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Abstract—Recently, instead of pursuing high performance
on classical evaluation metrics, the research focus of image
captioning has shifted to generating sentences which are more
vivid and stylized than human-written ones. However, there
are still no applicable metrics which can judge how close the
generated captions are to the human-written ones. In this paper,
we propose a novel learning-based evaluation metric, namely
Unpaired Image Captioning Evaluation (UICE), which can be
trained to distinguish between human-written and generated
captions. Unlike existing metrics, our UICE consists of two parts:
the semantic alignment module measuring the semantic distance
between extracted image features and caption meanings, and
the syntactic discriminating module syntactically judging how
human-like the candidate caption is. The semantic alignment
module is implemented by mapping the image features and
the word embedding into a unified tensor space. And the
syntactic discriminating module is designed to be learning-based,
and thereby can be trained to be stylized by users’ own, fed
with additional personalized corpus during the training process.
Extensive experiments indicate that our metric can correctly
judge the grammatical correctness of generated captions and
the semantic consistency between captions and corresponding
images.

Index Terms—image caption, unpaired learning, evaluation
metric

I. INTRODUCTION

With the dramatic advancements of neural network [1]
and the introduction of attention mechanism [2], automatic
image captioning models have already achieved extremely
high scores on classical metrics such as BiLingual Evalua-
tion Understudy (BLEU) [3], Recall Oriented Understudy of

Fig. 1. Negative examples of traditional image caption metrics. These three
examples respectively show the scenes of good sentence getting a low score,
sentence that does not match the image getting a high score, and sentence
that is neither grammatically nor semantically correct getting a fine score.
Meanwhile, we also give out the corresponding scores given by our UICE
metric and mark them red, which is obviously more reasonable.

Gisting Evaluation (ROUGE) [4], METEOR [5], Consensus-
based Image Description Evaluation (CIDEr) [6] and Semantic
Propositional Image Caption Evaluation (SPICE) [7], meaning
that machine generated captions have been enough seman-
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tically consistent with corresponding images. Recently, the
research focus has shifted from further improving accuracy
[2], [8] to generating captions with some specific styles [9]–
[11]. However, all the metrics mentioned above depend on a
finite number of ground-truth, which are stylistically fixed or
monotonous so that cannot cover all interesting details in the
image. So, it has become a common bottleneck that there are
no applicable evaluation metrics to judge stylized captions.

The metrics, such as BLEU, ROUGE, METEOR and
CIDEr, mainly measure the n-gram word overlap between
generated and reference captions. However, n-gram overlap
is neither necessary nor sufficient for two sentences to convey
the same meaning [12]. SPICE estimates caption quality by
transforming both candidate and reference captions into a
graph-based semantic representation and shows better corre-
lation with human judgments. But SPICE is sensitive to the
semantic meaning of a caption and tends to ignore its syntactic
quality [13]. And SPICE prefers to give high scores to long
sentences with repeating clauses [14]. Some counter-examples
are given in Figure 1. To remedy the aforementioned defects,
Yin et al. [13] proposed a learning-based metric that directly
discriminates between human-written and machine generated
captions and is able to adapt to some pathological cases. For
convenience of reference, we call the metric proposed by Yin
et al. as YICE shorting for Yin’s Image Captioning Evaluation.
However, the YICE still depends on ground-truth captions, just
like all previous metrics, which unavoidably results in little
flexibility.

To break this limitation, we propose a metric that dis-
criminates directly between wildly crawled human captions
and machine generated captions, extricating from reference
captions given in certain datasets, so that it can flexibly
judge that how close the candidate caption is to be human-
written. We crawl a large-scale image description corpus
of more than 2 million natural sentences to facilitate the
unpaired image caption evaluating scenario and artificially
define several transformation to systematically generate some
pathological sentences as negative training samples [15]. The
crawled positive descriptions incorporating with the generated
negative sentences are used to train a discriminator to distin-
guish machine-generated captions from human-written ones
and to output a human-like score. Considering the correlation
between caption and image, a semantic alignment block is
designed. We use a CNN architecture [16] to capture high-
level image representations and a RNN with LSTM cells to
encode captions [17]. By projecting the image and sentence
features into a common latent space, we can compute the
distance between them as semantical consistent score of the
candidate caption. Finally, we fuse these two scores as our
Unpaired Image Captioning Evaluation (UICE) metric.

To sum up, our key contributions are as follows:
• We make the first attempt to construct an unpaired

learning-based evaluation metric without relying on any
image-sentence pairs for image captioning.

• We directly introduce image features into sentence match-
ing to make it more reasonable to judge the semantic

consistency between the generated statements and the
images.

• For the first time, our UICE separates the evaluation into
two modules which judge grammatical correctness and
semantic consistency, respectively.

• We conduct comprehensive studies to demonstrate that
our UICE metric is almost in agreement with human
evaluation.

II. RELATED WORKS

A. Captioning Evaluation Metrics

Although human evaluation scores are more reliable, they
are too costly to obtain. Thus, most image captioning models
still adopt automatic metrics instead of human judgments. In
the early times, there were no automatic metrics specifically
for image captioning, so some were introduced from other
tasks of Natural Language Processing (NLP). The most com-
monly used two metrics, BLEU [3] and METEOR [5], are
originally for statistically evaluating machine translation task.
Comparing with the precision-based BLEU, which has been
repeatedly questioned [18]–[20], METEOR, which addition-
ally considers the recall ratio, seems a little more promising.
Another popular metric ROUGE [4] is originally used in the
text summarization community task. As the name suggests, it
is primarily recall-based.

With the interest in jointing visual and linguistic prob-
lems becoming increasingly considerable, there have been
evaluation metrics specifically targeted at the task of im-
age description. CIDEr [6] applies Term Frequency Inverse
Document Frequency (TF-IDF) weights to n-grams in the
candidate and reference sentences, and measures the sum of
their cosine distance across n-grams. SPICE [7] provides a
novel measuring method estimating caption quality by trans-
forming both candidate and reference captions into a scene
graph which explicitly encodes the main features found in the
image captions and abstract most of the lexical and syntactic
idiosyncrasies of natural language in the process. To correlate
better with human judgments and avoid blind spot of those
rule-based metrics, Yin et al. [13] propose YICE to adapt to
pathological cases once identified, while correlating well with
human judgments. Our work differs from all above methods
as we separate image relevance from semantic correctness,
which allow for machine generated captions extricating from
reference captions

B. Unpaired training

As paired image-sentence data is expensive to collect, some
researchers tried to build image captioning models which
can learn from other available data [21], [22]. Inspired by
unsupervised machine translation methods [23]–[25], Feng et
al. [15] proposed an unsupervised image captioning method
relying on a set of images, a set of sentences obtained from an
external corpus and an existing visual concept detector. The
train of thought that mapping unpaired images and sentences
into a common latent space furtherly point us a way to
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Fig. 2. The model architecture of the proposed learned metric. We use a convolution neural network to encode the reference image into context vector. An
LSTM is applied to get the encoding of the candidate caption. We use the distance between the encoded vectors to score how well they match. Additionally,
another LSTM is designed as a discriminator to distinguish whether a caption is machine-generated or human-written.

check whether the image and sentence of the same semantic
meanings are well aligned.

C. Adversarial evaluation

Generative Adversarial Networks (GANs) [26] is demon-
strated to be effective in generating more human-like captions
[22], [27]–[29]. Composed of a generator and a discriminator,
GANs can be regarded as a process of playing a min-max
two-player game: the generator attempt to fool the discrim-
inator, while the discriminator concentrates on minimizing
this probability. Different from discriminators provided by
GANs, our work focuses on evaluating instead of generating.
[30] firstly introduced the evaluation strategy using adversarial
classifier to evaluate sentence generation quality. This work
impressed series of subsequent researches including ours. [31]
preliminarily studied this idea in the context of dialogue
generation, proposing to train a pair of GANs alternately. And
on that basis, [32] discussed the necessity of assigning scores
to partially decoded sequences in avoiding potential pitfalls of
adversarial evaluations, while [33] aimed at training a single
discriminator on large corpus of dialogue responses generated
by different dialogue systems. [13] applied adversarial training
to image caption evaluation and additionally explicitly defined
several pathological transformations to enrich negative sam-
ples. The difference of our work is that we segment the image
consistency evaluation into a separate module and judging the
syntactic correctness of generated captions with extra corpus
instead of ground-truth.

III. PROPOSED MODEL

As shown in Figure 2, we design two modules to evaluate
semantic consistency and syntactic correctness respectively
and an integration operation to fuse them into a final score.

A. Semantic Alignment Module

The semantic alignment score can be expressed as

scoresem(S, I) = P (S matches image I | Φ) (1)

where Φ denotes the set of parameters.
As shown in Figure 3, there is an image encoder and

a sentence encoder contained in this module. We simply
choose the 152-layered ResNet convolutional neural network
pretrained on ImageNet as the image feature extractor to
extract the input image I into a feature representation x,
and then embed it into a d-dimensional embedding image
vector f(x) ∈ Rd. Other common encoding networks, such
as VGGNet and Inception, are also applicable here.

A long short-term memory (LSTM) is used to encode the
candidate caption S into a fixed size embedded s. Before
fed into the encoder, each word of the caption is represented
as a word embedding vector, which has the same dimension
with embedded image vector, w ∈ Rd. The word embedding
process is initialized with GloVe [34]. In this part,following
the works in [25], [29], we introduce some object detection
features in the COCO dataset into training process as visual
concepts, and use the main words of candidate caption when
computing the image-to-sentence distance.

The distance between f(s) and f(x) can be computed as

K = Tx · f(s) (2)

di(s) = exp(−‖Kx,i −Ks,i‖L1
) (3)

distx(s, x) = [d1(s), . . . , dm(s)] ∈ Rm (4)

where Tx is a d × n × m dimensional tensor and m is the
number of different d×n distance kernels to use. This distance
vector captures how well s matches the image x, and it is



CNN
feature

Candidate Sentence

LSTM

Word
Emb

LSTM

Word
Emb

LSTM

Word
Emb

Sentence Embedding Network

Sentence
Emb

Image
Emb

Img2Sent
Distance Kernels

Projection

Softmax

D(S, x)

Fig. 3. Semantic Alignment Module. The candidate caption and the reference
image are mapped into a common space and the distance between them is
used to judge the caption.

multiplied with a output matrix followed by softmax to yield
the discriminator output probability, D(s, x). And the loss
function of this part can be defined by

losssem = −log(D(s, x)) (5)

B. Syntactic Discriminating Module

In this module, the syntactic discriminating score can be
expressed as

scoresyn(S) = P (S is human written | Θ) (6)

where Θ represents the set of parameters.
As shown in Figure 4, we train an automatic metric by

using extra corpus, which is also implemented as an LSTM,
to distinguish generated captions from human-written ones.

[ qt, h
d
t ] = LSTMd(xt, h

d
t−1), t ∈ {−1, ..., n} (7)

where hdt is the hidden state of the LSTM. qt indicates
the probability that the generated partial sentence St =
[s1, s2, ..., st] is regarded as real by the discriminator. Simi-
larly, given a real sentence Ŝ from the corpus, the discriminator
outputs q̂t, t ∈ {1, ..., l}, where l is the length of Ŝ. We take
the qn or ql , the probability outputted at the last moment, as
the global result. We set the score value as the logarithm of
the probability

vt = log(qt) (8)

So the loss function of this part can be defined as

losssyn = − 1

n

n∑
t=1

log(1− qt) (9)
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Fig. 4. The architecture of Syntactic Discriminating Module.

Referring to [13], we also set up several pathological cases
as negative examples during the training process of syntactic
discriminating module. We take two different transformations
to generate pathological sentences: word permutation and
random word. Word permutation means we will randomly
choose several words in a certain sentence of our corpus and
permute them:

Twp(S, τ) = {S′|w ∈ S,w′ ∈ S(τ)} (10)

where τ is a hyper-parameter, and S(τ) represents permuting
τ percent of words in the sentence S. Similarly, random word
means replace τ percent of words in S with random words
from the vocabulary:

Trw(S, τ) = {S′|w ∈ S,w′ ∈ V (τ)} (11)

Note that τ percent of S should contain at least two words.
For example, we take τ as 30:

original : A beautiful lady is looking at the camera and

smiling.

word permute : A beautiful and is looking at lady camera

the smiling.

random word : A business lady is hands at the camera and

garage.

As analyzed in that paper, since the number of words
machine generated captions contain is limited while those
human-written sentences are more likely to use rare words,
a discriminator tends to believe that a sequence of random
words is written by human and tell those captions apart easily
by simply looking at what words are used. To address this
problem, in addition to augment the vocabulary, some captions
generated using Monte Carlo Sampling, which contains a
much higher variety of words, are also included in the corpus.

C. Integration

UICE (sem) evaluates the matching degree between image
and candidate caption, but cannot judge whether the caption is
grammatically correct, while UICE (syn) is opposite. They are
both one-side. So we design a simply neural network with one
hidden layer to assign a weight to each of above two scores
and fuse them into the final score.

score(S) = α1f1(scoresem) + 1− α1f2(scoresyn) (12)



We vector scoresem and scoresyn into the input vector x. We
take W as the vector of weights and b for bias. The activation
function we choose is Sigmoid function. So, the output of the
integration module is

y = sigmoid(Wx+ b) (13)

Here y represents the output score. The loss function of this
part is

L(ŷ, y) = −(ylogŷ + (1− y)log(1− ŷ)) (14)

So, the loss of the whole architecture is

loss = −log(D(s, x))− 1

n

n∑
t=1

log(1− qt)

−(ylogŷ + (1− y)log(1− ŷ))

(15)

The performance of a model is then defined as the aver-
aged performance on all the image-caption pairs in a test or
validation set:

score(Dp) =
1

|Dp|
∑

(S,I)∈Dp

score(Ψ, (S, I)) (16)

where Dp is the set of all image-caption pairs in a test or
validation set, and Ψ represents the metric.

IV. EXPERIMENTS

A. Experiment setup

a) Datasets: We use the images in the MSCOCO dataset
[35] as the image set (excluding the captions). As it was done
in previous works [36], we re-split the original COCO dataset
into a train set with 113,287 images, a validation and a test set,
each contains 5,000 images. For image feature extracting, the
convolutional neural network (CNN) pretrained on ImageNet
is used as the visual concept detector.

Regarding the syntactic discriminator, we randomly initial-
ize the parameters and train it using two homemade corpus
with human-made pathological samples. As for sentence cor-
puses, we imply two extra datasets to train the discriminator
respectively to gain the ability of evaluating stylized captions:
one for wild captions, where ”wild” can be unserstood as
”imperscriptible” or ”unofficialand”, and another one for ro-
mance novels [37]. The wild caption dataset is crawled from
Shutterstock1, an online stock photograph website providing
massive royalty-free stock images. Image composers upload
images with a description each. To ensure that the crawled
sentences are relevant to the images, we directly use the name
of eighty object categories in the MSCOCO dataset as the
searching keywords, just like it was done in [38]. We finally
got 2,322,635 distinct captions, which are used to train the
discriminator evaluating normal captions. The romance novel
dataset is crawled from SmashWords2, where we can collect
those free books written by yet unpublished authors. We
choose books in the Romance genre, which contains 2,865

1https://www.shutterstock.com
2https://www.smashwords.com

books and we automatically parse each book into sentences
and struck down dialogues and sentences that are too short,
too long or contain too much (over 20%) low-frequency words.
The definition of ”low-frequency words” will be shown in Im-
plementation Details. Finally, we collect 1,123,200 sentences,
which are used to train the discriminator for stylized captions.
Finally, for training the integration module, we softmax the
human scores in Flickr 8K datasets and use them as ”y” in
the process of training.

b) Image Captioning Models: For general image caption-
ing task, we select three classic models, ”NeuralTalk” [36],
”Show and Tell” [1], ”Show, Attend and Tell” [2] and Up-
down [39] to train and test our metric. Additionally, to prove
the effectiveness of our model in the task of evaluating stylized
image captions, we test our metric on SemStyle [10], style-
factual LSTM(SF) [11] and StyleNet [40]. These three stylized
models can generate captions of different style, but here we
only use the romantic ones.

c) Implementation Details: Descriptions in the corpus
crawled by us are tokenized by NLYK toolbox [41]. We
count all tokenized words and build a vocabulary with top
15,000 words sorted by appearing frequency. Those abandoned
words are replaced with one of the four special tokens,
UNKNOW. Removing these low-frequency words will, on the
one hand, greatly reduce our vocabulary capacity, speed up
model training, and on the other hand, reduce noise. In some
previous works, the sizes of vocabulary are commonly set
into 10,000, but we find that the syntactic discriminator is
more likely to judge sentences containing UNKNOW tokens
as human-written, so we expand the vocabulary size to make
the evaluation fairer. All words are embedded into 300 dimen-
sional vectors initialized by GloVe [34].

For image feature extraction, we employ ResNet-152 model
pretrained on ImageNet [16], after which we use a linear
projection to reduce the dimension of image feature to match
that of caption feature. For caption feature extraction, we fix
the step size of LSTM to be 20, padding shorter sentences
with the special token PAD while cutting longer ones to 20
words. The LSTM hidden dimension and the shared latent
space dimension are both fixed to 512. Batch size is set to 100
with half positive samples and half negative samples in each.
We train our model using Adam optimizer with a learning
rate of 10−3 for 30 epochs. The decay factor is set to be 0.9.
When fixing the architecture of the discriminator before using
this learning-based metric, it is inescapable to exist deviation
during different times, due to the randomness of parameters
initialization in training.

B. Capability and Robustness

To measure the capability of our metric, we compare the
evaluating result of five image captioning generating models
and human-written captions under some existing automatic
metrics and our UICE. Obviously, it is a matter of course for an
evaluation metric to accurately tell machine generated captions
apart from human-written ones and to give a fair score for
the different models. In other words, the distinction between



TABLE I
BLEU-1,2,3,4, METEOR, ROUGE, CIDER, SPICE, YICE, UICE SCORES OF NORMAL IMAGE CAPTION GENERATING MODELS. ”UICE(SEM)” AND

”UICE(SYN)” REPRESENT OUR SEMANTIC ALIGNMENT MODULE AND SYNTACTIC DISCRIMINATING MODULE.

ShowAndTell NeuralTalk ShowAttendAndTell Up-Down Human
BLEU-1 60.3 66.3 66.9 79.8 -
BLEU-2 38.0 42.3 43.9 - -
BLEU-3 25.4 27.7 29.6 - -
BLEU-4 17.1 18.3 19.9 36.3 21.7

METEOR 16.9 19.5 18.5 27.7 25.2
CIDEr - 66.0 - 120.1 85.4
SPICE - 5.1 - 21.4 -
YICE 7.2 6.1 9.7 - 73.6

UICE(sem) 8.4 12.4 14.6 35.2 72.3
UICE(syn) 8.7 11.9 12.7 34.7 71.3

UICE 7.4 7.7 9.8 34.3 72.8

TABLE II
BLEU-1,2,3,4, METEOR, ROUGE, CIDER, SPICE, UICE SCORES OF STYLIZED IMAGE CAPTION GENERATING MODELS.

SF-LSTM(Romantic) SemStyle(Romantic) StyleNet(Romantic) Human
BLEU-1 27.8 38.9 46.1 71.3
BLEU-2 14.4 - 24.8 -
BLEU-3 8.2 - 15.2 -
BLEU-4 4.8 5.7 10.4 19.0

METEOR 11.2 15.6 15.4 22.4
ROUGE 25.5 - 38.0 -
CIDEr 37.5 29.7 31.2 57.3

UICE(sem) 8.9 13.1 19.9 73.6
UICE(syn) 6.1 17.8 25.1 63.3

UICE 8.7 14.7 19.8 71.0

the scores of different models and the scores of models and
humans is an important criterion to evaluate the quality of an
evaluation metric. Table 1 and Table 2 show that UICE can
correctly distinguish machine generated captions and human-
written ones consistent with the tendency of other metrics
on not only normal caption sets but also stylized ones. For
all these metrics, the higher the score, the better the model.
Figures in these two table represent the percentage. We also
display the score of semantic alignment module and syntactic
discriminating module respectively in the tables, which are
also in line with the trend. Since there are five ground-truth
captions for each image in COCO dataset, we use one of them
as a candidate caption and the other four as reference to judge
it. Repeat this process in turn and pick the average score as the
value of Human column. It can be seen that existing metrics
are not reasonable enough in evaluating stylized captions,
where UICE performs more flexible and fairer.

Due to those pathological cases we set up in Syntactic
Discriminating Module, the Robustness of our model is better
than some other metrics in theory, which is proven in [13].

C. Caption Level Correlation

At the caption level, following the procedure in SPICE [7],
we compute the Kendall’s τ correlation between evaluation
metrics’ scores and human annotations on Flickr 8K dataset
[42]. The results are shown in Table III. Figures in Table 3
represents the proportions, which are also the higher the better.
It is satisfying that UICE achieves a score almost equal to
state-of-the-arts’.

TABLE III
CAPTION-LEVEL KANDALL’S τ CORRELATION BETWEEN EVALUATION

METRICS AND HUMAN JUDGMENTS FOR THE 12 COMPETITION ENTRIES
PLUS HUMAN CAPTIONS IN THE COCO VALIDATION SET.

Flickr-8k
BLEU-1 0.32
BLEU-2 0.21
BLEU-3 0.20
BLEU-4 0.14

METEOR 0.42
ROUGE 0.32
CIDEr 0.44
SPICE 0.45
YICE 0.47
UICE 0.47

Inter-human 0.73

D. System Level Correlation

In this section, we compare UICE with some other existing
evaluation metrics on the Pearson’s ρ correlation with human
judgments collected in the 2015 COCO Captioning Challenge
and drew a visual image. Agreeing with the reason pointed out
by [13] that M3, M4, M5 are not for ranking image caption
models, the two items we use are M1: Percentage of captions
that are evaluated as better or equal to human captions and
M2: Percentage of captions that pass the Turing Test. The
results are shown in Table IV. We perform our experiments on
the COCO validation set, on which 12 of 15 teams submitted
their results collected in the 2015 COCO Captioning Challenge
and obtain a fine result. Although it seems a little weaker
than YICE, we surpass it in the aspect of evaluating stylized



TABLE IV
SYSTEM-LEVEL PEARSON’S ρ CORRELATION BETWEEN EVALUATION METRICS AND HUMAN JUDGMENTS FOR THE 12 COMPETITION ENTRIES PLUS

HUMAN CAPTIONS IN THE COCO VALIDATION SET.

M1a M2b
ρ (p-value) ρ (p-value)

BLEU-1 0.124 (0.687) 0.135 (0.660)
BLEU-2 0.037 (0.903) 0.048 (0.877)
BLEU-3 0.004 (0.990) 0.016 (0.959)
BLEU-4 -0.019 (0.951) -0.005 (0.987)

METEOR 0.606 (0.028) 0.594 (0.032)
CIDEr 0.438 (0.134) 0.440 (0.133)
SPICE 0.759 (0.003) 0.750 (0.003)
YICE 0.939 (0.003) 0.949 (0.002)
UICE 0.937 (0.000) 0.940 (0.000)

aM1: Percentage of captions that are evaluated as better or equal to human captions.
bM2: Percentage of captions that pass the Turing Test.
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Fig. 5. BLEU-4(purple), METEOR(yellow), CIDEr(grey), SPICE(green),
YICE(blue) and UICE(red),vs. human judgments M1 for 12 entries in the
2015 COCO Captioning Challenge on COCO validation set. Each of the data
points in the lower left corner represents an entry and those in the higher right
corner represent to human-written captions.

captions and we achieved extricating from ground-truth. In
Figure 5, we compare the regression of above metrics with
human judgments M1 on COCO validation set. It can be seen
that UICE is more consistent with human judgments than the
other five metrics.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel unpaired learning-based
image captioning evaluation metric that can be trained to
evaluate image captions from two aspects of semantics and
syntactics. The improvement of our UICE over other existing
metrics is that it can extricate from ground-truth. In addition,
for both natural image captioning datasets and stylized ones,
our UICE can give more human-like score than existing
metrics over machine-generated captions. Excellent flexibility
makes it reasonable for us to believe that UICE could be an
effective complement to existing metrics, especially in the case
of evaluating wild or personalized captions.

In the future work, one open issue could be training an
adversarial image caption generating model using UICE score

as the reward of discriminator. Another issue could be building
a multi-round metric that can adaptively handle different styles
of captions rather than separately training several discrimina-
tors for them. As for the improvement of the model itself, we
consider using the idea of BERT to obtain a higher ability of
grammatical correcting. Finally, it is also expected that UICE
can be improved and extended to evaluate image storytelling
or adapt to some other related tasks.
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