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Abstract—A pharmacological effect of a drug on cells, organs
and systems refers to the specific biochemical interaction pro-
duced by a drug substance, which is called its mechanism of
action. Drug repositioning (or drug repurposing) is a fundamental
problem for the identification of new opportunities for the use
of already approved or failed drugs. In this paper, we present a
method based on a multi-relation unsupervised graph embedding
model that learns latent representations for drugs and diseases so
that the distance between these representations reveals reposition-
ing opportunities. Once representations for drugs and diseases
are obtained we learn the likelihood of new links (that is, new
indications) between drugs and diseases. Known drug indications
are used for learning a model that predicts potential indications.
Compared with existing unsupervised graph embedding methods
our method shows superior prediction performance in terms
of area under the ROC curve, and we present examples of
repositioning opportunities found on recent biomedical literature
that were also predicted by our method.

Index Terms—Drug Repositioning, Graph Embedding

I. INTRODUCTION

Drug repositioning (aka repurposing) can be defined as
renewing failed drugs and expanding successful ones by devel-
oping new therapeutic uses that are beyond their original uses
or initial approved indications. Repositioned drugs account for
approximately 30% of the US Food and Drug Administration
(FDA) approved drugs in recent years [1]. A repositioned drug
uses de-risked compounds, going directly to preclinical testing
and clinical trials, thus providing inexpensive alternatives to
the costly pipeline associated with the development of new
drugs. One of the well-known examples is sildenafil citrate
(brand name: Viagra), which was repositioned from a common
hypertension drug to a therapy for erectile dysfunction [2].

Figure 1 illustrates the biochemical interaction that gives
rise to the pharmacological effect of a drug. This paper is
motivated by the problem of finding drug repositioning oppor-
tunities by modeling the mechanisms of action of drugs [3].
For instance, different biological solutions might be considered
in order to chemically decrease the blood pressure such as
removing the excess of salt from the body, thereby decreasing
the tension in the vessels, or inhibiting the vasoconstrictive sig-
nalling of a hormone, or acting directly on the cells physically
narrowing the vessels and preventing their unwanted action
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Fig. 1: A chemical is assigned as a treatment to a disease
because it exhibits a particular mechanism of action that affects
biological processes associated with the disease. Repositioning
opportunities exist because the same drug perturbs multiple
proteins themselves involved in multiple biological processes.

this way [4]. Each of the aforementioned solutions requires
a different mechanism of action. The same drug can have
several mechanisms of action and therefore it can potentially
play a multitude of roles by perturbing proteins involved in
various biological processes, which are accountable for the
drug polypharmacology [5]. Thus, drug repositioning is a
direct application of drug polypharmacology [6].

Our main goal is to discover new relations between current
drugs and diseases by utilising existing public drug-disease-
protein interactions. The main three steps of our proposed
method are as follows. In the first step, we built a large and
heterogeneous graph comprising drug, disease, and protein
entities that are linked according to information collected from
the biomedical literature, as shown in Figure 2. Specifically,
we formulate the drug repositioning problem as a three layer
multi-relation directed graph G = (V,R, E), where V is the
set of entities (i.e., drugs, diseases and proteins), R is a
set of relations (i.e., drug-protein, drug-disease and protein-
protein), and E is a set of edges connecting different entities
in V . In the graph, mechanisms of action are represented
by relations involving drugs and proteins and repositioning
opportunities are represented by (hidden) relations involving
drugs and diseases. The graph also contains protein-protein
interactions in order to increase connectivity and information
propagation while learning node representations. The datasets
used to build the graph are described in Section III.

In the second step, our goal is to find a low-dimensional
latent representation for drugs and diseases, so that the latent
representation embeds the relationship between mechanisms
of action and drug indications. Drug-protein and drug-disease
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diseases □ □ □ . . . . . . □ □

drugs △ △ . . . . . . △ △

proteins ⃝ ⃝ ⃝ ⃝ . . . . . . ⃝ ⃝

Fig. 2: Multi-relation graph, composed of drug-protein, drug-
disease and protein-protein interactions. A drug (△) perturbs
some proteins (⃝) and this drug is indicated to certain diseases (□).
A single drug may perturb different proteins, and these proteins may
also interact. Further, the same drug may be indicated to different
diseases. Links may provide evidence for repositioning opportunities
(i.e., dotted links).

interaction graphs usually exhibit a particular structure with
many isolated sub-graphs, and often a protein is linked to
drugs residing in different parts of a graph. We employ a
SkipGram based algorithm [7] to learn node representations in
an unsupervised way, but instead of performing deep random
walks to produce contexts [8], [9], we employ a restricted
number of permutations over the immediate neighborhood of
a node as context to generate its representation [10]. This
choice is motivated by the particularly sparse structure of
drug-disease and drug-protein interaction graphs. Further, we
exploit the multi-relation nature of the graph by employing
two types of contexts while learning node representations:
contexts composed of drugs and proteins (i.e., mechanisms
of action) and contexts composed of drugs and diseases (i.e.,
drug indications). This results in an embedding for each drug
and for each disease, so that adjacent entities are placed close
to each other in the vector space, while unconnected entities
are pushed apart. As a result, drugs and diseases that have a
similar distribution of neighbors will end up being nearby in
the vector space. Details for obtaining node embeddings can
be seen in Section IV.

In the third step, we learn the likelihood of new links
between drugs and diseases, as representations for drugs
and diseases were obtained in previous step. Known drug
indications are used for learning a parametric model which
predicts other likely indications. Our evaluation follows the
typical cross-validation framework, in which a subset of the
known drug uses are hidden. Details of the experimental setup
can be seen in Section V and the results obtained by different
embedding algorithms we used can be seen in Section VI.

In the following we briefly summarize our contributions:
• We employ interaction graphs involving drugs, diseases

and proteins in order to learn suitable vector represen-
tations for drugs and diseases. The input graph presents
particular characteristics, such as high sparsity and low
connectivity, so that contextual information based on
the immediate neighborhood is likely to produce better
representations than typical random walk approaches.

• Given the vector representations for drugs and diseases,
we build a parametric model learned to identify if a

specific drug is indicated to a specific disease.
• We evaluate the effectiveness of our model on predict-

ing repositioning opportunities under a cross-validation
framework. Our model reaches an area under the curve
of +0.98, being significantly superior than predictive
models built using contextual information produced by
deep random walks.

• Finally, we compared our specific findings with reposition
opportunities reported in the recent biomedical literature.
We present some interesting cases that were predicted by
our model, including the use of Amitriptyline for relief of
Fibromyalgia in adults. Amitriptyline is an antidepressant
that is now being reported in the literature to treat
Fibromyalgia if used at doses below those at which the
drugs act as antidepressants.

II. RELATED WORK

Several strategies have been proposed for drug reposi-
tioning: (i) structure-based, (ii) repositioning based on tran-
scriptional signatures, (iii) ligand-based, and (iv) network-
based. Structured-based methods follow the idea that similar
proteins have similar functionality. Accordingly, this similarity
comparison can be used to find secondary targets of already
existing drugs [11]. Molecular transcriptional signatures can
be compared to create relations between drugs and new
disease indications. These relations provide useful information
for finding new uses of known drugs [12]. Ligand-based
approaches are based upon the concept that similar compounds
tend to have similar biological properties. In drug reposition-
ing, this method has been widely used to analyze and identify
the activity of ligands for new disease indications [13].

In recent years, machine learning has been vastly employed
in drug repositioning. Authors in [14] used a fully connected
deep neural network for training the model using transcrip-
tional data at gene level to predict drug therapeutics and to
use them in drug repositioning. They analyzed the confusion
matrix and found out that the misclassified cases can indeed
be considered as an indication of their potential in novel
uses. Donner et al. [15] proposed ligand-based approach based
on the learning of embeddings of gene expression profiles
using deep neural networks and considered it as a measure of
compound functional similarity for drug repositioning. Hu and
Agarwal [16] created a drug-disease network using publicly
available gene expression.

Graphs are the typical structures used to model the rela-
tionships between drugs and diseases. The major challenge is
to find a way to incorporate complex structures like graphs
into the existing machine learning algorithms. Thereby, sev-
eral models were proposed for learning a low dimensional
representation of graphs known as graph embedding [8], [17]–
[19]. In order to model the polypharmacy side-effect, Zitnik
et al. [20] trained graph convolutional neural networks, with
proteins and drugs as nodes and drug-protein and drug-drug
interaction as edges. Deepika and Geetha [21] used node2vec
[8] representations along with bagging Support Vector Ma-
chine (SVM) to predict drug-drug interactions. Gao et al. [22]



TABLE I: Basic statistics of the data.

drug-protein

# of drugs 584
# of proteins 16,546
# of interactions 1,824,204

drug-disease known indications

# of drugs 600
# of diseases 508
# of interactions 2,836

applied Long Short-term Memory Neural Networks (LSTMs)
and graph-based convolutional neural network to obtain a
low dimensional representation of protein and drug structures.
These representations were then engaged in the prediction of
drug-target interactions. Yamanishi et al. [23] introduced a
bipartite graph-learning method based on kernel regression
in order to learn a co-mapping of drugs and proteins into
a common pharmacological space. In the pharmacological
space, the correlation between compound-protein pairs can
be conveniently calculated to predict their interactions for
drug repositioning. [24] proposed a method to factorize the
existing drug-target relations so as to predict the new relations
constrained by the drug-drug and disease-disease similarity
networks. Finally, [25] proposed a semi-supervised learning
method in which two classifiers in drug and disease space are
learned and then combined together to give a final score for
drug-disease interaction prediction.

Recent representation learning methods include neural fin-
gerprints [26], graph convolutional networks [27], and mes-
sage passing networks [28]. However, these graph embedding
methods do not apply in our setting, since they solve a
supervised graph classification task and/or embed entire graphs
while we embed individual nodes.

III. DATA

In this section, we discuss the datasets used to build the
graph presented in Figure 2. As in [20], we used the human
protein-protein interaction (PPI) network compiled by [29],
[30], integrated with additional PPI information from [31].
The PPI graph contains physical interactions experimentally
documented in humans, such as metabolic enzyme-coupled
interactions and signaling interactions. The network is un-
weighted and undirected with 19,085 proteins and 719,402
physical interactions. Table I presents statistics about the data
from which we built two graphs:

1) For the graph drug-protein, we obtained relationships be-
tween drugs and proteins from the STITCH database [30].
This database integrates various chemical and protein
networks and there were over 8,083,600 interactions
present between 8,934 proteins and 519,022 chemicals.
We considered only the interactions between chemicals
(i.e., drugs) and proteins that had been experimentally
verified, which comprises 16,546 proteins and 584 drugs,
and there are 1,824,204 interactions amongst them.

2) Drugbank [32] was used to retrieve known drug-disease
links. DrugBank is a bioinformatics and cheminformatics
resource that provides a knowledge-base for drugs, drug
actions and drug targets. We focused on 600 drugs that

were indicated to 508 diseases, resulting in a total of
2,836 drug-disease links.

IV. UNSUPERVISED NODE EMBEDDING

In this section we aim to learn representations for drugs
and diseases that best preserve the original graph structure,
generalizing mechanisms of action in order to find novel uses
and repositioning opportunities. Graph embedding consists in
finding a continuous vector space representation for entities
in the set of nodes V . The task is to learn a dictionary Z ∈
R|V|×d, with one d−dimensional embedding for each node in
V . In other words, graph embeddings are the transformation
of a graph to a set of vectors, by capturing the graph structure
as well as node-to-node relationship. Unsupervised learning
of graph embeddings has benefited from the information con-
tained in contexts [10], and thus embedding methods usually
work by simulating contexts and operate in two steps:

1) They sample pair-wise relationships from the graph
through random walks. Each random walk generates a
sequence of nodes, simulating a context.

2) They train an embedding model, e.g. using Skipgram al-
gorithm [7], to learn representations that encode pairwise
node similarities.

Embedding methods differentiate mainly on the first step, as
there are many possible ways to extract context from a graph.
The best strategy for producing context depends on specific
characteristics of the graph. In this work the contexts are
based solely on the first order neighborhoods of nodes, defined
here as the nodes that are directly connected. Consequently,
nodes’ representations will be mainly defined by their first
order neighborhoods and nodes with similar neighborhoods
(contexts) will be associated with similar representations. This
results in embeddings focused mainly on the first-order prox-
imity. More specifically, we first separate a node neighborhood
in small groups and then we maximize the log likelihood of
predicting a node given another in such a group [33].

A. Generating Contextual Groups

The first step is to group nodes based on their neighbor-
hoods, so that context can be exploited. There are two main
challenges in forming groups from neighborhoods, as follows:

• Nodes have different degrees, so groups containing all
the neighbors from a node are difficult to treat.

• There is no explicit order in the nodes in a neighborhood.
So there is no clear way to choose the order in which they
would appear in a group.

To deal with these challenges, we create small groups with
only k neighbors in each, using random permutations of their
neighborhoods [10]. The number of permutations n is specified
and controls the trade-off between training time and increasing
the training dataset. Selecting a higher value for n creates a
more uniform distribution on possible neighborhood groups,
but also increases training time.



B. Learning Representations

The first step results in a set of groups S, where each
member of S is a subset of nodes in the graph. Then, we
learn vector representations of nodes by maximizing the log
likelihood of predicting a node given another node in a group
and given a set of representations r, making each node in a
group predict all the others. The log likelihood to maximize
is given by:

max
r

1

|S|
∑
s∈S

(log (p (s|r))) (1)

where p (s|r) is the probability of each group, given as:

log (p (s|r)) = 1

|s|
∑
vi∈s

 ∑
vj∈s,vj ̸=vi

(log (p (vj |vi, r)))

 (2)

where vi is a node in the graph and vj are the other nodes
in the same group. The probabilities in this model are learned
using the feature vectors rvi , which are then used as the node
representations. The probability p (vj |vi, r) is given by:

p (vj |vi, r) =
exp

(
rTvj × rvi

)
∑

v∈V (exp (rTv × rvi))
(3)

where rTvj is the transposed output feature vector of node j,
used to make predictions. The representations rv and rv are
learned simultaneously by optimizing Equation 1. Essentially,
by optimizing this log probability the algorithm maximizes
the likelihood of predicting a neighbor given a node, creating
node embeddings so that nodes with similar neighborhoods
have similar representations [34]. Since there is more than
one neighbor in each group, this model also makes connected
nodes having similar representations, because they will both
predict each others neighbors, resulting in representations also
with first order similarities. A trade-off between first and
second order proximities can be achieved by changing the
parameter k, which controls the number of nodes within each
group.

V. EXPERIMENTAL SETUP

Our data is a multi-relation graph compose of drug-protein
and drug-disease interactions. Thus, in order to learn our
models, it is necessary to select an efficient embedding space
in order to better exploit the information within the graph. We
discuss the choice for an appropriate embedding space which
includes evaluating different graph-embedding algorithms and
their corresponding hyper-parameters.

A. Learning the Embedding Space

We first find an efficient embedding space for the different
node embedding algorithms that will be compared in our
experiments. This involves 25 hyperparameter combinations
that were randomly selected for each algorithm and embedding
models are then learned in an unsupervised way. We consid-
ered three graph-embedding algorithms in our experiments: (i)
DeepWalk [9], where the best hyperparameters are: window

TABLE II: Number of positive and negative examples used to
learn the embedding space and to train the parametric model.

Steps interactions examples

Learning Embedding Space 1,827,040 −
Model Evaluation − 2,836 (+) 30,196 (-)

size of 12, number and length of walks were set to 7 and 25,
respectively; (ii) Node2Vec [8], with window size, number
and length of walks equal to 5, 57 and 73, respectively; (iii)
NBNE [10], with hyperparameters: window size of 6 and
number of permutations set to 30.

B. Model Evaluation

We used the Multilayer Perceptron (MLP) as a binary
classifier, which predicts possible links between drugs and
diseases using the embedding space. Specifically, the vector of
a drug and the vector of a possible indication (i.e., a disease)
to the drug are concatenated, and the MLP model takes the
final vector as input and makes a prediction (in this case, the
output is the probability of a link existing between the drug and
the disease). As shown in Table I, the known indications that
form the drug-disease interaction graph contains 2,836 links.
We used 5-fold cross-validation to assess the embedding’s
quality. Thus, we divided 2,836 into five folds, each time
one of them is used for the validation and the rest for the
training. As the known indications data contains only positive
examples, we have generated 30,196 negative examples using
the complementary graph of the known indications in order
to learn the MLP model [36], as shown in Table II. It is
worth mentioning that there are more negative occurrences
than positive ones in the real-world scenario, because drugs are
produced for a small group of diseases or health issues, being
ineffective for others. As can be seen in the table, the data is
highly imbalanced, thus making our experiment close to a real-
world scenario. Finaly, we used area under the curve (AUROC
score) as the basic measure for assessing the performance of
the algorithms [35].

VI. RESULTS

In this section we report results obtained by the three
embedding algorithms DeepWalk, Node2Vec and NBNE. We
also discuss examples of drug repositioning opportunities
endorsed by recent biomedical literature.

Prediction Performance: As shown in Figure 3, NBNE
has obtained the best result. Specifically, NBNE achieved
numbers as high as 0.98 in terms of AUROC, while Node2vec
and Deepwalk achieved 0.75 and 0.77, respectively. The
improvement provided by NBNE compared to Deepwalk and
Node2Vec is significant − 27% and 28% of improvement
respectively. The main difference of NBNE from the other
two algorithms is the context generation approach, as NBNE
is based on the neighborhood while the other two algorithms
are on random walks, as discussed in Section IV-A. It seems



that the neighborhood based approach generates more accurate
representation in the drug repositioning scenario.
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Fig. 3: AUROC values for Deepwalk, Node2vec and NBNE.

Related Diseases in the Embedding Space: We employ
t-SNE in order to visualize the embedding space of drugs
and diseases. T-SNE is a technique used to visualize high-
dimensional data by giving each data point a location in a
two-dimensional map [37]. The visualization suggests some
insights about the reasons that lead to the good performance of
our method. In order to have a clear visualization, the drugs are
represented by triangles (blue) and the diseases by rectangles
(green). Further, some points are also highlighted in the
figures to demonstrate interesting properties of the embedding
space. Figure 4 shows that similar diseases have close vector
representations. Figure 4 (Left) shows a cluster of diseases
(red points) representing pain related diseases, while Figure 4
(Right) shows a cluster of muscle related diseases. These
visualizations suggest that our method generates meaningful
representations as related diseases are located close to each
other in the embedding space.

Diseases and their Corresponding Drugs in the Embedding
Space: We have also analysed the spatial relation of diseases
and their corresponding drugs. Figure 5 (Left) highlights drugs
which are used to treat Breathing Difficulty. In this case, most
of the indicated drugs are concentrated next to the disease.
The same trend is observed in Figure 5 (Right), where we
highlighted the disease HIV − again, most of the indicated
drugs are placed next to the disease. These visualization give
us a great insight of the embedding space generated by NBNE.

Model Explainability: Features within our embeddings are
not meaningful as we do not know what each feature is
actually representing. Fortunatelly, in order to better under-
stand model predictions, we can still group the predictions
based on the features used by the model while performing the
prediction [38]. Intuitively, positive predictions involving the
same disease should be located next to each other, as the corre-
sponding drugs may share the same mechanism-of-action. We
employ SHAP (SHapley Additive exPlanations [39]) in order
to calculate the importance of each feature for each prediction.

TABLE III: List of some possible candidatesfor drug repo-
sitioning reported in biomedical literature and found by our
algorithm.

Medication Target disease Also appeared in

Gabapentin Bipolar II disorder [43]
Naproxen Myofascial Pain [44]

Amitriptyline Fibromyalgia [46]
Amlodipine High blood pressure [48]
Atorvastatin High blood pressure [47]

Figure 6 shows some predictions performed by our model, so
that predictions associated with similar feature importances
are placed next to each other along the x−axis. For each
prediction, a feature is associated either with the blue or the red
color. Features associated with the blue color are contributing
to decrease the probability of the disease being a new use for
the drug. Therefore, a positive prediction is always observed
when the red color is the dominant one. We highlight two
cases in the figure, showing positive predictions for the same
diseases. Specifically, we found a cluster involving different
drugs being predicted for Balance Problems, and another
involving different drugs being prodicted for Spasticity.

We found many other clusters, some of them composed by
different diseases. One of these clusters shows that Bipolar
II disorder and headaches respond equally to some specific
embedding features. Interestingly, a recent research confirms
that migraine with active headache is associated with other
painful physical symptoms among patients with major de-
pressive disorder [40]. In another example, Multiple Sclerosis
(MS) and Toxoplasmosis were placed into the same cluster.
According to a study carried put by [41], Toxoplasmosis
should be considered as differential diagnosis of tumefactive
MS. Another interesting result is the association between
panic disorder and Amyotrophic Lateral Sclerosis (ALS) found
by our prediction model and recently confirmed by [42].
According to this study, 33% of patients who suffer from ALS
also suffer from some kind of panic and anxiety disorder.

Repositioning Opportunities and Biomedical Literature:
Table III presents examples of repositioning opportunities.
Our prediction model suggests Gabapentin as a candidate for
bipolar II disorder, which has been confirmed by [43] and
in several other studies. While Naproxen is used in treating
balance problems, it can also be used for treating Myofascial
Pain [44], which is confirmed by our model as it places these
diseases and medications in the same group. Recent studies
show that fibromyalgia is associated with muscle tension and
depression [45]. Recent research carried out by [46] shows
that Amitriptyline, which has been used in the treatment
of muscle tension, is a possible candidate for fibromyalgia.
Lately, [47] confirmed that both Amlodipine and Atorvastatin
caused significant improvement in patients with high blood
pressure which is in accordance with our results.
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Fig. 4: Proximity of related diseases. Left − Pain related diseases. Right − Muscle related diseases.
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Fig. 5: Proximity of diseases and their corresponding medications. Left − Breathing Difficulty. Right − HIV. In general, drug
indications and the corresponding health problems are located closely.
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Fig. 6: The x−axis represents the instances and the y−axis
is the corresponding SHAP explanation. Predictions that have
similar explanation are placed next to each other in the x−axis.

VII. CONCLUSION

We utilize the existing drug-disease-protein interactions
in form of graph structures for finding likely drug-disease
interactions. Nonetheless, when using complex drug-disease-
protein graph structures for drug repositioning, our main goal
is the discovery of the hidden and unknown relations between
the components’ interactions and finally using these unknown
correlations to facilitate the complex and time-consuming
process of drug discovery.
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