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Abstract—A variety of graph neural networks (GNNs) frame-
works for representation learning on graphs have been recently
developed. These frameworks rely on aggregation and iteration
scheme to learn the representation of nodes. However, infor-
mation between nodes is inevitably lost in the scheme during
learning. In order to reduce the loss, we extend the GNNs frame-
works by exploring the aggregation and iteration scheme in the
methodology of mutual information. We propose a new approach
of enlarging the normal neighborhood in the aggregation of
GNNs, which aims at maximizing mutual information. Based on
a series of experiments conducted on several benchmark datasets,
we show that the proposed approach improves the state-of-the-art
performance for four types of graph tasks, including supervised
and semi-supervised graph classification, graph link prediction
and graph edge generation and classification.

Index Terms—machine learning, neural networks, mutual
information, graph theory, convolution

I. INTRODUCTION

Learning with graph structure data requires effective rep-
resentation of graph structure. Many approaches have been
developed recently for this representation learning on graphs,
such as graph convolutional networks (GCN) [1]–[4], ad-
vanced pooling operation on graphs [5]–[7], random walk-
based methods [1], [8], [9], mutual information neural
estimation-based graph learning [10], [11], path-searching
method [12], tree-exploration strategy [13], and graph kernel
framework [14]. Learned representation of the graph structure
is then applied to graph tasks, including semi-supervised and
supervised graph classification, graph link prediction, and
graph embedding estimation.

Different neighborhood aggregation, graph-level pooling
schemes, mutual information estimations, walk strategies and
graph kernels are applied to GNNs [15] variants. These models
have achieved state-of-the-art performance in a variety of
tasks such as node classification, link prediction, and graph
classification. However, the design of these new models has
little analysis of the transformation of the adjacency matrix of
the graph data. Besides, to the best of our knowledge, while
complex approaches such as mutual information theory and
expectation-maximization estimation yield good results, the

current transformation of the adjacency matrix achieves little
improvement on graph tasks.

To further improve the performance of GNNs in the above
tasks, we explore the scheme of aggregation and iteration of
GNNs in the methodology of mutual information. In particular,
we first introduce an equation of mutual information for the
aggregation and iteration. We then update the equation of
aggregation and iteration for the growth of mutual informa-
tion. We further explore one of simple approaches aiming
at the growth of mutual information. We implement this
approach on several state-of-the-art graph models. According
to the experimental results, performance improvements are
achieved compared with a list of state-of-the-art graph models.
Specifically, we obtain better performances for graph tasks
such as supervised graph classification, semi-supervised graph
classification, graph classification with missing edges and link
prediction. Our implementation codes are available online at
https://github.com/CODE-SUBMIT/Graph Neighborhood 1.

II. RELATED WORK

There has been a rich line of research on graph learning
models in recent years. Inspired by the first order graph
Laplacian models [2], GCN is introduced to achieve promising
performance on graph representation tasks, and its variants
are proposed. For example, relational graph convolutional
networks are developed for link prediction and entity clas-
sification [16]; linear mapping is applied to GCN in the
concatenation module [15]; the sum module is developed in
GCN for the aggregate representation of neighbors in the
neighborhood [17]; the capsule module is applied to the graph
models [18] to solve especially graph classification problem;
the knowledge network is used for the representation learning
on graphs [4], and hierarchical representation of graph is
applied to different pooling strategies [7]. However, these
graph model variants rely on designs of complex convolution
modules, and mutual information aspect of the aggregation
and iteration scheme is not fully investigated. To fill in this
research gap, we explore this aspect and propose an easily
implementable approach for graph models in this paper.
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Recent developed graph models have been combined with a
variety of technologies in different fields. For instance, while
the graph Markov neural network (GMNN) [19] is devel-
oped to combine Markov networks and graph convolutional
networks (GMNN), the VAE module is parameterized with
graph models based on an iterative graph refinement strategy
(Graphite) [20]. Inspired by the encoder-decoder architectures
like U-Nets, both gPool and gunPool are developed to build the
encoder-decoder model on graph (Graph U-Nets) [21]. There
is also maximization of mutual information being applied to
patch representation and corresponding high-level summaries
of graphs [11], and a classical discrete probability distribution
on the edges of the graph being learned for real problem while
the given graph is incomplete or corrupted (LDS-GNN) [22].
However, it is unknown whether the information entropy plays
an important role in the GNNs.

Many research efforts have been made on mutual informa-
tion for graph neural networks [17]. Information maximization
is developed between edges states and transform parameters
for the molecule property prediction tasks [23]. The mutual
information is applied to maximize the mutual information
between node representation and the pooled global graph
representation [3]. The student model is learned from the
teacher model through the maximization of mutual information
between intermediate representations learned by two models
[24]. However, to the best of our knowledge, the methodology
of mutual information has not yet used for the analysis of the
scheme of aggregation and iteration for GNNs.

III. PROPOSED APPROACH

Graph neural networks generate node representations
through aggregations over local node neighborhoods. GNN
is a flexible class of embedding architectures and the repre-
sentation of nodes are learned by aggregations of the neigh-
borhood nodes. The READOUT function is used to summa-
rize all the representations into a graph-level representation.
The k-th layer of a GNN can be represented by hkv =
COMBINEk(hk−1v ,AGGREGATEk({(hk−1v , hk−1µ , eµv) : µ ∈
N(v)})). Here node v and nodes µ ∈ N(v), hkv and hkµ are
the corresponding feature vector at the k-th layer. N(v) is the
neighborhoods to node v.

A. Improvement based on mutual Information

During the learning of GNNs, we let the variable V k,
Mk denote hkv , Mk

v respectively. The above aggregation and
iteration which depend on the variables such as V k−1 and
Mk−1 could be written as

I(V k) ≈ I(V k−1) +
N∑
i=1

I(Mk−1
i ), (1)

where Mk−1
i denotes the variable of hk−1µi , ∀, µi ∈ N(v), i ∈

{1, ..., N}. The mutual information of I(V k) depends on the
sum of the above mutual information I(V k−1) and I(Mk−1

i )
where i ∈ {1, ..., N}.

The GNN is trained to learn the representation of each
node (variable) by observing other nodes (variables). The

mutual information is a measure of the amount of information
about one variable through observing the other variables.
In the framework of GNNs, the difficulty of learning the
representation of nodes grows when observing more variables.
In other words, the difficulty grows as the corresponding
mutual information reduces.

Therefore, we update the above mutual information equation
about the aggregation and iteration as follows

I(V k) ≈ I(V k−1) +
N∑
i=1

I(Mk−1
i ) +

N∑
j=1

I(Nk−1
j ), (2)

where Nk−1
i denotes the variable of hk−1νi , ∀, νj /∈ N(v), j ∈

{1, ..., N}, ν 6= v.

B. Neighborhood enlargement for mutual information growth

One simple way to implement the updated equation is to
observe more nodes (variables). We propose an approach to
enlarge the normal neighborhood in the aggregation of GNNs.
The enlargement aims at a growth of mutual information for
the scheme as analyzed above. The details are illustrated in
the following.

Let graph G = (V,E) where each node v ∈ V and each
edge e ∈ E. Let A denote the adjacency matrix of G, where
a non-zero entry Aij indicates an edge between nodes i and
j. This adjacency matrix is a binary matrix (A ∈ {0, 1}n×n).
Let the length of all e ∈ E be one. For v ∈ V , the first
neighborhood of v consists of all vertices of distance one from
v, denoted by N1(v). The complementary neighborhood of v
consists of all vertices of distance two from v, denoted by
N2(v). Let d(u, v) denote the distance between two vertices
u and v where u, v ∈ E. The d(u, v) is defined as the length
of the path from the node u to the node v.

We let A1 denote the adjacency matrix for the first neigh-
borhood of the node v ∈ V . That is, A1ij = 1, for
vi, vj ∈ V, d(i, j) = 1 and A1ij = 0 if node i and node
j are not adjacent. Let A2 denote the adjacency matrix for
the complementary neighborhood of the node v ∈ V , i.e.,
A2ij = 1, for vi, vj ∈ V if d(i, j) = 2, and A1ij = 0 if
d(i, j) 6= 2. Here d(i, j) denotes the distance of the node vi
and the node vj . Note that A1ij = A2ij = 0 for i = j. Besides,
both A1ij and A2ij are the binary matrix.

In the literature, the adjacency matrix A is equal to A1. In
contrast, we propose a transformation of the adjacency matrix
as a combination of the above two neighborhoods A = A1 +
A2. This transformation is simple to implement and applicable
to many state-of-art methods as we discuss below.

C. Implementation of the neighborhood enlargement

We first refer to the graph convolutional network (GCN)
which is proposed by [1]. This GCN graph convolutional layer
is defined as:

Hi+1 = σ(A∧HiW i) (3)

where Hi ∈ Rn×si and Hi+1 ∈ Rn×si+1 are the input and
output activations for layer i, Wi ∈ Rsi×si+1 is a trainable
weight matrix, σ is an element-wise activation function, A∧



is a symmetrically normalized adjacency matrix with self-
connections, and A∧ = D−1/2(A + In)D

−1/2. Here In is
an n × n identity matrix. In this case, our proposed method
has the following form

Hi+1 = σ(A∧sH
iW i),

A∧s = D−1/2(A1 +A2 + In)D
−1/2.

(4)

Next, we refer to a discrete structure learning framework
for graph neural network [22] where the graph structure and
the parameters of graph convolutional networks are jointly
learned. This jointly learning is based on a bilevel program
given two objective functions F and L: F is the outer
objectives for the learning of the outer function

fwθ = XN × HN → YN (5)

and L is the inner objectives for the learning of the inner
function

L(wθ, A) =
∑

v∈Vtrain

l(fwθ (X,A)v, yv), (6)

where fw(X,A)v is the output of fw for node v and l : Y ×
Y → R+ is a point-wise loss function. Here X ∈ XN is the
feature matrix of the graph, A ∈ HN is the adjacency matrix
of G, y ∈ Y is the labels of the their true class,w ∈ Rd and
θ ∈ Rm are the parameters of fwθ . The bilevel program is
then given by min

θ,wθ
F (wθ, θ) such that wθ ∈ argmin

w
L(w, θ).

To apply our proposed transformation, we first replace HN
by HsN where HsN = {As|As = A + A2, A ∈ HN}. For
As ∈ HsN , the outer and inner functions then become

fwθ = XN × HsN → YN ,

L(wθ, As) =
∑

v∈Vtrain

l(fwθ (X,As)v, yv).
(7)

Other state-of-the-art graph models such as GIN [17],
GMNN [19], Graph-Unets [21] and LDS-GNN [22] share a
similar way of transformation.

IV. EXPERIMENTS

We conduct a bunch of experiments on various datasets
and compare our proposed approach with the state-of-the-art
graph models. In particular, our proposed method is applied
to several graph learning tasks including supervised graph
classification, semi-supervised graph classification, graph link
prediction, and graph generation and classification with miss-
ing edges. The purpose is to show that our proposed approach
outperforms the state-of-the-art methods for the listed datasets
and is general to different GNN tasks. We also compare with
other similar methods for adjacency matrix, and show that
our proposed approach both works well with other methods
and improves the performance of graph tasks. For a fair
comparison, we keep all parameters the same as those in the
baseline models GCN [2], GIN [17], KNN-LDS [22], graph
Markov neural network (GMNN) [19], Graphite [20], Graph-
Unet [21] and Mixhop [25]. In the following, (s)Model denotes
our proposed model.

A. Supervised graph classification

We first evaluate our approach on two state-of-the-art graph
models GCN [2] and GIN [17], which have achieved good
results on both social and bi-logical graph datasets. Seven
graph datasets are evaluated with our approach in comparison
with these two baselines, including MUTAG (188 mutagenic
aromatic and heteroaromatic nitro compounds with 7 discrete
labels), PROTEINS (nodes for secondary structure elements
and edge for neighbors in the amino-acid sequence or in
3D space), PTC (344 chemical compounds with 19 discrete
labels), NCI1 (a dataset of chemical compounds with 37
discrete labels), IMDB-BINARY and IMDB-MULTI (movie
collaboration datasets correspond to an ego-network for each
actor/actress), and COLLAB (a scientific collaboration dataset
derived from 3 public datasets). For a fair comparison, we keep
all the parameters the same as the baseline models (GCN [2]
and GIN [17]).

All experiments are conducted with 10-cross validation.
Table I shows both average accuracy and standard deviation.
Compared with GAN, our approach improves the average
accuracy from 85.6% to 86.23% on MUTAG, from 76.0% to
77.99% on PROTEINS, from 64.2% to 69.23% on PTC, from
80.2% to 80.3% on NCI1, from 74.0% to 76.1% on IMDB-B,
from 51.9% to 52.4% on IMDB-M and from 79.0% to 80.89%
on COLLAB. Compared with GIN, our approach improves the
average accuracy from 89.4% to 94.14% on MUTAG, from
76.2% to 78.97% on PROTEINS, from 64.6% to 73.56% on
PTC, from 82.7% to 83.85% on NCI1, from 75.1% to 77.94%
on IMDB-B, from 52.3% to 54.52% on IMDB-M and from
80.2% to 80.71% on COLLAB. It is clear that our proposed
approach achieves better performance in comparison with the
baselines.

We then evaluate our approach on another state-of-the-art
graph model KNN-LDS [22]. In this case, six graph datasets
are evaluated with our approach and the baseline [22]. These
datasets include WINE (a dataset of 178 samples with 3
discrete labels, each sample has 13 features), CANCER (a
dataset of 569 samples with 2 discrete labels, each sample
has 30 features), DIGITS (a dataset of 1797 samples with 10
discrete labels, each sample has 64 features), CITESEER (a
data set of 3327 samples with 6 discrete labels, each sample
has 3703 features), CORA (a dataset of 2708 samples with 7
discrete labels, each sample has 1433 features), 20NEWS (a
dataset of 9607 samples with 10 discrete labels, each sample
has 236 features). For a fair comparison, all parameters remain
the same as the baseline [22].

Similarly, all experiments are conducted with 10-cross val-
idation. Both the average accuracy and standard deviation are
presented in Table II. Our approach improves the average
accuracy from 97.5% to 98.0% on WINE, from 94.9% to
95.7% on CANCER, from 71.5% to 73.7% on CITESEER,
from 71.5% to 72.3% on CORA, and from 46.4% to 47.9%
on 20NEWS. Our proposed approach achieves improvement
in performance compared with the baseline.



TABLE I
GCN AND GIN SUPERVISED GRAPH CLASSIFICATION TASK ON SEVEN DATASETS.

Graph models MUTAG PROTEINS PTC NCL1 IMDB-B IMDB-M COLLAB
GCN 85.6± 5.8 76.0± 3.2 64.2± 4.3 80.2± 2.0 74.0± 3.4 51.9± 3.8 79.0± 1.8

(s)GCN 86.23± 6.71 77.99± 3.72 69.23± 5.59 80.3± 2.1 76.1± 2.86 52.4± 2.56 80.89± 2.3
GIN-0 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7 75.1± 5.1 52.3± 2.8 80.2± 1.9

(s)GIN-0 94.14± 2.74 78.97± 3.17 73.56± 4.27 83.85± 1.05 77.94± 4.31 54.52± 0.39 80.71± 1.48
GIN-ε 89.0± 6.0 75.9± 3.8 63.7± 8.2 82.7± 1.6 74.3± 5.1 52.1± 3.6 80.1± 1.9

(s)GIN-ε 93.47± 1.64 77.61± 3.05 72.16± 2.17 82.92± 1.69 75.19± 5.1 53.62± 0.61 80.51± 1.62

TABLE II
KNN-LDS SUPERVISED GRAPH CLASSIFICATION TASK ON SIX DATASETS.

Graph models WINE CANCER DIGITS CITESEER CORA 20NEWS
KNN-LDS 97.5± 1.2 94.9± 0.5 92.5± 0.7 71.5± 1.1 71.5± 0.8 46.4± 1.6

(s)KNN-LDS 98.0± 1.1 95.7± 0.6 92.5± 0.6 73.7± 0.9 72.3± 0.6 47.9± 1.5

TABLE III
GMNN SEMI-SUPERVISED GRAPH CLASSIFICATION TASK ON THREE DATASETS.

Graph models CORA CITESEER PUBMED
GMNN 83.4± 0.8 73.0± 0.8 81.3± 0.5

(s)GMNN 83.5± 0.2 73.4± 0.1 81.6± 0.2

TABLE IV
AREA UNDER THE ROC CURVE (AUC) FOR TWO BASELINES ON LINK PREDICTION TASK.

Graph models CORA CITESEER PUBMED
VGAE 90.1± 0.15 92.0± 0.17 92.3± 0.06

(s)VGAE 93.4± 0.12 92.6± 0.12 92.7± 0.05
Graphite-VAE 91.5± 0.15 93.5.0± 0.13 94.6± 0.04

(s)Graphite-VAE 93.7± 0.13 94.1± 0.10 94.8± 0.03

TABLE V
AVERAGE PRECISION (AP) SCORES FOR TWO BASELINES ON LINK PREDICTION TASK.

Graph models CORA CITESEER PUBMED
VGAE 92.3± 0.12 94.2± 0.12 94.2± 0.04

(s)VGAE 93.0± 0.10 94.3± 0.08 94.5± 0.02
Graphite-VAE 93.2± 0.13 95.0± 0.10 96.0± 0.03

(s)Graphite-VAE 93.5± 0.11 95.4± 0.09 96.3± 0.02

B. Semi-supervised graph classification

In order to evaluate the effectiveness of our approach on
semi-supervised graph classification, we apply the proposed
transformation on the graph Markov neural network (GMNN)
[19] which combines both statistical relational learning and
graph neural networks. If the nodes have no labels, the neigh-
bors of each node are predicted and the predicted neighbors
are treated as pseudo labels. We apply our approach with
neighborhood combination to evaluate the performance of the
combined neighbors for the neighbor prediction and generation
of pseudo labels. Three graph datasets are evaluated with
our approach and GMNN including CORA, CITESEER, and
PUBMED. In each object, we use the same data partition
method as in the baseline [19]. Both our approach and
GMNN are trained without the usage of object attributes since
the difficulty of semi-classification drops with known object
attributes.

All experiments are conducted with 10-cross validation, and
both average accuracy and standard deviation are summarized
in Table III. Our approach improves the average accuracy
from 83.5% to 83.4% on CORA, from 73.0% to 73.4% on
CITESEER, and from 81.3% to 81.6% on PUBMED.

C. Graph link prediction

The task of link prediction is to predict whether an edge
exists between a pair of nodes. In order to evaluate how
effective our proposed approach is for the link prediction, we
apply the approach to the state-of-the-art graph models VGAE
[26] and Graphite [20]. A balanced set of positive and negative
(false) edges to the original graph are added to the original
graph, with 5% edges used for validation, and 10% edges used
for testing. Both the area under the ROC curve (AUC) and
average precision (AP) metrics are assessed. Three datasets
including CORA, CITESEER, and PUNMED are used for the
evaluation.



TABLE VI
LDS ON CITESEER AND CORA WITH VARIOUS PERCENTAGE RETAINED.

Models (data) 25% 50% 75% 100% (full graph)
LDS (CITESEER) 71.92± 1.0 73.26± 0.6 74.58± 0.9 75.54± 0.4

(s)LDS (CITESEER) 74.60± 0.9 74.90± 0.7 75.50± 0.7 76.11± 0.6
LDS (CORA) 74.18± 1.0 78.98± 0.6 81.54± 0.9 84.08± 0.4

(s)LDS (CORA) 78.12± 0.7 80.41± 0.7 83.61± 0.8 84.81± 0.7

TABLE VII
GCN, MGCN, AND MGCNK ON ENZYMES WITH CONTINUOUS NODE ATTRIBUTE AND BATCH NORMALIZATION.

ENZYMES dataset
Models - Batch normalization Continuous node attribute
GCN 32.33±5.07 − 51.17± 5.63

(s)GCN 40.11± 3.27 56.67± 4.47 75.33± 3.93
MGCN 40.50± 5.58 − 59.83± 6.56

(s)MGCN 51.83± 5.84 59.23± 4.12 72.16± 4.39
MGCNK 61.04± 4.78 − 66.67± 6.83

(s)MGCNK 64.57± 5.63 65.12± 4.28 71.50± 6.52

TABLE VIII
GCN, MGCN, AND MHCNK SUPERVISED GRAPH CLASSIFICATION TASK ON TWO DATASETS WITHOUT CONTINUOUS NODE ATTRIBUTE AND BATCH

NORMALIZATION.

Graph models MUTAG PROTEINS
GCN 76.5± 1.4 74.45± 4.91

(s)GCN 91.39± 6.56 78.49± 3.19
MGCN 84.4± 1.6 74.62± 2.56

(s)MGCN 87.25± 4.16 78.23± 3.23
MGCNK 89.1± 1.4 76.27± 2.82

(s)MGCNK 89.42± 5.97 78.04± 2.97

All experiments are conducted with 10-cross validation.
AUC is shown in Table IV which shows the comparison
between our approach and two baseline models: VGAE and
Graphite-VAE. Compared with VGAE, our approach improves
the AUC from 90.1% to 93.4% on CORA, from 92.0%
to 92.6% on CITESEER, and from 92.3% to 92.7% on
PUBMED. Our approach improves the AUC from 91.5% to
93.7% on CORA, from 93.5% to 94.1% on CITESEER, and
from 94.6% to 94.8% on PUBMED when the base model
is Graphite-VAE. The performance comparison can be found
in Table V. Compared with VAE, our approach improves AP
from 92.3% to 93.0% on CORA, from 94.2% to 94.3% on
CITESEER, and from 94.2% to 94.5% on PUBMED. Our
approach improves the AP from 93.2% to 93.5% on CORA,
from 95.0% to 95.4% on CITESEER, and from 96.0% to
96.3% on PUBMED when the base model is Graphite.

D. Graph classification with missing edges

In practice, real-world graphs are often noisy and incom-
plete. As a consequence, the edges are usually missing in these
graphs. In order to evaluate our approach for real-world graph
tasks, we apply our approach to graph classification tasks with
missing edges in the graphs. These graphs are obtained by
randomly sampling 25%, 50% and 75% of the edges. Two
datasets including CORA and CITESEER are evaluated.

All experiments are conducted with 10-cross validation, and
both average accuracy and standard deviation are presented in
Table VI. Compared with LDS [22] for the dataset CITESEER,
our approach improves the average accuracy from 71.92% to
74.60% when 75% of the edges are missing, from 73.26% to
74.90% when 50% of the edges are missing, from 74.58% to
75.70% when 25% of the edges are missing, and from 75.54%
to 76.11% when no edges are missing. Compared with LDS
[22] for the dataset CORA, our approach improves the average
accuracy from 74.18% to 78.12% when 75% of the edges
are missing, from 78.98% to 80.41% when 50% of the edges
are missing, from 81.54% to 83.61% when 25% of the edges
are missing, and from 84.08% to 84.81% when no edges are
missing.

E. Other transformations for adjacency matrix

We also compare our approach with other state-of-the-art
methods for the transformation of adjacency matrix.

1) Node attribute and batch normalization.: Firstly, we
compare our approach with three baseline graph models:
GCN, MGCN, and MGCNK [27] by applying continuous
node attribute and batch-normalization. We also evaluate our
approach by applying the spectral multigraph module. We
compare our approach with the three graph models on dataset
ENZYMES with continuous node attributes.



TABLE IX
SUPERVISED GRAPH CLASSIFICATION IN COMPARISON WITH TWO TRANSFORMATION FORMS AND TWO BASELINE MODELS.

GCN GCN+A2 GCN+A2+2I (s)GCN
74.37± 0.31 74.56± 0.26 74.23± 0.37 78.49± 3.19
Graph-Unet Graph-Unet+A2 Graph-Unet+A2+2I (s)Graph-Unet
72.45± 0.88 72.87± 0.52 73.18± 0.50 74.12± 4.17

TABLE X
SUPERVISED GRAPH CLASSIFICATION FOR THREE DATASETS COMPARING MIXHOP AND (S)GMNN.

Graph models CORA CITESEER PUBMED
Mixhop 71.4± 0.81 81.9± 0.40 80.8± 0.58

(s)GMNN 73.4± 0.76 83.5± 0.57 81.6± 0.64

All experiments are conducted with 10-cross validation, and
both average accuracy and standard deviation are shown in
Table VII. Applying our approach to GCN [2] on ENZYMES
leads to an increase in the average performance from 32.33%
to 40.11%, and from 51.17% to 75.33% with the usage of
continuous node attribute and batch normalization. Compared
with MGCN [27] on ENZYMES, our approach improves the
average performance from 40.50% to 51.83%, from 59.83% to
72.16% with the usage of continuous node attribute and batch
normalization. Compared with MGCNK [27] on ENZYMES,
our approach improves the average performance from 61.04%
to 64.57%, and from 66.67% to 71.50% with the usage of
continuous node attribute and batch normalization.

2) Multi-graph models: Secondly, we evaluate our ap-
proach by applying two multi-graph modules and show its
usefulness for multigraph models. Two datasets including
MUTAG and PROTEINS are used.

All experiments are conducted with 10-cross validation, and
both average accuracy and standard deviation are reported
in Table VIII. When the base model is GCN, our approach
improves the average accuracy from 76.5% to 91.39% on
MUTAG and from 74.45% to 78.49% on PROTEINS. Com-
pared with MGCN [27], our approach improves the average
accuracy from 84.4% to 87.25% on MUTAG and from 74.62%
to 78.23% on PROTEINS. Compared with MGCNK [27],
our approach improves the average accuracy from 89.1%
to 89.42% on MUTAG and from 76.27% to 78.04% on
PROTEINS.

3) Powers of adjacency matrix and self-connectivity:
Thirdly, we evaluate our approach by applying the power of
adjacency matrix or the addition of self-loops for adjacency
matrix. Our approach is tested on the dataset PROTEINS. Its
performance is compared against two baseline models with the
application of the above transformation.

All experiments are conducted with 10-cross validation,
and both the average accuracy and the standard deviation
are shown in Table IX. With the usage of A2, the average
accuracy increases from 74.37% to 74.56% on GCN [1],
and from 72.45% to 72.28% on Graph-Unet [21]. With the
usage of A2+2I , the average accuracy increases to 74.23%
and 73.18%, respectively. Besides, our approach improves the

accuracy from 74.37% to 78.49% on GCN and from 72.45%
to 74.12% on Graph-Unet [21].

4) Convolutional transformation: Finally, we test our ap-
proach with the transformation of adjacency matrix based on
deep networks. The deep networks work on the calculation of
the power of adjacency matrix. We compare our approach with
the state-of-the-art Mixhop graph module [25]. Three datasets
are used to evaluate the performances of different models.

All experiments are conducted with 10-cross validation, and
both average accuracy and standard deviation are shown in
Table X. Our approach, which applies to GMNN [19], achieves
better performance on all three datasets: it achieves 73.4% on
CORA while Mixhop obtains 71.4%; it achieves 83.5% on
CITESEER while Mixhop achieves 81.9%, and it achieves
81.6% on PUBMED while Mixhop [25] only reaches 80.8%.

V. DISCUSSION

In this paper, we analyze the scheme of the aggregation and
iteration in the graph neural networks in the methodology of
mutual information. We propose an approach to enlarge the
normal neighborhood in the aggregation of GNNs. We apply
the proposed method on several of the state-of-the-art graph
neural network models and conduct a series of experiments on
the graph representation tasks including supervised graph clas-
sification, semi-supervised graph classification, and graph edge
generation and classification. The numerical results on various
datasets show that our approach improves the performance
of the listed state-of-the-art models. For the future work, it
is worthwhile to study new network architecture, message
transmission and graph kernels in the proposed approach, and
test on large-scale graph tasks.
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[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[4] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
arXiv preprint arXiv:1806.03536, 2018.



[5] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, pp. 3844–3852, 2016.

[6] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3693–3702,
2017.

[7] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Advances in Neural Information Processing Systems, pp. 4800–4810,
2018.

[8] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855–864,
ACM, 2016.

[9] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 701–710, ACM, 2014.

[10] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio,
A. Courville, and R. D. Hjelm, “Mine: mutual information neural
estimation,” arXiv preprint arXiv:1801.04062, 2018.
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