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Abstract—Network representation learning (NRL), which aims
to map nodes in a network into low-dimensional vectors, has
attracted wide attention due to its potential on various net-
work applications. Recently, attributed network embedding that
incorporates both network structure and node attributes has
shown a good performance in NRL. However, most existing
methods cannot achieve promising results in sparse attributed
networks because of the lack of structural information. In order
to further alleviate the negative effect of sparseness, we propose
a novel model named AANI (Adaptively Aggregating Neighbor-
hood Information). Specifically, AANI exploits the information of
current node and its neighborhood in a smoothing way to obtain
more informative node representations. At the same time, AANI
introduces attention mechanism to adaptively aggregate the
smoothed information according to their respective importance.
We conduct extensive experiments on three real-world datasets
which demonstrate that AANI outperforms the state-of-the-art
embedding methods in sparse attributed networks.

Index Terms—sparse attributed network embedding, attention
mechanism, network analysis

I. INTRODUCTION

With the development of embedding techniques, many re-
searchers have paid more attention to the network embedding
algorithms, which aims to map nodes in a network into low-
dimensional vectors. Network embedding is a feature learning
method that can be applied in various network applications
such as node classification [1], link prediction [2] and net-
work visualization [3]. Previous works focus on preserving
local and global structural information in the network, such
as DeepWalk [7] and node2vec [8]. These methods usually
perform truncated random walks on the network to generate
node sequences similar with the corpus in word2vec [6].
However, other useful information in the network, such as
node attributes, has been largely ignored.

Nodes associated with attributes can be easily observed
in the real-world networks, which are termed as attributed
networks. For example, in the Facebook network, age, gender
and post contents can be treated as the attributes of the
source node. Similarly, in a citation network, the appearance
of important words in papers can be also treated as attributes.
Node attributes can be beneficial to revealing the network
structure. For example, the pattern of node attribute is often
similar in the neighborhood, which is known as homophily
effect. Many existing methods have demonstrated the benefits
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Fig. 1. A toy example on a sparse attributed network. Nodes are represented
by circles and the attribute information is next to each node.

of attributes. TADW [14] first utilizes the framework of matrix
factorization to incorporate the text attributes of nodes. ASNE
[16] proposes a deep model preserving the structure proximity
and attribute proximity simultaneously. However, most of
them cannot achieve promising results when the network is
relatively sparse.

Sparseness means the lack of structural information, because
there are less links between nodes. Node attributes as an
important auxiliary information can alleviate the effect of
sparseness on node representations. However, most existing
methods can only utilize the attribute of current node but
ignore the attributes of its neighborhood nodes, which cannot
fully exert the potential of attribute information. For example,
in Fig. 1, the methods such as AANE [15] and ASNE [16] only
utilize the attribute of current node v1 but totally ignore the
attributes of its surrounding nodes. Some recent works such as
SEANO [19] and ANRL [20] improve their performance by
exploiting the attributes of its adjacency nodes such as v2 and
v3. However, they cannot exploit the attributes of its higher
order neighborhood nodes such as v4 and v5. Exploiting the
higher order neighborhood attributes can further alleviate the
negative effect of sparseness and obtain more informative node
representations.

In this paper, we propose a sparse attributed network
embedding method named AANI (Adaptively Aggregate
Neighborhood Information). We first exploit the information
of current node and its neighborhood in a smoothing way.
Then, we aggregate the smoothed information by attention
mechanism based on their respective importance on the node
representation. After obtaining the aggregated information, we
feed it into a multilayer perceptron to capture more non-
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linear information. Finally, in order to capture the structural
information, we perform random walks on the network and
maximize the occurrence probability of current node and its
context nodes. In summary, the contributions of this paper are
as follows:
• We propose a sparse attributed network embedding

method named AANI, which exploits the information of
current node and its neighborhood to further alleviate the
negative effect of sparseness.

• We introduce attention mechanism to adaptively aggre-
gate the information of current node and its neighbor-
hood based on their respective contribution to the node
representation.

• We conduct extensive experiments on three real-world
datasets with three practical tasks: node classification,
link prediction and network visualization. The results
demonstrate the effectiveness of the proposed model.

The rest of this paper is organized as follows. We first
summarize the related work in Section II, followed by pro-
viding some problem statements in Section III. Our model
and experimental results are presented in Section IV and V. A
simple conclusion is presented in Section VI.

II. RELATED WORK

A. Network Embedding

Network embedding technologies can be traced back to the
graph based dimensional reduction methods, such as Locally
Linear Embedding (LLE) [4] and IsoMAP [5]. These methods
learn the data embedding while preserving the local manifold
structure. The major issue of these methods is that they cannot
be applied to large-scale networks due to the high computa-
tional complexity in calculating eigenvectors. Recently, neural
networks have made great progress in many fields such as
natural language processing [12] and computer vision [13]. In-
spired by the success of word2vec [6], DeepWalk [7] performs
truncated random walks on the network to generate node se-
quences and feeds them into the skip-gram model to learn node
representations. Node2vec [8] extends DeepWalk by adopting
a more flexible strategy to generate node sequences. Except
for the methods based on random walks, LINE [9] proposes
a carefully designed objective function which captures the
first-order and second-order proximity to preserve both local
and global network structure. GraRep [10] proposes a method
that captures the k-th order relational information to improve
the performance of node representations. Different from these
works, SDNE [11] proposes a semi-supervised deep model
that can exploit the highly non-linear information and capture
the structure proximity at the same time.

The aforementioned methods can only utilize the structural
information in the network. However, attributes of nodes are
important information to reveal the network structure. It has
been demonstrated that attribute information can be beneficial
to the node representations. TADW [14] first proposes the
text-associated DeepWalk, which can incorporate text fea-
tures of nodes into the network representations. However,

TADW can only deal with text attributes. AANE [15] is a
distributed method that can learn a low-dimensional represen-
tation through decomposition of attributed affinity and enhanc-
ing the embedding difference between connected nodes. ASNE
[16] proposes a deep model which preserves the complex
relationship between network structure and node attributes.
However, these methods only utilize the attribute information
of current node but ignore the attributes of its neighborhood,
which is insufficient in sparse attributed networks. SEANO
[19] and ANRL [20] utilize the attributes of adjacency nodes
to enhance the performance of node representations. How-
ever, they cannot exploit higher order neighborhood attributes
which can further alleviate the negative effect of sparseness.
GraphSAGE [21] generates embeddings by sampling and
aggregating features from a node’s neighborhood. Different
from GraphSAGE, we have adopted a different aggregation
strategy and introduced the attention mechanism to adaptively
allocate weights based on the importance of information.
There are some research works explore in a semi-supervised
way to incorporate label information for attributed network
embedding such as TriDNR [17] and LANE [18] . However,
it’s often difficult to obtain the node label information in real-
world scenarios.

Furthermore, there are some efforts exploring representa-
tions in dynamic networks. DNE [22] extends skip-gram in the
dynamic environment with high efficiency. JODIE [23] learns
dynamic embeddings of users and items from a sequence of
temporal interactions. In this paper, we focus on the static
network embedding.

B. Attention Mechanism

Recently, attention mechanism has proved its effectiveness
in many fields such as natural language processing [24] and
computer vision [25]. Attention mechanism is inspired by the
human vision mechanism that people will focus on the selec-
tive parts of targets which are more important to them. Some
works have introduced attention mechanism into attributed
network embedding. SANE [26] introduces an attention mech-
anism to adaptively weigh the strength of interactions between
each node and its context nodes to solve the problem caused
by the highly sparse attributes. GAT [27] proposes a neural
network architecture that operates on network data through
leveraging masked self-attention layers. Different from SANE
and GAT, our proposed model introduces the attention mecha-
nism to adaptively weigh the importance of information which
is collected from the current node and its neighborhood.

III. PROBLEM STATEMENT

In this section, we will first introduce some notations in
this paper, and then give the definitions of our problem. Let
G = (V, E ,A) denotes a sparse attributed network, where V =
{vi}i=1,...,N is the set of nodes, ei,j = (vi, vj) ∈ E is an
edge encoding the relationship between node vi and vj , A =
{ai}i=1,...,N encodes the attribute information and ai ∈ RM

is the attribute of node vi. Sparseness indicates that O(E) =
O(V) in the network.



Definition 1. (Structure Proximity) Structure proximity de-
notes the proximity that can be observed by links. If there exists
an edge between node vi and vj , it indicates the first-order
proximity. If node vj is within the context of vi, it indicates the
high-order proximity. The first-order and high-order proximity
are both structure proximity.

The first-order proximity indicates the direct proximity in
the network which can be viewed as the local proximity. The
high-order proximity indicates the neighborhood similarity
which can be viewed as the global proximity. The nodes
sharing similar neighbors are also similar, although they are
not directly connected. A popular way to capture the high-
order proximity is performing random walks on the network
to generate node sequences. Like [7], [8], if two nodes appear
in a same node sequence, they are viewed as appearing the
same context. In the remaining of this paper, we use the term
“context nodes” to denote both the directly connected nodes
and the nodes in the same context for simplicity.

Definition 2. (Attribute Proximity) Attribute proximity de-
notes the similarity of attributes between node vi and vj .
The correlation between ai and aj represents the attribute
proximity.

Definition 3. (Sparse Attributed Network Embedding) Given
a sparse attributed network G = (V, E ,A), where O(E) =
O(V) in the network, we aim to learn each node vi ∈ V as a
low-dimensional vector yi ∈ Rd, where d� |V|. The mapping
function f : vi → yi can preserve the structure proximity and
attribute proximity simultaneously.

IV. PROPOSED MODEL

In this section, we first introduce how to deal with the
information of neighborhood in a smoothing way. Then, we
will introduce our proposed model.

A. Capturing the Information of Neighborhood

In a sparse attributed network, it is hard to capture the
structure proximity because of the lack of structural informa-
tion in the network. Node attributes can alleviate the problem
caused by sparseness. However, most existing methods only
utilize the attribute of current node but ignore the attributes
of its neighborhood, which is insufficient when the network
is relatively sparse. AANI improves the quality of node
representations through exploiting the attribute information of
current node as well as its neighborhood. Furthermore, the
structural information can be implicitly captured in the process
of searching neighborhood.

Neighborhood attributes smoothing. In order to exploit the
attribute information, we first search the neighborhood which
is within k hops from the central node, denoted as N (vi, k).
Then, we average the attributes of the nodes in N (vi, k) to
present the k-th order smoothed attribute, denoted as ai,k.
For example, in Fig. 1, the neighborhood which is one hop
from node v1 is (v2, v3). Then, we average the attributes
of (v2, v3) to obtain the smoothed attribute ai,1. To further
exploit the attribute information, we search a larger neigh-
borhood (v2, v3, v4, v5, v6) which is within two hops from

Algorithm 1 Neighborhood Attributes Smoothing
Input:

Sparse attributed network G = (V, E ,A), the largest search
hops K;

Output:
Attribute set si for all nodes vi ∈ V;

1: for vi ∈ V do
2: Initialize an empty set si;
3: for k = 0, 1, . . . ,K do
4: Search the neighborhood which is within k hops from

node vi into N (vi, k);
5: Compute ai,k by (1);
6: Add ai,k into si;
7: end for
8: end for
9: return si for all nodes vi ∈ V;

node v1 and average their attributes to obtain ai,2. Similar
to [19], collecting and smoothing the attributes of nodes in
N (vi, k) can bring two benefits. Firstly, since more attribute
information can be utilized, AANI obtains more informative
node representations in sparse attributed networks. Secondly,
since the pattern of attribute is similar in the neighborhood, the
possible attribute noise arising from the central node can be
smoothed out by averaging the attributes of nodes in N (vi, k).
Through expanding the search range, we can exploit more
attribute information in a smoother way. If a node is isolated
like node v7 in Fig. 1, we make ai,k equal to ai for any value
of k. For the convenience of description, we use ai,0 instead
of ai to present the attribute of current node which can be
treated as the zeroth smoothed attribute. Thus, we can obtain
a more general expression of ai,k as:

ai,k =

{
ai, k = 0 or N (vi, k) = ∅

1
|N (vi,k)|

∑
vj∈N(vi,k)

aj , N (vi, k) 6= ∅
(1)

where vi ∈ V, k ∈ {0, 1, . . . ,K} and K is the largest
search hops. Then, we can get an attribute set si =
(ai,0,ai,1, . . . ,ai,K) which is prepared for the next training
step. We present the details of neighborhood attributes smooth-
ing in Algorithm 1.

Neighborhood structure capturing. Searching the k hops
neighborhood from the central node also implicitly captures
the structural information. For example, when we search the
neighborhood (v2, v3) which is one hop from node v1, we can
capture the first-order proximity according to the definition 1
in Section III, which indicates the direct links between nodes.
With the growth of the value of k, a wider range will be
searched and more structural information will be captured.

B. Framework

An overview of AANI is shown in Fig. 2. We will introduce
our proposed model layer by layer.

Input layer. The input layer shown in Fig. 2 is the set si =
(ai,0,ai,1, . . . ,ai,K) for all nodes vi ∈ V . The set contains



the attribute information of current node and its neighborhood,
and ai,k presents the k-th order smoothed attribute.

Attension layer. The smoothed attribute information in
different search ranges has different effects on the node
representation. Actually, it is difficult to know which of the
k-th order smoothed attribute is more important. For each
node in the network, AANI utilizes attention mechanism to
adaptively assign weights to ai,k. The more important to the
node representation, the larger weight will be assigned. Similar
to [24], for each node vi ∈ V , a positive weight γi,k is placed
on each ai,k to indicate the relative importance on the node
representation. Formally, the attention network can be denoted
as:

γ′i,k = ReLU
(
vTai,k

)
(2)

where v ∈ RM×1 is an attribute-level latent vector which
is learned during the training process. We utilize the acti-
vation function ReLU = max(0, x) to capture more non-
linear information. Then, the attention score γ′i,k, where k ∈
{0, 1, . . . ,K} are normalized by the softmax function:

γi,k =
exp

(
γ′i,k

)
∑K

k=0 exp
(
γ′i,k

) (3)

oi =

K∑
k=0

γi,kai,k (4)

The final fused attribute information oi ∈ RM is then
aggregated by a sum of all the k-th order smoothed attribute
weighted by their corresponding attention weights. Specially,
oi incorporates the attribute information of current node and
its neighborhood as well as their respective contribution.

Hidden Layers. Stacking multiple non-linear layers can cap-
ture more non-linear relationship and enhance the embedding
quality [28]. Many existing methods such as DeepWalk and
node2vec are limited to the capability of shallow networks, and
failed to capture the non-linear information. Thus, we feed the
fused attribute information oi into a multilayer perceptron to
capture the complex relationship between network structure
and node attribtues. The representations of hidden layers
are defined as h(0),h(2), . . . ,h(L), which can be denoted as
follows:

h(0) = oi

h(l) = σ
(
W (l)h(l−1) + b(l)

)
, l = 1, 2, . . . , L

(5)

where σ(·) represents the possible activation functions such
as ReLU, sigmod and tanh. W (l) and b(l) are the trainable
parameters of the l-th layer, and L is the total number of the
hidden layers. We use h(L) as final node representations.

Output Layer. Inspired by the skip-gram model used in
node2vec [8] , we perform random walks on the network
to generate the context corpus Ci = {vi−t, . . . , vi+t} within
t window size for each node vi. To capture the structure
proximity, we utilize the final representation h

(L)
i of node vi to
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Fig. 2. An overview of our proposed model. In the input layer, ai,k represents
the k-th order smoothed attribute. Specially, ai,0 represents the attribute of
current node.

predict the occurrence probability of its context nodes vj ∈ Ci,
which can be denoted as:

p
(
vj |h(L)

i

)
=

exp
(
uT
j h

(L)
i

)
∑N

v=1 exp
(
uT
v h

(L)
i

) (6)

where U is weight matrix for context prediction and uj is
the abstract representation when node vj is treated as context
node. Furthermore, uj corresponds the j-th column in U.
Thus, our objective function aims to maximize the occurrence
probability of node vi and its context nodes in Ci which can
be denoted as:

L =
∏
vi∈V

∏
vj∈Ci

p
(
vj |h(L)

i

)
(7)

To efficiently train the neural network, according to (6), (7)
can be rewritten as:

L = −
∑
vi∈V

∑
vj∈Ci

log
exp

(
uT
j h

(L)
i

)
∑N

v=1 exp
(
uT
v h

(L)
i

) (8)

We add a regularization term in our model to prevent overfit-
ting. Thus, the final loss function of our model can be denoted
as:

L =−
∑
vi∈V

∑
vj∈Ci

log
exp

(
uT
j h

(L)
i

)
∑N

v=1 exp
(
uT
v h

(L)
i

)
+
α

2

(
‖v‖2F +

L∑
l=1

||W (l)‖2F

) (9)

where α is the `2 norm regularizer coefficient, v and W (l)

are weight matrices for the attention layer and hidden layers.

C. Training

Note that directly training on (9) is rather expensive,
because it requires traversing all the nodes in the network
when computing the occurrence probability of p

(
vj |h(L)

i

)
.

To reduce the computation complexity, we adopt the negative
sampling strategy proposed by [29] that samples multiple



negative samples according to some noisy distributions. In
details, for a specific node-context pair (vi, vj), we then have
follow objective:

log σ
(
uT
j h

(L)
i

)
+

|neg|∑
n=1

Evn∼Pn(v)

[
log σ

(
−uT

nh
(L)
i

)]
(10)

where σ(x) = 1/(1 + exp(−x)) is the sigmod function and
|neg| is the number of negative samples. We set Pn(v) ∝ d3/4v

as suggested in [29], and dv is the degree of node v.
In this way, our model preserves the structure proximity and

attribute proximity in a unified framework. Furthermore, we
exploit the neighborhood information in the sparse attributed
network to improve the performance of node representations.
To minimize the object function, we adopt stochastic gradient
algorithm for optimizing (9) until the model converges. All
model parameters are denoted as Θ and the training process
is summarized in Algorithm 2.

D. Discussions

New Nodes. Since continuous node arriving is an important
situation for the evolving networks, our method provides a
possible way to deal with new nodes. For the new node vx, we
can obtain the corresponding set sx according to the Algorithm
1. Then, we can feed sx into the finely trained model to get
the representation of node vx. Specially, since we only take
the attribute information as input, our method will still work
when the new node is isolated without edges.

Incomplete attribute. Node with incomplete attribute is
another possible situation in attributed networks. Attributes
of neighborhood as the additional information can relieve the
effect of this problem. Furthermore, the attention mechanism,
which adaptively aggregates attribute information from current
node and its neighborhood, is also helpful for obtaining
smoother representations in this case.

V. EXPERIMENTS

In this section, we conduct extensive experiments with three
real-world datasets to show the effectiveness of our proposed
model in sparse attributed networks.

A. Datasets and Baselines

Datasets. We summarize the statistics of the three real-world
datasets in Table I. The density indicates the sparseness of
the network, where d(G) = 2|E|

|V|×(|V|−1) . More details are as
follows:
• Cora1 contains 2,708 papers as nodes and 5,249 citation

links as edges. These papers are divided into seven
categories. The attribute of each node is a binary vector of
1433 dimensions indicating the appearance of important
words in the papers.

• Citeseer contains 3,312 publications of six classes such
as Agents, ML, AI, DB, IR and HCI. There are 4,732
links in the network and the attributed of each node is a
vector of 3,703 dimensions.

1http://linqs.cs.umd.edu/projects/projects/lbc/index.html

Algorithm 2 Training
Input:

Sparse attributed network G = (V, E ,A), window size b,
walks per vertex γ, walk length t, regularizer coefficient
α, embedding size d;

Output:
Node representations Y ∈ R|V|×d;

1: Construct the node context corpus C by starting γ times
of random walks with length t at each node;

2: Construct the set of smoothed attribute information si for
all nodes by Algorithm 1;

3: Random initialization for all parameters set Θ;
4: while not converged do
5: Sample a mini-batch of nodes with its context and the

set of smoothed attribute information;
6: Compute the gradient of loss function based on (9);
7: Update parameters in the neural network;
8: end while
9: return Node representations Y = h(L);

TABLE I
STATISTICS OF THE THREE REAL-WORLD DATASETS

Datasets |V| |E| |M | #density #label
Citeseer 3,312 4,732 3,703 8.63e–004 6

Cora 2,708 5,429 1,433 1.48e–003 7
Pubmed 19,717 44,338 500 2.28e–004 3

• Pubmed contains 19,717 biological papers which are
divided into three classes such as “Diabetes Mellitus
Experimental”, “Diabetes Mellitus Type 1” and “Diabetes
Mellitus Type 2”. The attribute in Pubmed is represented
by a 500 dimensions vector.

Baselines. In order to demonstrate the effectiveness of
AANI, we compare it with several state-of-the-art methods.
Since AANI incorporates both network structure and node
attributes, we select the baselines from two aspects. One is the
methods that only utilize network structure such as DeepWalk,
LINE and SDNE. Another is the methods that utilize both
network structure and node attributes such as AANE and
ASNE which are competitive competitors. We also conduct
two experiments named AANI/cur and AANI/noAtt to show
the effectiveness of aggregating neighborhood information and
attention mechanism. The details are illustrated as follows:
• DeepWalk [7] : DeepWalk designs a truncated random

walk to generate node sequences and feeds them into the
skip-gram model to learn node representations.

• LINE [9] : LINE preserves the first-order or second-order
proximity in the network by optimizing the carefully
designed objective function.

• SDNE [11] : SDNE proposes a deep model which can
capture the highly non-linear network structure.

• AANE [15] : AANE is an efficient embedding method
incorporating the structure proximity and attribute prox-
imity in a distribute way.

• ASNE [16] : ASNE adopts a deep model to capture



the structure proximity and attribute proximity simulta-
neously.

• AANI/cur : AANI/cur (current) is one of the variants of
AANI. AANI/cur only utilize the attribute of current node
with setting the largest search hops as 0.

• AANI/noAtt : AANI/noAtt (no Attention) is another vari-
ant which is without the attention layer shown in Fig. 2.
We take oi = 1

|si|
∑

ai,k∈si
ai,k as the input of hidden

layers. AANI/noAtt demonstrates the effectiveness of
attention mechanism compared with AANI.

For LINE and SDNE, we use the implementation on
OpenNE2 which is an open-source platform for network em-
bedding. We use the implementation released by the original
authors for the other methods. The parameters for baselines
are tuned to be optimal. We set the embedding size d as 128,
window size b as 10, walk length t as 80, walks per node
γ as 10, negative samples as 10. For AANI, the number of
neurons in each layer are shown in Table II. We set the largest
search hops K as 2 in AANI and AANI/noAtt to balance the
performance with computational complexity. At the end of
this section, we will show the effect of the value of K on our
proposed model.

B. Link Prediction

Link prediction evaluates the ability of node representations
in reconstructing the network structure based on existing
information. We generate the labeled dataset of edges as many
methods do [8]. We randomly sample 50% existing links and
an equal number of non-existing links as the positive instances
and negative instances. The labeled dataset of edges is formed
by both positive and negative instances. Then, we use the
remaining network to train the embedding methods. After
we obtain the node representations for each node, we use
these representations to perform link prediction task in the
labeled dataset. We rank both positive and negative instances
according to the cosine similarity function. Area Under the
ROC Curve (AUC) is adopted as the evaluation metric. A
higher value of AUC indicates a better performance. The
results of link prediction are presented in Table III. We
use blue to highlight the wins and summarize the following
observations:
• AANI achieves the best performance in all datasets.

Compared with the best results in baselines, our method
gets an improvement of 9.08% on Cora and 10.16% on
Pubmed. The result shows the effectiveness of AANI in
reconstructing the network structure.

• Since DeepWalk, LINE and SDNE only utilize the struc-
tural information, their performance is poor in sparse at-
tributed networks. Interestingly, we notice that Deepwalk
performs better, which mainly because that DeepWalk can
explore the network structure better via truncated random
walks.

• Both AANE and ASNE get an improvement compared
with the methods only utilizing the structural information.

2https://github.com/thunlp/OpenNE

TABLE II
DETAILED NETWORK LAYER STRUCTURE INFORMATION

Datasets Number of neurons in each layer
Citeseer 3703–3703–1000–500–128

Cora 1433–1433–500–128
Pubmed 500–500–200–128

TABLE III
LINK PREDICTION ON CITESEER, CORA AND PUBMED

Methods Citeseer Cora Pubmed
DeepWalk 0.655 0.783 0.826

LINE 0.732 0.680 0.690
SDNE 0.784 0.735 0.760
AANE 0.903 0.811 0.837
ASNE 0.934 0.826 0.823
AANI 0.943 0.901 0.922

These results indicate that node attributes can alleviate
the netwrok sparisty. However, their performance is still
poorer than AANI since they ignore the information of
neighborhood nodes.

C. Node Classification

Node classification is an important task in network analysis.
Similar to previous methods [7] and [8], we employ Micro-
F1 and Macro-F1 as the metrics to measure the performance
of node classification. The higher values of both metrices
indicate better performances. After having obtained the node
representations, we randomly sample 30% labeled nodes to
train a SVM classifier and the rest nodes are used to test
performances. We repeat this process 10 times and report
the average results in Table IV. To summarize, we have the
following observations:
• AANI achieves the best performance beating all the base-

lines. Compared with the best results, our method gets an
improvement of 17.6%, 7.30% and 4.31% on Micro-F1
corresponding to Citeseer, Cora and Pubmed. The result
shows that exploiting the information of neighborhood
can enhance the performance of node representations.

• The methods which only utilize the structural information
perform poorly such as LINE and SDNE. These methods
cannot get sufficient structural information when the
network is sparse. DeepWalk performs better. However,
DeepWalk cannot achieve satisfactory result on Citeseer
which contains many isolated nodes.

• The methods utilizing both network structure and node
attributes perform better than LINE and SDNE. The
results shows the benefits of attributes. However, AANE
and ASNE cannot achieve promising results compared
with DeepWalk on Cora and Pubmed. The result shows
that only using the attribute of current node is insufficient
in sparse attributed networks.

• Finally, AANI/cur performs poorly since it only utilizes
the attribute of current node but ignores the attributes of
its neighborhood. AANI/noAtt performs poorly since it
simply averages the k-th order smoothed attribute in si



TABLE IV
NODE CLASSIFICATION ON CITESEER, CORA AND PUBMED. WE USE BLUE TO HIGHLIGHT WINS.

Datasets Citeseer Cora Pubmed
Evaluation Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
DeepWalk 0.586 0.540 0.795 0.783 0.812 0.798

LINE 0.458 0.426 0.686 0.673 0.766 0.749
SDNE 0.519 0.467 0.760 0.750 0.699 0.677
AANE 0.580 0.560 0.769 0.747 0.784 0.765
ASNE 0.619 0.577 0.753 0.734 0.791 0.790

AANI/cur 0.640 0.590 0.748 0.725 0.807 0.814
AANI/noAtt 0.672 0.620 0.758 0.729 0.653 0.587

AANI 0.728 0.678 0.853 0.840 0.847 0.842

t-SNE embedding of the digits (time 217.51s)

(a) SDNE

t-SNE embedding of the digits (time 149.93s)

(b) AANE
t-SNE embedding of the digits (time 225.30s)

(c) ASNE

t-SNE embedding of the digits (time 213.24s)

(d) AANI

Fig. 3. Visualization of different methods on Cora dataset.

but ignores their respective importance on the node rep-
resentation. They show the necessity of all the essential
components of AANI.

D. Network Visualization

To further show the embedding result of AANI, we visualize
the node representations by using t-SNE [30]. Limited by the
space, we only post the results of three representative baselines
on Cora. The visualization result is shown in Fig. 3.

The result of AANE is poor, which may involve the decom-
position operation of attribute affinity matrix. The visualization
results of SDNE and ASNE are not well separated, in which
the nodes with different labels are mixed together. Compared
with these methods, AANI can achieve more compact and
separated clusters. Thus, AANI can achieve better performance
on three practical network applications.

E. Parameter Sensitive

We investigate the sensitivity of our proposed model in this
section. We conduct this experiment on three datasets and
report the classification results when the training ratio is 30%.

Dimension size. The effect of the dimension size on classifi-
cation performance is shown in Fig. 4(a). When the dimension
size is small, more useful information can be incorporated and
the performance becomes better. However, too large a value of
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Fig. 4. Classification on the three datasets with different embedding size and
largest search hops.

dimension size will introduce noise and redundant information
even leading to a worse result.

Largest search hops. The effect of the largest search hops
on classification performance is shown in Fig. 4(b). When
the largest search hops is small, more useful information
can be exploited and the performance also becomes better.
However, the farther the distance between two nodes and
the less similar their attributes are. Too large a value of the
largest search hops will introduce attribute noise, which leads
to a worse performance. Actually, AANI can relief the impact
of attribute noise through weighing the k-th order smoothed
attribute adaptively. However, as the largest search hops keeps
growing, more useless attribute information of neighborhood
will be exploited leading to a worse result. Furthermore, too
large the value of largest search hops will lead to an increase
in time complexity.

VI. CONCLUSIONS

In this paper, we propose a sparse attributed embedding
method named AANI. AANI significantly improves the perfor-
mance of node representations through exploiting the informa-
tion of current node and its neighborhood in a smoothing way.
In addition, we introduce attention mechanism to adaptively
assign weights for the smoothed information according to their
respective importance on the node representation. Finally, we
perform truncated random walks on the network and maximize
the occurrence probability of current node and its context
nodes. Extensive experiments have demonstrated that AANI
outperforms the state-of-the-art embedding approaches. As for
future work, we plan to extend our proposed model to perform
network embedding in dynamic attributed networks.
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