learning process for
algorithm selection. The process begins with the acquisition of
a repository of datasets that appropriately represents the appli-
cation domain in which the algorithm recommendation will be
made. The next steps are to evaluate the candidate algorithms
on each problem and to extract the dataset characteristics, ac-
cording to predefined descriptive features (the meta-attributes).
For each dataset, a meta-example is generated, formed by
the meta-features and the meta-class1, respectively. The set
of meta-examples available is called meta-data. In order to
induce the mapping between the input meta-features and the
meta-class, a supervised classification algorithm is applied to
produce a meta-learner (i.e., a classifier that associates meta-
features to the best algorithms). Through this, it is possible
to use the meta-learner to recommend algorithms for new
problems. In the last years, concepts and techniques of meta-
learning have been generally applied in various application

1Label indicating the best algorithm for the problem.

domains, such as selection of models of temporal series
prediction [8], software engineering [9], bioinformatics [10]
and characterization measures of ensemble systems [11].

Fig. 1. Meta-Learning process for algorithm selection. Adapted from [1]

The generation of meta-examples is an important issue in
meta-learning since its success strongly depends on a sufficient
number of problem examples that are at the same time relevant
and not redundant. Relying on a repository of datasets like UCI
[12] may be the first alternative to be considered. Although
intuitive, depending on the class of problem, it is not easy
to find a large number of problem examples to generate
meaningful meta-data to obtain a reliable model. In the litera-
ture, approaches are found to circumvent the aforementioned
question, such as the generation of synthetic problems [4],
[13].

III. ONE-CLASS CLASSIFICATION

In traditional two-class or multi-class classification, training
examples for all classes are required. However, in many real
problems, it may be difficult or expensive to obtain examples
of one or more classes [14]. One-Class Classification (OCC)
or unary classification [3] aims to build a classification model
from training examples of a positive class (or target class),
such that it accepts as many instances as possible from the
positive class at the same time minimizing the chance of
accepting non-positive instances. In OCC, examples of non-
target classes are missing or available in limited quantity. A
classification model can be built using only labelled positive
data, making unary classification more difficult than the con-
ventional classification problem.

Recently, there has been a considerable amount of research
carried out in the field of OCC [15]–[17]. A difficulty that
can be pointed out in OCC is to decide which attributes
should be used to find the best separation of positive and
non-positive class examples. In addition, particularly when the
class boundaries of the data are complex, the required number
of training objects might be very high.

Regarding the availability of labelled negative instances,
three major categories are studied in OCC [3]: (1) Learning



with positive examples only [18], [19]; (2) Learning with
some negative examples of artificially generated samples and
with positive examples [20]; and (3) learning with positive
and unlabelled data [21], [22]. In general, the main goal
behind these strategies is to build a decision boundary around
the positive data so as to differentiate the unknown negative
instances (or unknown class) from the positive data.

In this work, the selection of synthetic datasets is treated as a
one-class learning problem. The present proposal nevertheless
is related to category (3), since the real datasets represent
the instances of the positive class, while the synthetic data
represent the unlabelled data. For more information about
OCC, the reader is referred to [3] and references cited therein.

IV. ONE-CLASS CLASSIFICATION FOR SELECTION OF
SYNTHETIC DATASETS

Data generation can be used to increase the number of
datasets available for meta-learning, resulting in a potential
positive impact in performance in the meta-level. However,
although obtaining relevant meta-examples in the process of
dataset generation, it is also possible to obtain redundant or
outlier meta-examples [4]. Additionally, as stated in Section
II, in meta-learning, the labelling process of meta-examples
is performed through empirical evaluation of candidate algo-
rithms, which can be computationally expensive. Therefore,
selecting relevant datasets for meta-example generation has a
twofold motivation: improving the quality of the set of meta-
examples itself and reducing the computational cost of exper-
iments performed to label meta-examples. Additionally, in the
literature, there is a scarcity of works related to the selection
of datasets used to generate meta-examples. In general, the
focus is on the generation and selection of meta-features.

Given such motivation, in the current work, we investigate
how to improve the construction of meta-example sets by
combining data manipulation for datasets generation [4] and
OCC techniques for meta-examples selection. In this proposal,
the selection of synthetic datasets is treated as a one-class
learning problem, as mentioned in Section III.

The meta-feature distributions for real and synthetic datasets
may be different since not all synthetic datasets are rep-
resentative of real ones. Selecting only the most relevant
synthetic datasets may be a good strategy for producing meta-
examples. In this context, the meta-examples generated from
real datasets belong to the positive class, while the meta-
examples generated from synthetic datasets belong to the
unknown set (i.e., some of them can be positive/relevant while
others can be irrelevant). Our hypothesis is that this problem
can be adequately dealt with OCC techniques.

The selection of meta-examples in [2], [23], were performed
adopting an uncertainty sampling method for active learn-
ing. The results reported in [23] were improved in [2] when the
k-Nearest Neighbors (k-NN) algorithm was adopted as a meta-
learner. Although previous works have achieved promising
results, identified limitations, such as the fact that the uncer-
tainty sampling method for active learning was adopted in both
studies also motivate our investigation with OCC techniques.

Fig. 2 presents the proposal developed in the current
work. First of all, a collection of real datasets is given as
input for a Data Manipulation module. Then this module
generates synthetic datasets from the original datasets. Next,
all datasets (original and synthetic) are given as input for
the Data Characterization module, in order to compute the
meta-features of each dataset, resulting in a large set of
unlabelled meta-examples. In the following step, the One-
Class Classification module is adopted to select the most
relevant meta-examples in the unknown set. The candidate
algorithms are then evaluated after an empirical evaluation
procedure to assign the meta-class label of the selected meta-
examples (Algorithm Evaluation module), therefore forming
the meta-base of examples (Meta-Data). Finally, the meta-data
serves as input for the Meta-learning module, which has as
output an algorithm selection model. As follows, the details
of the implementation of each module is provided in a case
study performed to test the viability of the proposal.
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Fig. 2. Architecture of the proposed solution.

A. Data Manipulation

In this work, we adopt a method for data manipulation
called datasetoids, proposed in [4]. This approach, used for
augmenting the number of meta-examples, implies the ma-
nipulation of existing datasets. Different manipulation oper-
ators can be adopted to produce new synthetic datasets. In
[4], a simple operator is proposed. A synthetic dataset is
generated from a determined real dataset by switching the
target attribute with an independent categorical attribute. In
this way, the target attribute of the original dataset becomes
an attribute in the datasetoid, and the selected independent
attribute becomes the target attribute. In order to generate
synthetic datasets for classification, the process is repeated for
every categorical attribute of the dataset, creating as many
new datasets as there are categorical attributes existing in the
dataset. In this case, the dataset must contain at least one



categorical attribute. Fig. 3 illustrates the process of generation
of two classification new synthetic datasets (datasetoids) from
a dataset with two symbolic attributes.

The original sets of problems used in this work are classifi-
cation sets collected in UCI [12] repository. From 64 original
problems collected in these repositories, 983 new manipulated
datasets were produced.

B. Data Characterization

In this module, original and synthetic datasets are described
by a set of 2 characterization measures: the class entropy and
the average entropy of the attributes [24]. These measures
are expected to contain relevant information on the behavior
of decision trees since this algorithm utilizes the concept of
entropy. Although there are certainly other measures (i.e.,
meta-features) that could collaborate to improve the meta-
learning results, the use of previously adopted meta-features
enables us to direct our attention on the combination of OCC
techniques and synthetic datasets. The characterization will
therefore result in an unlabelled meta-example for each dataset
considered in the case study. Both (original and synthetic
datasets) jointly with their respective meta-examples are sup-
plied as input to the One-Class Classification module.

C. One-Class Classification

In one-class learning, two instance sets are usually available:
(1) a set P of examples in the positive class (target class);
and (2) a set U of examples with unknown class. The U
set can have both examples belonging to the positive and the
negative class. A classifier is constructed to select the unknown
instances with a higher probability of belonging to the pos-
itive class. In our proposal, the positive class represents the
original datasets and the unknown instances are the synthetic
datasets U . OCC learning is therefore performed to classify
the synthetic datasets that are more related to the real ones.

In our implementation, we considered two different OCC
methods: PU learning proposed in [5] and Nearest Neighbor
Data description (NNDD) [6].

1) PU Learning: We considered the OCC method PU
learning, which learns a classifier to select the most likely
positive and negative instances in the unknown set [15]. This
method is composed by two steps. The first one is adopted to
produce an initial training set for building the classifier. The

Fig. 3. Illustration of classification datasetoids created from a dataset with
two symbolic attributes. Reproduced from [4]

second step is the learning process itself, in which instances
are included in the training set.

Algorithm 1 illustrates the first step of the method. Initially,
a small set S of examples of positive class P (named as
spies) is mixed with the unlabelled data U . As suggested in
[15], we used 10% of P , selected randomly, as spies. Datasets
P − S and U ∪ S are temporarily labelled as the positive and
negative set, respectively, and the Naive Bayes (NB) classifier
is built. An instance in U is finally assumed as negative if
its positive class probability does not exceed a predefined
threshold b. Finally it returns, the subset Nr of the most
likely negative instances in the unknown set. This is an initial
classification that will be refined in the second step of PU.

Algorithm 1: PU Learning - Initialization of the
Training Set
Nr = NULL;
Ur = NULL;
S = sample(P ,10%);
assign each instance in P − S to the positive class;
assign each instance in U ∪ S to the negative class;
build a NB model g by using P − S and U ∪ S as

training set;
classify each instance in S using g and determine

threshold b;
for each instance e ∈ U do

use model g to compute P (positive|e)
if probability P (positive|e) < b then

Nr = Nr ∪ {e};

Ur = U −Nr;
return Nr and Ur for the second step.

An important issue in the first step is the decision threshold
b adopted to assign the negative instances. A straightforward
idea is to define b as the minimum positive class probability
observed among the instances in S. Nevertheless, it is also
expected the presence of noise in the positive set, in such a way
the minimum probability is not reliable [15]. For example, the
class probability of an outlier instance in S could be very close
to 0 or much smaller than most of all negative instances. This
is also true in our context since not all datasets in repositories
like UCI can be undoubtedly assumed as relevant. In our work,
we will define a noise level l% of examples, as a parameter of
the method. Then, we order the examples in S by their positive
class probabilities and set the threshold b in such a way that
l% of the positive examples has class probability lower than
b. In our experiments, we evaluated the behavior of the PU
Learning method with various noise levels.

In the second step of the method (Algorithm 2), a Support
Vector Machine (SVM) is constructed. P and Nr are used as
training sets to learn a SVM classifier. To minimize the effects
of unbalanced data on training, we use oversampling, in which
examples of minority classes are randomly replicated. The
SVM is applied to classify the examples in Ur. The examples
classified as positive (Up) are returned as the set of relevant



examples and the negative examples ones (Vn) are discarded.
We use the implementation available in the WEKA framework
[25] and the default parameters of this implementation.

Algorithm 2: PU Learning - Classification of In-
stances in the Unknown Set
Up = NULL;
Oversampling(P ,Nr);
use P and Nr to train a SVM classifier;
classify Ur by using the SVM model;
let Vn ⊂ Ur be the set of instances the current model
classified as negative;

let Up ⊂ Ur be the set of instances the current model
classified as positive;

return Up

2) Nearest Neighbor Data Description (NNDD): The sec-
ond OCC method is based on the Nearest Neighbor classifier
(NN) [26]. NNDD is trained only with the positive class, in
our case composed by the meta-examples produced from real
datasets. In the test phase, an unknown instance (datasetoid)
is defined as relevant by NNDD by considering the following
procedure. First, given an example e ∈ U , NNDD finds
its nearest neighbor in the positive class NNtr(e) ∈ P .
Second, the nearest positive neighbor of NNtr(e) is returned,
i.e., NNtr(NNtr(e)). Finally, the unknown example e is
considered relevant if the distance to its nearest positive
neighbor dist(e,NNtr(e)) is smaller than the distance be-
tween NNtr(e) and its own nearest positive neighbor. This is
summarized in Eq. 1, in which dist is the euclidean distance
between two meta-examples:

dist(e,NNtr(e))

dist(NNtr(e), NNtr(NNtr(e)))
≤ 1 (1)

Otherwise, e is classified as irrelevant. Fig. 4 illustrates a
case where a synthetic dataset is accepted by NNDD since
d1
d2 ≤ 1.

d1 

d2 

 

Fig. 4. Example of synthetic dataset accepted by NNDD. The synthetic dataset
is very close to a real dataset. Real datasets are represented as circles and
unknown instances are represented as triangles.

In our proposal, the idea behind is to select as many
relevant synthetic datasets as possible for each original in-
stance (datasets). For each original instance, a maximum of 6
synthetic instances was evaluated, in other words, k = 6. The
synthetic datasets accepted by NNDD will be labelled by the
Evaluation module, described in the next subsection.

D. Algorithm Evaluation

In this investigation, at the base level, we choose the same
meta-learning task originally used to evaluate the datasetoids
approach in [4]. There are three class labels of meta-examples,
p, u or t: the winner is the pruned tree, the unpruned tree
or the one that is tied, respectively. The algorithm selection
problem in this work consists of predicting, a priori, if pruning
a decision tree will enhance the quality of the model or not,
given a determined problem. The performance measure used
at the base level was the accuracy of classification, estimated
using 10-fold cross-validation. Each meta-example represents
one problem (i.e., an original dataset or a synthetic dataset).
The class of each meta-example is based on the results of
the experiments on the corresponding problem. For more
information about the implementations, the reader is referred
to [4] and references cited therein.

Table I presents the classes distribution for the meta-data,
both the original and synthetic data. As it can be seen, the
class distributions are different, which indicate that there may
be some underlying differences between real and synthetic
datasets. However, the differences are not so large in the
class distribution considering the real and synthetic datasets
separately.

TABLE I
CLASS DISTRIBUTION (%) OF THE META-DATA CORRESPONDING TO THE

REAL AND SYNTHETIC DATASETS

Meta-
data

No. of meta-
examples

Pruned tree (p) Unpruned
tree (u)

Tie (t)

Real 64 36 23 41
Synthetic 983 37 10 53

E. Meta-Learning

The result of the previous step is a labelled meta-examples
set. Each meta-example is associated to a dataset and it stores
the descriptive characteristics and the class value indicating
the best candidate algorithm for the dataset. In the current
work, we adopt two classification algorithms as meta-learner:
Random Forest (RF) and k-NN. These algorithms are used
as meta-classifiers which will indicate the best model for a
determined test dataset. In our prototype, we use the imple-
mentations developed in Java programming language available
on WEKA environment [25].

V. EXPERIMENTS

In this section, we present the experiments to evaluate the
quality of the trained meta-learners with the data selected using
one-class learning techniques.

A. Evaluation Methodology

In order to evaluate the learning performance at the meta-
level, we adopted a holdout evaluation with 500 repetitions.
In each repetition, the repository of real datasets is randomly
partitioned into two mutually exclusive partitions (test and
training), where 10% of the datasets are used for testing. As



the training partition we use the 90% of the remaining real
datasets and all synthetic datasets generated from them. Hence,
we certify that the synthetic datasets generated from the test
datasets are not included in the training partition.

In each holdout iteration, the OCC technique (either PU or
NNDD) is applied to select synthetic datasets in the training
partition. For the NNDD method, up to 300 synthetic instances
have been selected and labelled. The meta-learner is then
constructed using the real and the selected synthetic datasets
for training and it is evaluated for the algorithm selection
in the test datasets. The performance of meta-learning is
the average accuracy over the 500 executions of holdout. In
order to evaluate the impact of the noise level, we repeated
this methodology by varying the expected noise level in the
positive examples (parameter b).

The proposed approach is compared with two baselines:
(1) using as training data only the original datasets (OD); (2)
using the original sets together with all the synthetic datasets
generated from these sets without selection (OD + all syn-
thetics). These baselines correspond to extreme situations in
which either we do not consider any synthetic dataset for
meta-learning or we consider all synthetic datasets without
any selection of relevant ones.

B. Results

In this paper, the results are presented according to the
adopted OCC techniques, which are PU learning and NNDD.
The proposed approach is compared with two baselines, as
described in Section V-A.

The average meta-learning accuracy obtained by the base-
line (OD + all synthetics) was 60.14%, which was significantly
higher than using only the original datasets (average accuracy
of 46.20%). However, a large number of datasets is adopted,
which increases the cost of evaluating candidate algorithms in
the meta-example labelling process. So the objective of OCC
learning is to select a reduced number of relevant synthetic
datasets to achieve an accuracy level close to using all datasets
(60.14%). The results obtained after the selection of each of
the adopted techniques are presented below.

1) PU learning: As described in Section IV-C1, the dataset
selection in PU Learning is performed into two steps. In the
first step, a set of negative instances is selected for training
the SVM classifier in the second step. The number of selected
negative instances depends on the noise level considered (see
Fig. 5). Fig. 6 and Fig. 7 show the performance of the RF and
k-NN meta-learners, respectively, by varying the noise level.
Initially, we consider two extreme cases:

• For extremely low noise levels, a very low number of neg-
ative instances is selected for the second step, compared
to the number of positive examples. As a consequence,
the trained SVM tended to classify a high number of the
remaining synthetic datasets as positive (many of them
are possibly non-relevant). The meta-learning accuracy,
in this case, is sub-optimal and lied between the two
baselines (the initial segment of Fig. 6 and Fig. 7);

• In turn, for extremely high values of noise level, an
excessive number of negative instances will be given
for SVM learning in the second step and then only few
synthetic datasets will be finally classified as positive (rel-
evant). Meta-learning accuracy, in this case, approaches
the accuracy value observed by using only the original
datasets (the final segment of Fig. 6 and Fig. 7).
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By considering the RF meta-learner, for intermediate values
of noise level (from 17% to 38%), the observed meta-learning
accuracy was higher than using all synthetic data. The best
result was 63.14% accuracy when l = 28%. After the second
step, about 59.53% of synthetic datasets were finally selected
as relevant and the remaining ones were discarded. As for k-
NN, in turn, the observed meta-learning accuracy was higher
than using all synthetic data for intermediate values of noise
level (from 8% to 21%). The best result was 60.57% accuracy
when l = 13%. Thus, about 34% of synthetic datasets were
discarded and the remaining ones were selected as relevant.
The RF meta-learner indeed was less sensitive to the training
set of meta-examples. Table II summarizes the accuracy ob-
tained by the k-NN and Random Forest meta-learners when
the PU Learning technique was adopted for selecting synthetic
datasets in our experiments.

In practice, it is hard to know in advance the noise level
to be adopted in the proposed method. It will depend on
the expected relevance of the available datasets, or in other
words, up to what extent one can trust on the relevance
and representativeness of datasets available in repositories
like UCI. Results in Fig. 6 suggest, for instance, that about
15% of the real datasets adopted in our experiments are not
entirely relevant. Some noise levels (e.g., 50%) seem to be
too excessive and were only considered in the experiments
in order to evaluate the robustness of the proposed approach.
How to estimate the noise level is an open question that will
be better investigated in future work.

2) NNDD: Fig. 8 and Fig. 9 present the accuracy ob-
tained by the k-NN and RF meta-learners when the NNDD
technique was adopted for selecting synthetic datasets in our
experiments. The results revealed, in general, gain in accuracy
when the NNDD learning method was compared with the two
baselines adopted. A positive impact was observed in meta-
learning performance. As in the PU selection, RF obtained the
best results when compared to the results obtained by k-NN
meta-learner. RF meta-learner appears to be more robust to
noisy and redundant instances in the training set, which can
be justified by the fact that the RF uses bagging to produce
the ensemble components, thus presenting greater robustness
regarding the quality of the training sets. After the inclusion
of 293 selected synthetic meta-examples by NNDD the RF
obtained the accuracy rate of 63.56%, while the k-NN meta-
learner obtained an accuracy rate of 61.23%. Finally, better
results were obtained by RF when compared to the k-NN.
Table III summarizes the accuracy obtained by the k-NN and
RF meta-learners when the NNDD method was adopted for
selecting synthetic datasets.

Now, we would like to define the superiority of the proposed
approach for selecting synthetic datasets. For this, we applied
a statistic test. In this paper, we applied the Wilcoxon Rank
Sum method, a non-parametrical test which aims to compare
two independent samples of the same size or uneven. As a
result of the Wilcoxon Rank Sum Test (95% of confidence),
it is observed that, in a general way, the new synthetic dataset
selection approach is better when compared to the results

observed when using all synthetic datasets without selection,
from a statistical point of view, presenting p-value < 0.05.
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Fig. 8. Average accuracy obtained by Random Forest using NNDD for
selecting synthetic datasets. The training set is initialized with all the original
datasets, leaving only synthetic datasets for selection. Dashed horizontal lines
represent the accuracy obtained using all original datasets and synthetic
datasets (top) or just the original datasets (bottom).
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Fig. 9. Average accuracy obtained by k-NN using NNDD to select synthetic
datasets. The training set is initialized with all the original datasets, leaving
only synthetic datasets for selection. Dashed horizontal lines represent the
accuracy obtained using all original datasets and synthetic datasets (top) or
just the original datasets (bottom).

VI. CONCLUSIONS

In this paper, we presented a new approach for selecting
synthetic datasets in meta-learning by combining data manip-
ulation and OCC techniques. The proposal aims to reduce the
computational cost of performing experiments and improve
the performance of meta-learning by enhancing the number
of relevant datasets for generating meta-examples.

We performed experiments in a case study, in which PU
learning and the NNDD method were adopted to select the
most relevant datasets. The obtained results showed that it
is feasible to take advantage of a large number of meta-
examples provided by synthetic datasets without having sig-
nificant additional computational costs. In addition, the perfor-
mance gain was achieved due to the elimination of irrelevant
meta-examples. Improvement in meta-learning performance
was observed using the one-class techniques compared with
adopted baselines (see Section V-A). The k-NN and Random
Forest meta-learners showed a performance gain compared to
the results obtained in [2], [23] by using the k-NN algorithm
as meta-learner.



TABLE II
ACCURACY RATE (%) OBTAINED BY K-NN AND RANDOM FOREST META-LEARNERS AND THE AVERAGE NUMBER OF EXAMPLES IN THE TRAINING

SETS, USING PU LEARNING.

Noise Level (l%)
/Training data

k-NN Random Forest
OD OD + all OD + PU selection OD OD + all OD + PU selection

13% 51.25 58.71 60.57 (+1.86) 46.20 60.14 58.71 (-1.43)
28% 56.14 (-2.57) 63.14 (+3)

Average number
of examples 57 933.35 635.87 57 933.35 635.87

578.68 578.68

TABLE III
AVERAGE ACCURACY (%) OBTAINED BY RANDOM FOREST AND K-NN META-LEARNERS AND THE AVERAGE NUMBER OF EXAMPLES IN THE TRAINING

SET CONSISTING OF NNDD SELECTION AND ORIGINAL DATASETS.

Algorithms/Training data OD OD + all OD + NNDD selection
RF 46.20 60.14 (+13.94) 63.56 (+3.42)

k-NN 51.25 58.71 (+7.46) 61.23 (+2.52)
Average number of examples 57 933.35 350

Finally, we would like to highlight some aspects of our work
that will be investigated in the future, such as: (1) initially, we
adopted RF and k-NN as meta-learners; however, it is possible
that other classifiers with useful potential could be utilised,
such as SVMs, for instance; (2) other one-class classification
techniques could be investigated in case of different classifiers
are adopted as meta-learners; (3) finally, other case studies can
be developed in future works.
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[23] R. Prudêncio, C. Soares, and T. Ludermir, “Uncertainty sampling meth-
ods for selecting datasets in active meta-learning,” in: Proceedings of the
2011 International Joint Conference on Neural Networks, p. 1082–1089,
2011.

[24] P. Brazdil, C. Soares, and J. P. da Costa, “Ranking learning algorithms:
Using ibl and meta-learning on accuracy and time results,” Machine
Learning, vol. 50(3), pp. 251–277, 2003.

[25] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2017.

[26] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, no. 1, pp. 21–27, 1967.




