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Abstract—Object detection and semantic segmentation are two
fundamental techniques of various applications in the fields of
Intelligent Vehicles (IV) and Advanced Driving Assistance System
(ADAS). Early studies separately handle these two problems. In
this paper, inspired by some recent works, we propose a deep
neural network model for joint object detection and semantic
segmentation. Given an image, an encoder-decoder convolution
network extracts a set of feature maps, these feature maps are
shared by the detection branch and the segmentation branch to
jointly carry out the object detection and semantic segmentation.
In the detection branch, we design a PriorBox initialization mech-
anism to propose more object candidates. In the segmentation
branch, we use the multi-scale atrous convolution to explore
the global and local semantic information in traffic scenes.
Benefiting from the PriorBox Initialization Mechanism (PBIM)
and Multi-Scale Atrous Convolution (MSAC), our model presents
the competitive performance. In the experiments, we widely
compare with several recently-proposed methods on the public
Cityscapes dataset, achieving the highest accuracy. In addition,
to verify the robustness and generalization of our model, the
extension experiments are also conducted on the well-known
VOC2012 dataset.

Index Terms—traffic scenes, object detection, semantic segmen-
tation

I. INTRODUCTION

Object detection and semantic segmentation are two impor-
tant tasks in the computer vision, serving as the fundamental
technique support for many applications of autonomous driv-
ing car and advanced driving assistance system [1], [2]. In
early years, the object detection and semantic segmentation
are studied as two separate problems. The researches on joint
object detection and semantic segmentation sprout from the
works in [3]–[5]. Actually, object detection and semantic
segmentation are two highly correlated tasks so that they
could be mutually beneficial. Semantic segmentation could
provide both global and local semantic information to the
object detection (e.g., vehicles usually run on the roads rather
on the sky), and object detection provides the prior knowledge
to refine the semantic segmentation (e.g., the regions beneath
a vehicle bounding box tend to be the roads). Considering
the computational requirements, joint object detection and
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Fig. 1. Samples of joint object detection and semantic segmentation.

semantic segmentation often share the same feature extraction
network to save the computational requirements. Therefore, it
is meaningful and necessary to stride towards deeper study of
joint object detection and semantic segmentation.

As shown in Fig. 1, the goal of joint object detection
and semantic segmentation is to simultaneously detect objects
in images and segment the image into semantic regions. To
realize the joint object detection and semantic segmentation,
many good models have been proposed [6]–[8]. BlitzNet [6]
is an encoder-decoder network for joint object detection and
semantic segmentation. It uses each decoder layer for multi-
scale object detection and concatenates decoder layers to
perform semantic segmentation. TripleNet [8] also takes the
encoder-decoder network as the backbone network and uses
multiple decoder layers for the object detection and semantic
segmentation. These methods have achieved the impressive
performance. One main advantage of these methods is that
the skip-layer mechanism is involved in the encoder-decoder
network, contributing to extracting the feature maps conveying
both high-level and low-level information. Another advantage
is that multiple-scale feature maps are simultaneously utilized
for the detection and segmentation, which has been proved
to exhibit higher performance than the model only using the
single-scale feature map.

In this paper, besides utilizing the above mentioned advan-
tages, we also consider two other important factors for joint
object detection and semantic segmentation: 1) The object
candidate proposal method is significant for object detection.
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Previous methods usually generate object candidates by setting
PriorBox on the multiple-scale feature maps using the pre-
defined rule. Considering that the traffic scenes are highly
dynamic and complex, we define a new PriorBox initialization
mechanism to generate denser object candidates; 2) Semantic
segmentation signals an overall understanding for an image,
thus it is crucial to involve the global and local semantic
information in the model. Previous methods often use the
feature maps in the shallow layers of the network to extract the
local semantic information and the feature maps in the deep
layers to extract the global semantic information. However, the
convolution kernel is often with small sizes (e.g., 3×3), which
limits to explore the overall semantics since small convolution
kernels obtain small receptive fields. Therefore, inspired by
some works (e.g., [9]–[12]), we adopt the atrous convolution
to enlarge the receptive fields.

Considering these two factors, we propose an encoder-
decoder neural network model with the two branches that
are respectively targeted for object detection and semantic
segmentation. In the encoder-decoder backbone network, we
adopt the skip-connection mechanism to fuse the feature maps
of encoder layers and decoder layers. We also involve the
Squeeze-and-Excitation [13] module in the skip-connection
mechanism to improve the representation power of the feature
maps. In the detection branch, we apply a self-defined Prior-
Box initialization mechanism for object candidate generation,
and the object candidates are further processed by the classi-
fiers to realize the detection. In the segmentation branch, we
employ the multiple-scale atrous convolution on the deepest
decoder layer to generate a feature map, which is concatenated
with upsampled features of other decoder layers to form the
final feature map for the semantic segmentation.

In the experiments, our proposed model is compared with
several recent methods on the well-known public Cityscapes
[14] dataset, achieving the best performance. In addition, to
verify the generalization and robustness of our model, we
also test our model on the VOC2012 [15] dataset which is
not collected in the traffic scenes, and the results validate the
effectiveness of our method.

The paper is organized as follows: Section 2 discusses
related work, Section 3 presents our proposed method for
joint object detection and semantic segmentation, Section 4
describes experiments, and Section 5 summarizes the paper.

II. RELATED WORKS

A. Object detection

Object detection aims to classify and locate objects in an
image, and the object detection methods are mainly divided
into the two-stage method and the single-stage method.

Two-stage detection methods first generate a set of region
proposals and then refine them by the classifier. R-CNN [16]
is a classic object detection model. In order to reduce the
excessive computational consumption in R-CNN, SPPNet [17]
and Fast R-CNN [18] extract the features of the entire image,
and then generate regional features through the spatial pyramid
pool and RoIPooling layer, respectively. Faster R-CNN [19]

proposes an end-to-end object detection architecture for the
first time. It proposes a region proposal network(RPN) to
improve the efficiency of the detector. Based on Faster R-
CNN, Cascade R-CNN [20] proposes a multi-level detector
through powerful cascade architecture. Compared with Faster
R-CNN, Mask R-CNN [21] predicts instance segmentation by
adding a mask branch, and the RoIPooling layer in Faster R-
CNN is improved to RoIAlign layer to solve the problem of
mis-alignment.

One-stage methods do not have the region proposal mod-
ule. Instead, they directly classify and refine the pre-defined
anchors. YOLO [22] and SSD [23] are the two earliest one-
stage detection methods. Based on SSD, DSSD [24] uses the
deconvolution to add extra context information to improve the
detection accuracy. In order to solve the problem of the class
imbalance during the training, RetinaNet [25] proposes the
focal loss to down-weight the contribution of easy samples. In
addition, it uses the feature pyramid network FPN [26] to form
an encoder-decoder structure to enhance context information
connection.

B. Semantic segmentation

The main goal of semantic segmentation is to predict which
category each pixel in an image belongs to. FCN [27] is the
first approach to adopt fully convolution network for semantic
segmentation. Because multiple down-sampling layers are
used in FCN’s architecture, they usually have lower resolution
in high-level feature maps. In order to solve the problem of
low resolution caused by multiple downsamplings in FCN,
DeepLabv1 [9] rebuilds the network architecture and uses
the multiple layers of atrous convolution layers to expand
the receptive field size. Besides, some works [28], [29] use
the feature maps from earlier feature layers to compensate
for the lower resolution of high-level features. SegNet [28]
and UNet [29] are representative networks using the skip
connection, which are called encoder-decoder architecture
networks. Because objects have different scales, which require
different context information, PSPNet [30] and Deeplabv3+
[12] are proposed to concatenate features of multiple receptive
field sizes together for final prediction. PSPNet uses 4 parallel
spatial pyramid poolings to receive information at multiple
scales. Deeplabv3+ [12] concatenates the features from mul-
tiple atrous convolution layers with different dilation rates
arranged in parallel.

C. Joint object detection and semantic segmentation

The goal of joint object detection and semantic segmen-
tation is to carry out the object detection and semantic seg-
mentation simultaneously. The idea of joint object detection
and semantic segmentation originates from [3]–[5], which
suggests that learning two tasks simultaneously might be
better than learning each task alone. UberNet [31] integrates
multiple visual tasks such as semantic segmentation and object
detection into a single deep neural network. However, this
architecture is not end-to-end. BlitzNet [6] is a real-time
network for joint detection and semantic segmentation. It is



Fig. 2. The overview of our proposed method for joint object detection and semantic segmentation. The green color represents the encoder-decoder module,
the orange color represents the object detection module, and the blue color represents the semantic segmentation module. “Skip connection” is the network to
fuse the feature maps of the encoder layers and decoder layers. “MSAC” is the Multi-Scale Atrous Convolution network. For the convenience, the “upsample”
in the figure means that the corresponding feature map is upsampled to the same scale. Layers of the decoder are simultaneously used for the detection and
segmentation.

based on an encoder-decoder network, where each layer of
the decoder is used to detect objects of different scales, and
the multi-scale fusion layer is used for semantic segmentation.
DspNet [7] is another lightweight architecture for joint object
detection and semantic segmentation. Its detection module is
based on SSD [23], and the segmentation module is inspired by
PSPNet [30]. More recently, TripleNet [8] and PairNet [8] are
proposed. PairNet [8] uses a shared encoder-decoder structure.
Each decoder layer is simultaneously used for detection and
segmentation. During inference, only the last feature map
is used for final segmentation. Compared to PairNet [8],
TripleNet [8] goes a step further. It uses the attention skip-
layer fusion to expand the feature map, the inner-connected
module to increase the correlation between the two tasks, and
the class-agnostic segmentation supervision to add a deep level
of supervision.

III. APPROACH

A. Overview

Fig. 2 shows the overview architecture of our model. The
model mainly consists of three modules: the encoder-decoder
module, the object detection module, and the semantic seg-
mentation module. The encoder-decoder module is composed
of seven encoder layers and seven decoder layers, and each
decoder layer is connected with the corresponding encoder
layer by the “Skip Connection” network. The input image is
processed by the encoder-decoder module, generating seven
different sizes of feature maps in both encoder layers and
decoder layers, which are subsequently used for the object
detection and semantic segmentation. In the object detection
module, the object detection is carried out by classifying the

object candidates that are generated on the seven feature maps.
In the semantic segmentation module, the feature maps are
firstly upsampled to the same size (especially, the Multiple-
Scale Atrous Convolution mechanism is applied on the last
feature map), and then concatenated together to realize the seg-
mentation. In the following, we will detail the encoder-decoder
module, detection module, and the segmentation module.

B. Encoder-Decoder architecture

We use ResNet50 [32] as the backbone of the encoder
network. ResNet50 is composed of five blocks, and each block
outputs a feature map. To save the GPU memory usage, we
use the last four feature maps of the ResNet50 and denote
them as E1, E2, E3 and E4. In addition, we add three new
residual layers after ResNet50, which generate three feature
maps, which are denoted as E5, E6 and E7. The sizes of
feature maps are gradually halved. If the resolution of the
input image is H ×W , the resolution of E7 is H

256 ×
W
256 .

The feature maps from the encoder covey relatively low-
level semantic information. In order to improve the semantic
information of the feature maps, we adopt the skip connection
mechanism. The detail network structure of the skip connec-
tion is shown in the left corner of Fig. 2. The Squeeze-and-
Excitation (SE) [13] module can obtain the importance of each
feature channel, and increase the weight of useful features.
We add SE [13] module to skip connection module, which
is beneficial for improving the representation capabilities of
decoder feature maps. Take an example to better understand
the skip-connection mechanism, we use E7 and E6 to generate
D6, to this end, we firstly upsample E7 and then concatenate
it with E6 through SE module, then the concatenated feature
map is processed by a series of convolutions to generate D6.



Through the skip connection, we generate decoder feature
maps of different sizes with rich semantic information, which
are denoted as D6, D5, D4, D3, D2 and D1. We use global
average pooling on D6 to generate D7. The sizes of decoder
feature maps are gradually doubled. Then the seven decoder
feature maps are used for the object detection and semantic
segmentation simultaneously.

C. Detection

To implement the object detection, we apply our self-
defined PriorBox initialization mechanism to generate object
candidates , based on which the detection is realized with
the commonly-used classification and regression methods. The
traffic scene is highly dynamic and complex, the appearance
of objects are diverse (e.g., the aspect ratio of person is small
while the aspect ratio of train is large). Therefore, our PriorBox
initialization mechanism targets to generate candidates with
various aspect ratios.

The scale of PriorBox for each feature map is computed as:
if k >= 2:

Sk = Smin +
Smax − Smin

m− 2
(k − 2), k ∈ [2,m] (1)

if k = 1:

Sk = Ssmallest (2)

where m is the number of feature maps, k is the index of
feature maps, and Ssmallest, Smin and Smax are self-defined
parameters. We set m = 7, Ssmallest = 0.04, Smin = 0.7 and
Smax = 0.95.

Inspired by some works like SSD [23], in the first five
decoder layers (i.e., D7, D6, D5, D4, D3), we set 7 PriorBox
with different ratios for each feature map location and the
aspect ratios are α ∈ {1,2,3,4, 12 , 13 , 14}. In the last two layers
of the decoder (i.e., D2, D1), we set 5 PrioBox with different
ratios for each feature map location and the aspect ratios are
α ∈ {1,2,3, 12 , 13}. In all layers, for the aspect ratio of 1, we
additionally add another PriorBox whose scale is

√
sksk+1.

For each PriorBox, the width is denoted as w = Sk
√
α, the

height is denoted as h = Sk/
√
α. If the resolution of input

image is 300× 300, the scales for 7 decoder feature maps are
{S1 = 0.04, S2 = 0.1, S3 = 0.27, S4 = 0.44, S5 = 0.61,
S6 = 0.78, S7 = 0.95}. Take an example, for each feature
map location of D1, the h × w can be denoted as {12 × 12,
19× 19, 17× 8, 8× 17, 21× 7, 7× 21 }.

Our proposed PriorBox initialization mechanism can gener-
ate dense object candidates with special aspect ratios, which is
beneficial for object detection in complex and dynamic traffic
scenes.

D. Segmentation

Studies have proven that multi-scale feature fusion is useful
for semantic segmentation [6]–[8], [30]. The main reason is
that the feature maps in shallow layers tend to imply the local
semantic information and the feature maps in deep layers tend
to imply the global semantic information. Therefore, to get

both the global and local semantic information, we upsample
the feature maps of each decoder layer to the same resolution,
and then concatenate them together to form a final feature
map. Especially, in order to extract rich semantic information,
we apply the MSAC mechanism in the last feature map. The
Multi-Scale Atrous Convolution (MSAC) module is able to
obtain the information with different receptive fields, allowing
to effectively capture informative features. As shown in the
Fig. 2, the MSAC network mainly consists of 5 branches,
including a 1× 1 convolution branch, 3 parallel 3× 3 atrous
convolution branches, and a global average pooling branch.

E. Loss Function

For the object detection, we use the similar loss functions
that are widely adopted in the models of SSD [23] and Faster
R-CNN [19]. For the semantic segmentation, the loss is the
cross-entropy between predicted and target class distribution
of pixels [27]. We use each feature map of the decoder to parse
the labels of the semantic pixels separately. We upsample each
segmentation logits to the same resolution as ground truth, use
them to calculate the loss of each semantic segmentation, and
accumulate all these losses. They can be regarded as a deep
level of supervision in the entire learning process. Therefore
we define the multi-task loss function as:

L = Ldet + Lseg (3)

Ldet = Lcls + Lreg (4)

Lseg = Linfer fm + Ldecoder fms (5)

Where Lcls is used to classify the object candidates, Lreg is
used to refine the corresponding Priorbox, Linfer fm means
the cross-entropy between the fused feature map and ground
truth, and Ldecoder fms means the cross-entropy between each
decoder feature map and ground truth.

IV. EXPERIMENTS

A. Setting

We perform experiments on the Cityscapes [14] dataset.
Cityscapes is an image segmentation dataset collected in the
traffic scenes, including 20,000 images with coarse annotations
and 5000 images with high quality annotations. Following
the setting in DspNet [7], 5000 images with high quality
annotations are used in our experiments. Since the test dataset
of Cityscapes does not provide detailed annotations, in actual
experiments, we use training set (2975 images) for training
and validation set (500 images) for testing.

For object detection, since the dataset does not provide the
bounding box annotations, to make the dataset qualified for
object detection, we compute four values (leftmost, rightmost,
uppermost and nethermost) to form a bounding box containing
a semantic segment. Following the DspNet [7], we set 8 classes
for object detection and the rest as the background class.

For semantic segmentation, the original Cityscapes dataset
contains pixel-level annotations for 33 classes. However, some
classes are not important for the scene understanding or are



TABLE I
COMPARISON OF MEAN AVERAGE PRECISION (MAP) RESULTS FOR EACH CLASS ON THE CITYSCAPES-VAL DATASET. THE MODELS ARE TRAINED ON

CITYSCAPES-TRAIN. THEIR BACKBONE IS RESNET50 AND INPUT SIZE IS 300× 300.

Method person rider car truck bus train mbike bike mAP
DspNet [7] 23.0 27.5 52.8 30.8 48.1 40.5 19.8 25.1 33.4
BlitzNet [6] 28.7 31.8 63.9 34.1 57.2 45.1 20.6 26.6 38.5
PairNet [8] 21.6 28.8 48.8 33.2 53.4 49.3 14.2 22.4 34.0

TripleNet [8] 21.1 27.4 49.6 33.3 52.5 42.6 19.4 21.4 33.4
Our Method 28.7 32.8 63.9 35.7 58.6 50.2 24.0 26.5 40.0

TABLE II
COMPARISON OF MEAN INTERSECTION OVER UNION (MIOU) RESULTS FOR EACH CLASS ON THE CITYSCAPES-VAL DATASET. THE MODELS ARE

TRAINED ON CITYSCAPES-TRAIN. THEIR BACKBONE IS RESNET50 AND INPUT SIZE IS 300× 300.

Method road swalk build wall fence pole t.light t.sign veg. terrain sky person rider car truck bus train mbike bike mIoU
DspNet [7] 89.8 63.2 80.1 38.4 28.0 11.6 22.3 36.1 81.6 49.2 82.0 51.0 32.0 86.0 63.2 71.0 62.2 36.8 51.0 54.5
BlitzNet [6] 88.4 58.2 78.1 30.7 31.6 10.5 11.4 24.4 80.6 41.5 82.9 50.3 26.1 85.2 56.7 67.3 60.3 28.3 47.1 50.5
PairNet [8] 87.4 58.9 77.1 39.2 29.8 8.4 13.9 25.7 75.5 44.5 79.3 48.1 29.8 83.5 57.5 65.0 51.5 32.2 46.8 50.4

TripleNet [8] 87.7 60.6 77.7 38.3 30.1 9.1 12.0 29.5 80.7 45.8 80.5 49.1 27.8 84.8 63.0 68.9 49.9 30.5 48.4 51.3
Our Method 90.7 65.0 81.0 45.3 33.6 17.8 26.4 38.5 83.2 48.1 83.8 53.5 33.1 86.4 60.2 65.6 56.3 35.0 50.9 55.5

TABLE III
JOINT DETECTION AND SEGMENTATION V.S. INDIVIDUAL

DETECTION/SEGMENTATION. THE MODELS ARE TRAINED ON
CITYSCAPES-TRAIN AND TESTED ON CITYSCAPES-VAL. THEIR

BACKBONE IS RESNET50 AND INPUT SIZE IS 300× 300.

Mode Det Seg mAP mIoU
Detection

√
– 36.3 –

Segmentation –
√

– 55.0
Joint

√ √
40.0 55.5

rarely appeared in many scenarios, following the setting in
[33], [34], we use 19 classes for semantic segmentation, and
the rest as the background class.

B. Metrics

For object detection, mean average precision (mAP) is gen-
erally used to evaluate the performance of object detection. For
semantic segmentation, mean intersection over union (mIoU)
is generally used to evaluate the performance of semantic
segmentation. Therefore, we take the mAP as the metric
for object detection and mIoU as the metric for semantic
segmentation.

C. Implementation details

Our proposed method is coded in python 3.6.9 and pytorch
1.2. All experiments run on a single NVIDIA GeForce RTX
2080Ti GPU. In all our experiments, we use SGD [35] to
optimize the network, with a batch size of 6 images, and the
input size of each image is resized to 300 × 300. The total
number of epoch in the training stage is 320, where the initial
learning rate is set to 0.0005. The learning rate decreases by
a factor 2 at epoch 80/160/240, respectively.

D. Experimental design and results analysis
Comparison with baseline methods in object detection.

Table I shows the performance of baseline methods and
our method in object detection. Our method exhibits best
performance on the detection of person, rider, car, truck, bus,
train and mbike, and achieves 3.9% accuracy improvement
compared with the second best model BlitzNet [6] and 19.8%
improvement compared with the recently-proposed TripleNet
[8]. Fig. 3 shows some samples of object detection results,
from which we can observe that our model is effective.
The reasons are three-fold: 1) we adopt the skip-connection
mechanism and involve the SE module in the skip-layer con-
nection, so the feature maps covey the informative global and
local information; 2) our self-defined PriorBox initialization
mechanism generates denser and multi-scale object candidates,
which contributes to detecting objects with special aspect
ratios; 3) the detection branch shares the same feature maps
with the semantic segmentation branch, which benefits the
object detection to use the semantic segmentation information.

Comparison with baseline methods in semantic segmen-
tation. Table II describes the performance of baseline methods
in semantic segmentation. Our method achieves 1.8% accuracy
improvement compared with the second best model DspNet [7]
and 8.2% improvement compared with the recently-proposed
TripleNet [8], and exhibits the best performance on most
semantic classes. Fig. 3 shows some samples of semantic
segmentation results, from which we can observe that our
model is effective. The skip connection in the encoder-decoder
network is significant for the good performance. In addition,
the MSAC module also contributes to the good performance
since it is able to extract the highly abstract feature map by
utilizing multi-scale atrous convolutions.

Joint detection and segmentation V.S. individual detec-
tion/segmentation. As shown in Table III, compared to indi-



Fig. 3. Visualization experimental results of our method on Cityscapes-val dataset. Specifically, the first row shows the input images, the second row shows
our detection results, and the last row shows our segmentation results.

TABLE IV
ABLATION EXPERIMENTS OF OUR MODEL. THE MODELS ARE TRAINED ON

CITYSCAPES-TRAIN AND TESTED ON CITYSCAPES-VAL. THEIR
BACKBONE IS RESNET50 AND INPUT SIZE IS 300× 300. ”BASE” MEANS

USE DECONVOLUTION TO ENLARGE FEATURE MAPS, ”+SKIP” MEANS USE
SKIP CONNECTION TO ENLARGE FEATURE MAPS, ”+SKIP+MSAC” MEANS

BOTH SKIP CONNECTION AND MSAC ARE ADOPTED.

Configuration mAP mIoU
Base 13.8 38.0

Base+Skip 38.8 54.4
Base+Skip+MSAC 40.0 55.5

vidual detection or segmentation network, the joint detection
and segmentation network exhibits better performance. The
mAP is improved from 36.3% to 40.0% and the mIoU is
improved from 55.0% to 55.5%, which demonstrates that the
two tasks are mutually beneficial. On the one hand, object
detection can be used as prior knowledge to assist semantic
segmentation, on the other hand, semantic segmentation can
provide context information and semantic features for object
detection. From the perspective of learning, the branches of
object detection and semantic segmentation share the same
feature map extraction network, the backward procedure up-
dates the parameters of the encoder-decoder network, guiding
the network to learn the features that simultaneously benefit
the detection task and segmentation task.

Effectiveness of MSAC module and skip connection. Ta-
ble IV shows the experiment results of our model with differ-
ent network configurations. When skip connection and MSAC
are not used, the accuracies of detection and segmentation
are respectively 0.138 and 0.380. When the skip connection
module is added, the accuracies of detection and segmentation
are improved to 0.388 and 0.544, respectively. When both
skip connection and MSAC are added, the accuracies of
detection and segmentation are improved to 0.400 and 0.555,

respectively. Experiments prove that it is effective to extract
the feature maps that fuse the information in both shallow
layers and deep layers by employing the skip-connection,
and it is significant for semantic segmentation to enlarge the
receptive field through MSAC mechanism.

E. Extention experiment and results analysis on VOC2012-
Segmentation dataset

In this subsection, to demonstrate the generalization ability
and robustness of our proposed model, we perform experi-
ments on the PASCAL VOC [15] dataset. The PASCAL VOC
dataset consists of VOC2007 and VOC2012. The VOC2007
and VOC2012 datasets are often used to evaluate the perfor-
mance of object detection and semantic segmentation. The
number of classes for object detection and semantic segmen-
tation is 20. For the dataset containing the semantic segmen-
tation label, the VOC2007-segmentation dataset consists of
training set (206 images), validation set (213 images), test set
(210 images), the VOC2012-segmentation dataset consists of
training set (1464 images), validation set (1449 images), with-
out the test set. We use the VOC2012-segmentation dataset for
experiments, using training set (1464 images) for training and
validation set (1449 images) for testing.

Table V and Table VI show the performance of baseline
methods and our method in object detection and semantic
segmentation, from which we can observe that our model
outperform other methods on most object classes and seg-
mentation types, and achieves the highest overall performance
on both object detection task and semantic segmentation task,
surpassing the second best model BlitzNet [6] by 2.5% mAP in
object detection and TripleNet [8] by 1.4% mIoU in semantic
segmentation. Fig. 4 shows some samples of joint object
detection and semantic segmentation of our method, and we
can observe that our model exhibits good performance. Ex-
perimental results prove that our model is robust on different
kinds of datasets.



TABLE V
COMPARISON OF MEAN AVERAGE PRECISION (MAP) RESULTS FOR EACH CLASS ON THE VOC2012-SEGMENTATION-VAL DATASET. THE MODELS ARE

TRAINED ON VOC2012-SEGMENTATION-TRAIN. THEIR BACKBONE IS RESNET50 AND INPUT SIZE IS 300× 300.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DspNet [7] 77.6 67.3 68.8 56.7 33.8 81.6 53.9 86.5 35.1 66.2 52.3 76.4 71.6 81.6 68.8 34.9 66.4 58.0 81.4 69.5 64.4
BlitzNet [6] 81.1 75.3 73.8 63.1 38.0 87.0 61.3 85.8 40.7 72.5 53.4 74.4 72.8 84.5 74.0 41.2 68.5 57.6 86.7 76.4 68.4
PairNet [8] 81.6 69.1 73.5 59.8 36.5 82.9 57.1 82.5 31.8 71.7 53.7 76.2 73.8 84.7 70.1 39.0 68.8 61.2 86.4 72.2 66.6

TripleNet [8] 84.2 74.7 81.6 61.2 34.9 82.9 55.0 86.6 32.3 72.4 54.0 81.8 73.5 82.9 67.3 31.2 70.2 59.7 84.7 73.9 67.2
Our Method 81.9 75.3 75.7 68.2 42.5 88.5 61.2 84.0 42.3 74.8 57.0 79.6 76.2 83.4 71.3 41.4 72.5 63.5 86.0 76.3 70.1

TABLE VI
COMPARISON OF MEAN INTERSECTION OVER UNION (MIOU) RESULTS FOR EACH CLASS ON THE VOC2012-SEGMENTATION-VAL DATASET. THE

MODELS ARE TRAINED ON VOC2012-SEGMENTATION-TRAIN. THEIR BACKBONE IS RESNET50 AND INPUT SIZE IS 300× 300.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
DspNet [7] 73.3 35.2 72.0 57.8 62.3 84.9 75.7 75.2 22.6 64.4 50.3 68.4 61.9 68.6 70.6 50.3 63.1 36.7 76.6 61.8 61.6
BlitzNet [6] 74.1 31.3 73.4 54.3 59.6 82.4 73.3 73.0 20.5 64.9 46.0 66.7 61.1 65.3 67.6 47.4 57.3 37.1 76.3 58.9 59.5
PairNet [8] 69.5 31.3 66.4 55.6 56.6 78.3 70.7 68.1 24.3 58.3 44.4 63.0 63.0 60.9 67.4 44.3 59.1 36.1 73.8 58.2 57.5

TripleNet [8] 74.5 30.8 74.8 57.4 65.5 83.8 72.5 77.2 24.0 68.1 47.9 70.8 64.8 67.1 70.0 49.5 69.4 41.5 76.9 61.6 62.4
Our Method 76.8 34.2 77.3 61.6 61.1 84.3 73.7 78.2 26.1 72.2 50.8 73.8 70.1 65.4 71.2 44.4 66.3 38.5 78.2 61.2 63.3

Fig. 4. Visualization experimental results of our method on VOC2012-segmentation-val dataset. Specifically, the first row shows the imput images, the second
row shows our detection results, and the last row shows our segmentation results.

Our method achieves better results on the VOC2012-
segmentation dataset than that on the Cityscapes dataset. One
main reason is that the Cityscapes dataset is collected in the
dynamic and complex traffic scenes, with various backgrounds
and diverse small-scale objects. In the contrast, the images in
the VOC2012-segmentation dataset often contain only one or
a few objects and the backgrounds of images are not complex
as that in the Cityscapes dataset.

V. CONCLUSION

In this paper, we propose a deep model for joint object
detection and semantic segmentation in traffic scenes. We
involve the SE network in the skip-connection mechanism to
form the informative feature maps, propose a new PriorBox
initialization mechanism to generate denser candidate objects,

and adopt MSAC to enlarge the receptive field and explore
global and local semantic information. Our model achieves the
competitive results on a variety of experiments, from which
we draw some conclusions: 1) object task and segmentation
are mutually beneficial, 2) the proper PriorBox initialization
mechanism is important for the object detection, for example,
the traffic scenes contain various object with diverse appear-
ance, thus it is important to set PriorBox with different aspect
ratios, and 3) the skip-connection mechanism and MSAC
are significant for extracting the informative global and local
semantic feature maps, which are crucial to improve overall
performance. In the future, we plan to further strengthen the
correlation between object detection and semantic segmenta-
tion so that they can achieve better mutual benefit.
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