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Abstract—Deep neural networks have achieved highly com-
petitive performance in multiple tasks in recent years. However,
discovering state-of-the-art neural network architectures requires
substantial effort from human experts. To speed up the process,
neural architecture search (NAS) has been proposed to search
promising architectures automatically. Nevertheless, the search
process of NAS is computing-expensive and time-consuming,
which even costs thousands of GPU days. In this paper, to
solve the bottleneck, we apply the randomness-enhanced tabu
algorithm as a controller to sample candidate architectures,
which balances the global exploration and local exploitation for
the architectural solutions. In addition, more aggressive weight-
sharing strategy is introduced into our method, which signifi-
cantly reduces the overhead of evaluating sampled architectures.
Our approach discovers the recurrent neural architecture within
0.78 GPU hour, which is 15.3x more efficient than ENAS [1]
in terms of search time, and the architecture we discovered
achieves the test perplexity of 56.1 on Penn Tree Bank (PTB)
dataset, which is lower than ENAS by 2.2. In addition, we
further demonstrate the usefulness of the learned architecture by
transferring it to wiki-text-2 (WT2) dataset well. Moreover, the
extended experiments on the WT2 dataset also show promising
results.

Index Terms—deep learning, neural architecture search, tabu
algorithm, weight sharing

I. INTRODUCTION

Deep neural networks are efficient and flexible models that
can perform many deep learning tasks, such as computer
vision [2], social network filtering [3] and natural language
processing [4]. However, designing a deep neural network ar-
chitecture is time-consuming, labor-intensive and computing-
intensive. Neural Network Search (NAS) technique alleviates
this problem. Surprisingly, NAS often breaks through the
limitations of human minds and achieves unexpected results
[1], [5], [6], [7], [8]. The process of NAS is illustracted in
Fig. 1.

NAS was first proposed by Zoph & Le [6]. In this work, an
RNN controller is trained to sample a candidate architecture.
The sampled architecture is trained on the training set, and
then its performance is measured on the validation dataset.
The controller uses the performance metric as a reward signal
to update the controller network to find more promising
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Fig. 1: The process of NAS. First, the search space is defined
as a huge set containing plenty of architecture candidates.
Next, a sampler is constructed by a certain strategy, such as
reinforcement learning and evolutionary algorithm, to sample
good network architectures. Afterwards, an evaluator evaluates
the sampled architectures according to a certain approximate
evaluation strategy to obtain performance metrics, such as
accuracy, perplexity, etc. Finally, the metrics work as signals
to update the evaluator. The process will iterate multiple times
until convergence and then we will discover a promising
architecture.

architectures. The architecture discovered in this way achieves
state-of-the-art performance on an image classification task.
However, obtaining the architecture required about 2000 GPU
days.

ENAS [1] is notably 1000x less expensive than previous
work. Similar to [6], ENAS also uses reinforcement learning
[9] to train the LSTM [10] controller to sample candidate
architectures. The core idea of ENAS is forcing all candidate
architectures to share weights to avoid training each child
model from scratch to convergence.

However, in both of these two implementations, the con-
troller network needs to be trained well to sample a better
candidate architecture. This is not only time-consuming but
also increases the complexity of the search process.

The search space of ENAS is represented as a huge compu-
tational graph, and each candidate architecture is a subgraph
of it. Consequently, ENAS could be viewed as an optimization
problem of how to select a subgraph that maximizes the
expected reward on a validation dataset. Inspired by this, in the



paper, we propose the randomness-enhanced tabu algorithm
as the controller to sample promising candidate architectures
more efficiently. This reduces the time of sampling candidate
architectures due to not needing to train a network as a
controller. Furthermore, we improve the tabu algorithm [11]
by introducing more randomness that balances the global
exploration and local exploitation for the candidate solutions,
which makes it easier to get high-quality architectures within
less search time.

In addition, evaluating the quality of sampled architectures
requires a lot of computing resources. The sampled architec-
tures first are trained on the training dataset and then evaluated
on the validation dataset before obtaining the performance
metrics. The overhead will be unacceptable if the architectural
performance metrics are not evaluated approximately. There-
fore, we introduce weight sharing proposed by Pham et al.
[1] into our method, which makes evaluation for candidate
architectures faster.

In ENAS, sharing weights are trained for 150 epochs.
However, the well-trained parameters are still approximate
parameters for each candidate architecture so we can’t obtain
a real performance for each architecture only by using these
well-trained parameters. Moreover, we find that paying more
focus on network topology instead of network parameters
is easier to obtain a better architecture. In this paper, more
aggressively, we only train the sharing parameters for one
epoch and further reduce the search time.

The main contributions of the paper follow as:

o It is the first time that a tabu algorithm is used in the
sampling stage to speed up recurrent neural architecture
search.

o We improve tabu algorithm by introducing randomness
that balances the global exploration and local exploitation
for recurrent candidate architectural solutions.

o We introduced weights sharing to our method. Further-
more, sharing weights are trained for only one epoch,
which reduces search time without impacting perfor-
mance.

On the Penn Tree Bank (PTB) [12] dataset, 30,000 architec-
tures are searched using only 0.78 GPU hour, which is 15.3x
more efficient than ENAS. In addition, the architecture we
discovered achieves the test perplexity of 56.1,which is lower
than ENAS by 2.2. We further demonstrate the usefulness
of the learned architecture by transferring it to wiki-text-
2 (WT2) dataset well. Eventually, 40,000 architectures are
searched using 1.10 GPU hours on the WT?2 dataset. And we
obtain the final recurrent architecture, which outperforms the
performance of the recurrent cells discovered by ENAS and
our method on PTB dataset.

II. RELATED WORK

Zoph & Le [6] firstly presented modern algorithm au-
tomating architecture design, and resulting architectures can
indeed outperform manually designed state-of-the-art neural
networks. Similar to [6], some works [5], [13], [14] used
reinforcement learning for neural architecture search, which

formulate neural architecture search (NAS) as a graph search
problem.

In addition to reinforcement learning (RL), evolutionary
algorithm is also a mainstream search strategy. Real et al. [§]
introduced evolutionary algorithm as a controller to sample
candidate architectures. The controller retained good geno-
types through the tournament selection mechanism and gener-
ated new genotypes through the mutation. In this process, no
controller networks were trained. Therefore, compared with
the RL method, evolutionary algorithm takes less time in the
sampling stage.

Unlike conventional approaches which need a discrete
search space, DARTS [7] is a novel gradient-based framework
that enables neural architecture search to use gradient descent
by introducing a continuous relaxation of the search space.
However, DARTS obtained the recurrent architecture for PTB
dataset requiring 1 GPU days.

In addition, some other optimization algorithms are used as
controllers for NAS. PNAS [5] used sequential model-based
optimization (SMBO) strategy to search for convolutional
neural architectures in order of increasing complexity. Self-
adaptive harmony search (SAHS) algorithm [15] was used to
find the promising convolutional neural network architecture
for image recognition tasks. The implementation was largely
based on the existing network (eg.VGG16 [16] and ImageNet
[17]). Besides, particle swarm optimization (PSO) algorithm
[18] was used to evolve convolutional neural architectures.
The core point is that learning a block on a smaller dataset
and transferring the learned block to a larger dataset could
reduce the computation cost successfully.

Unfortunately, aforementioned methods have a limited im-
provement for the performance and search time. And NAS
problems are computing-intensive, which even cost hundreds
or thousands of GPU days for discovering promising architec-
tures. Surprisingly, weights sharing was proposed by Pham et
al. [1], which made ENAS 1000x less expensive than standard
Neural Architecture Search. The basic principle is that sharing
parameters among child models allows ENAS to deliver strong
empirical performances in the evaluation process.

However, Sciuto et al. [19] had put forward different views
on parameter sharing. The claim is that, weight sharing
negatively impacts the real ranking of candidate architectures.
Besides, a controversial point of view was raised in this paper,
the random policy even outperformed state-of-the-art NAS
algorithms due to the limitations of the current search space.

In addition, Gaier et al. [20] proposed that network topol-
ogy is more important than the weight parameters of neural
networks for certain tasks. Extremely, the sharing weight
parameter is even one number for all connections in the
experiments, which makes the evaluation process for all the
candidate architectures more efficient.

Inspired by these, in our approach, we pay more attention to
random search and network topology instead of well-trained
weight parameters.
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Fig. 2: Suppose our search space consists of 5 computational
nodes, and the subgraph combined by the red arrows is an
architecture we discovered. Here, node 1 is the input of the
architecture, and nodes 2, 4 and 5 are the outputs of the
architecture.

III. METHOD

In this section, we propose a method to speed up recurrent
neural architecture search. First, the reduced search space is
applied to our method, which is based on observations of the
previous works [1], [7] and specific analysis for two aban-
doned activation functions, namely identity and sigmoid.
Furthermore, we demonstrate the implementation details of
the randomness-enhanced tabu algorithm. Ultimately, a more
aggressive weight-sharing technique is introduced into our
approach, which further accelerates the search process.

A. Reduced Search Space

In terms of search space, we follow the method of ENAS
and PNAS [5] mostly. As shown in Fig. 2, the graph represents
the entire search space, and every candidate architecture can
be defined by using a single directed acyclic graph (DAG),
which is a subgraph of the complete graph.

In fact, we can represent an architecture with only two
vectors, vector pre_nodes and vector activation_functions.
In particular, pre_nodes][i] refers to the previous-node which is
connecting with node ¢ and activation_function[i] refers to
the activation function which is applied to node <. For instance,
all previous-nodes of node 5 consist of node 1, 2, 3 and 4. As
shown in Fig. 2, node 3 is selected to connect to node 5 from
them and tanh is selected as the activation function of node
5. The process above can be represented with two formulas:
pre_nodes[5] = 3 and activation_function[5] = "tanh”.
Following this mode, we can represent any candidate archi-
tecture with a sequence of these two formulas.

Specifically, the recurrent cell has 12 nodes and we only
allow 2 activation functions (namely tanh, ReLU) that differ
from Pham’s setup [1]. The reasons why we reduce the search
space are explained below.

Firstly, in ENAS, we find that the LSTM controller never
chose identity and sigmotid and DARTS [7] only chose one
identity, and never chose sigmoid in their final architectures.
Therefore, we think that using two activation functions (Re LU
and tanh) is sufficient to obtain a promising architecture.

Secondly, activation functions are pivotal for neural net-
works to learn something non-linear complex functional map-
pings between the inputs and outputs. However, the identity
activation function does not satisfy this property. When
identity activation function is used in multiple layers of a
neural network, the entire network is even equivalent to a
single-layer model. Because identity plays a crucial role to
retain the complex information of the previous layer in a deep
neural network. However, our recurrent cell follows ENAS
and has only 12 nodes. The cell is simple and we prefer to
introduce more non-linear properties. Therefore, identity is
not included in our search space.

In addition, we enhance the simple transformations be-
tween nodes in the constructed recurrent cell with highway
connections [21] following ENAS. And highway connections
technology is implemented with sigmoid. Thererfore, the non-
linear property introduced by sigmoid has always existed in
our cell and consequently sigmoid is also not included in our
search space.

Based on aforementioned observations and analysis, the re-
duced search space is applied to our experiments. In addition,
the size of search space is a” x N! where N is the number of
nodes in the architecture represented by a DAG, and a is the
number of kinds of activation functions applied to the nodes.
Indeed, compared to ENAS, the search space has been reduced
by 4000x because we delete two activation functions, identity
and sigmotd. In this reduced search space, multiple rounds of
experiments have demonstrated that we can obtain a promising
recurrent architecture with less time.

B. Randomness-Enhanced Tabu Algorithm

Tabu search is designed to manage a hill-climbing heuristic
and could adapt to manage any neighborhood exploitation
heuristic in discrete domains. The core of this algorithm is
restricting the feasible neighborhood domain by neighbors that
are excluded. Specifically, tabu algorithm avoids cyclic search
by introducing the local neighborhood search mechanism and
corresponding tabu mechanism. In addition, tabu algorithm
can break the tabu states in some ways to avoid falling into
a local optimum. In this paper, we improve the algorithm in
two aspects, providing a good initial solution and enlarging the
randomness. The randomness-enhanced tabu search method
we used is summarized in Algorithm 1.

1) Initial Solution of Tabu Algorithm: An initial solution of
tabu algorithm is often chosen randomly, but we will achieve
a better solution with less time if a good initial solution
is assigned to this algorithm. Here we search 100 random
candidate architectures and then select the best one as the
initial solution. The process is described by the function at
line 4 of Algorithm 1.

2) Enlarging the Randomness: Tabu search is a local search
algorithm, and new solutions are often limited around the
current optimal solution. Therefore, the original tabu algorithm
is easy to fall into local optimal results. Fig. 3 illustrates
that the original tabu algorithm is always trapped in the
local optimal solution around 5,000 epochs and keep the



Algorithm 1 Randomness-Enhanced Tabu Algorithm
1: Initialize: tabu_list < (), tabu_size, R, S
2: for round =1 — R do
3: if round == 1 then

4: model.arch = INITTALARCHGENERATOR ()
5: tabu_list.append(model.arch)
6: else
7: model.arch = RANDOMSAMPLEARCH()
8: end if
9: for step =1 — S do
10: new_model.arch =
NEWARCHGENERATOR (model.arch)
11: if new_model.arch ¢ tabu_list then
12: new_model.ppl =
ARCHEVALUATE (new_model.arch)
13: end if
14: while new_model.ppl < Tbest do
15: if len(tabu_list) < tabu_size then
16: tabu_list.append(new_model.arch)
17: Tbest = new_model.ppl
18: end if
19: end while
20: model.arch = tabu_list[—1]
21: end for
22: end for
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Fig. 3: Comparison of the original tabu algorithm and the
randomness-enhanced tabu algorithm in the sampling process.
X-axis: The number of architectures to be sampled; Y-axis:
The perplexity of the sampled architecture evaluated on the
validation set.

sub-optimal solution unitil the algorithm ends. However, the
randomness-enhanced tabu algorithm constantly approaches a
better solution until the algorithm ends.

We will explain randomness-enhanced tabu algorithm in
detail below. Line 1 in Algorithm 1 represents that we initialize
four parameters: tabu_list, tabu_size, R and S. Specifically,
tabu_list stores previously-visited prohibited solutions. The
role of tabu_list is to prevent the searching stage from appear-

ing in the loop. And tabu_size is just the size of tabu_list. In
the paper, we set it to 1000, which is big enough to store all the
visited candidate solutions. Significantly, R represents the total
number of random solutions that we plan to generate. Line 4
reveals a function, which provides an good initial solution to
the algorithm. Lines 2-7 represent the process in which we
randomize an architecture as a new solution after every .S steps
exploitation for the current architecture. Then this process will
be iterated R times, which means that a total of R global
random solutions will be generated during the entire search
process.

Lines 9-19 in Algorithm 1 represent the implementation
of the original tabu search algorithm. Tabu search uses a
neighborhood search procedure to iteratively move from one
current solution z to another new neighborhood solution 2/,
a total of S times. Line 10 represents that the algorithm
generates a new random architectural solution by randomly
changing an edge or an activation function of the current
architecture as shown in Fig. 4. In lines 11 and 12, when
the new solution we sample does not exist in tabu_list, the
solution will be evaluated and then we will get its performance
metric. As shown in lines 14-17, if the metric is better than
the current optimal architecture, the new solution is the best
architectural solution. When the tabu_list is not full, the new
solution will be appended in the tabu_list.

The original tabu algorithm is a local search algorithm,
exploiting new solutions around the current optimal solution
constantly. However, randomness-enhanced tabu algorithm in-
troduces more global random candidate solutions. Recently,
researchers pay more attention to random search. Sciuto et al.
[19] believe random policy outperforms state-of-the-art NAS
algorithms. It is a very controversial point, but we realize the
importance of random search. Thence, we propose to enlarge
the proportion of random solutions to avoid getting trapped in
a sub-optimal solution.

Randomness-enhanced tabu algorithm balances the global
exploration and local exploitation for recurrent candidate
architectural solutions, which makes it easier to achieve a
promising architecture. Besides, the algorithm makes it more
efficient to sample new architectures. In particular, compared
to ENAS, we don’t need to train an LSTM controller in each
epoch to enhance its sampling ability, while we only change
an edge or an activation function in our approach to optimize
current architecture and then introduce a random architecture
after every S steps.

C. Weight Sharing

Weight sharing is a smart method for approximately eval-
uating the performance of a candidate recurrent architecture.
Inspired by transfer learning, Pham et al. [1] first proposed
weight sharing in ENAS. The main idea of weight sharing is
forcing all candidate recurrent architectures to share weight
parameters and delivering strong empirical performances in
the evaluation process. Experimentally, weight sharing over-
whelmingly improves the efficiency of the evaluation and
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Fig. 4: Two ways to generate a new neighborhood architecture
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ENAS is 1000x less expensive than standard Neural Archi-
tecture Search.

To further speed up the search process, more aggressively,
we train the sharing weights for only one epoch in our
experiments. We will explain why we do this below.

Sciuto et al. [19] proposed that weight sharing negatively
impacts the real ranking of candidate architectures. As de-
scribed in [19], the sharing weights in ENAS trained for 150
epochs are still approximate parameters for each candidate
architecture and we can’t obtain a real ranking for all evaluated
architectures with the sharing weights. In addition, training
sharing weights for 150 epochs consumes a lot of time. Hence,
we train the sharing weights for only one epoch. Intuitively,
underfitting network weights are detrimental for evaluating an
architecture. However, the underfitting sharing weights make
the architecture search process more focused on the network
topology as described in [20]. Experimentally, we find that the
architecture discovered by our method using the underfitting
sharing weights performs better than the architecture of ENAS
in terms of performance. To sum up, the sharing weights
trained for only one epoch encourages searching for the
architectures with better network topologies.

In addition, we further shorten the architecture search time,
which is 15.3x more efficient than ENAS. And in this way, we
achieved a state-of-the-art recurrent cell, which is lower than
the architecture discovered by ENAS by 2.2 for test perplexity
on the PTB dataset.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Experimental details: We apply our method to a language
modeling task with Penn Treebank (PTB) and Wiki-Text2
(WT2) dataset. All the experiments are implemented in Py-
Torch and we train the resulting RNNs on a single GPU of

NVIDIA 1080Ti. We use and modify the source code at [22] in
our experiments. The sharing weights of all models are trained
using stochastic gradient descent (SGD) with a learning rate
of 20.0. In the training stage, the learning rate is 20.0 and
decays by a factor of 0.96 per epoch starting at epoch 15. In
addition, batch size is 64 in the training stage, while batch
size is 1 in the validation stage.

Baseline: The main baseline is ENAS in our experiments.
Hence, all the recurrent cells consist of 12 nodes following the
setting of ENAS. For a fair comparison, we not only compare
the original architecture in the ENAS paper, but also compare
the architecture discovered in the reduced search space by
using ENAS code.

Besides, we compare against random search in the reduced
search space. We ensure identical conditions for random search
(RS) and our method. Both of methods use the same computer
code for network training and evaluation. Specifically, in the
evaluation process, we introduce weight sharing to shorten
search time like ENAS. However, we train the sharing weights
for only one epoch in RS and our method in contrast to 150
epochs in ENAS. RS samples over 30,000 architecture models,
which is equal to the number of models our method samples. It
is more fair than ENAS and DARTS [7]. In particular, ENAS
reports the results of only a single random architecture, and
DARTS reports an architecture selected among 8 randomly
sampled ones as the most promising one after training for 300
epochs only.

B. Exploration of R and S

As shown in Algorithm 1, we randomize an architecture as
a new solution after every .S steps exploitation for the current
architecture. And we plan to generate a total of R global
random solutions during the entire search process. Therefore,
the total number of architectures we sampled over is R X S.
When the total number of sampled architectures is constant,
the larger R is, the better global solution space could be
explored. In addition, the larger S is, the better local solution
space could be exploited.

The choice of parameters R and S in the experiment on PTB
dataset is determined after 5 attempts. Firstly, we determine a
total of 30,000 candidate architectures that will be sampled in
the entire search process, which is same as ENAS. This means
that R x S = 30,000, and then we construct five combinations
of parameters R and S in the order of increasing R. The five
combinations are (R = 300,S = 100), (R = 600,S = 50),
(R = 1000,S = 30), (R = 2000,S = 150), and (R =
3000, S = 10) respectively. We train the final architecture
discovered in each combination for only 50 epochs due to
constrained time and computing resources. As illustrated in
Fig. 5, the architecture discovered in the combination of
(R = 1000, S = 30) shows more promising performance than
other combinations and achieves the minimum perplexity of
75.43 within 50 epochs. Therefore, R = 1000 and S = 30 are
determined as configuration parameters in our experiments.
That means our approach exploits 30 neighborhood solutions
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Fig. 5: The choice of R and S on PTB dataset. X-axis: The
number of epochs; Y-axis: The test perplexity of the recurrent
architectures with different configurations. During 50 epochs,
the minimum value of test perplexity (75.43) appears in the
fourth case: R = 1000, .S = 30.

for a current candidate solution and then samples a random
architecture for global exploration.

C. Searching for Recurrent Architecture on PTB dataset

Our set of available operations includes tanh and ReLU.
while all the recurrent cell consists of N = 12 nodes. The
very first intermediate node is obtained by two input nodes,
and the rest of the nodes have only one input. In addition,
all the nodes only have an output and the output is defined
as the average of all the leaf nodes. Our recurrent network
architeccture consists of only a single cell, which is same
as ENAS. However, our method trains the sharing weights
for only one epoch and searchs candidate architectures in a
reduced search space, which only includes tanh and ReLU
as activation functions. Similar to ENAS, each operation is
enhanced with a highway bypass [21]. In addition, we enable
batch normalization [23] in each node to prevent gradient
explosion during architecture search. Fig. 6 illustrates the final
recurrent architecture discovered by our method.

After exploring experiments on parameters R and S, R =
1000 and S = 30 is determined as configuration parameters in
the experiments of the PTB dataset. To enable comparable to
ENAS, we limit the size of parameters to 24M. Table I presents
the experimental results of different recurrent architectures on
PTB dataset. We find that ENAS exceeds random search in
terms of performance, but it takes much more time. Because
random search trains sharing weights for only one epoch like
our method, which accelerates the search process. In addition,
random search is more efficient in sampling a new architecture
than ENAS due to not needing to train an LSTM network
as a sampler. However, random search sampling process is
completely random, while the NAS algorithm, like ENAS
and our method, will seek better solutions based on the
corresponding rules constantly. Therefore, random search is
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Fig. 6: The RNN architecture discovered by our method for
PTB dataset.

TABLE I: Comparison with state-of-the-art language
models on PTB dataset.

Architecture Perplexity Params GPU time
valid test D
Variational RHN [21] 67.9 65.4 23
LSTM [24] 60.7 58.8 24
LSTM-+skip connections [25] 60.9 58.3 24
LSTM+5 softmax experts [26] - 57.4
LSTM+15 softmax experts [26] 58.1 56.0 22
Random search 62.0 60.3 24 0.78 hour
NAS [6] - 63.7 25 104 CPU days
ENAS [1] ! 60.3 58.3 24 12 hours
ENAS [1] 2 60.2 58.1 24 12 hours
Our Method 58.1 56.1 24 0.78 hour

! Obtained by training the corresponding architecture using our setup. The correspond-
ing architecture is publicly released by the authors in the paper.

2 The architecture is discovered in our reduced search space on PTB dataset using ENAS
code and then is trained using our setup.

not as good as the NAS algorithm when the number of samples
is not large enough.

In addition, Table I presents that random search has a better
performance than pure NAS. We will explain it from the
following two aspects. Firstly, the reduced search space is
applied in random search. Searching in the reduced search
space is easier to get a promising architecture. Besides,
only 15,000 architectures are evaluated because pure NAS is
extremely time-consuming, while random search search for
30,000 architectures like ENAS and our method.

The recurrent cell discovered by our method achieves the
test perplexity of 56.1, which is on par with the state-of-the-art
recurrent model enhanced by a mixture of softmaxes [26]. And
our recurrent cell outperforms all the rest of recurrent archi-
tectures which are either manually designed or automatically
searched by NAS algorithms. ENAS reports the test perplexity
of 55.8 in the paper. However, the result was obtained on



TABLE II: Comparison with state-of-the-art language
models on WT2 dataset.
) Perplexity Params .
Architecture GPU time
valid test @D
LSTM+augmented loss [27] 91.5 87.0 28
LSTM-+continuous cache pointer [28] - 68.9 -
LSTM [24] 69.1 66.0 33
LSTM+skip connections [25] 69.1 65.9 24
LSTM+15 softmax experts [26] 66.0 63.3 33
ENAS [1] * 71.9 70.0 33 12 hours
ENAS [1] 2 70.6 69.1 33 12 hours
Our Method (searched on PTB) 69.4 67.5 33 0.78 hour
Our Method (searched on WT2) 69.1 67.3 33 1.10 hours

! Transfering the architecture searched on PTB dataset to WT2 dataset. The architecture
is publicly released by the authors in the paper.

2 The architecture is discovered in our reduced search space on WT2 dataset using ENAS
code and then is trained using our setup.

TensorFlow platform instead of PyTorch platform, and ENAS
used Tensor Processing Unit (TPU) to train the resulting
recurrent cell. In our platform and experimental environment,
the resulting recurrent cell discovered by ENAS achieved the
test perplexity of 58.3, which is not as good as our recurrent
cell. In addition, for a fair comparison, we use ENAS code to
search a recurrent architecture in our reduced search space.
The result shows that the performance of the architecture
searched in the reduced search space slightly outperforms
the performance of the original architecture of ENAS. This
demonstrates that searching in the reduced search space is
easier to obtain a promising architecture.

In terms of efficiency, the overall cost is 47 minutes on a
single GPU of NVIDIA 1080Ti, which is significantly 15.3x
faster than ENAS.

There is two main reasons why our method is more efficient
than ENAS. Firstly, we train the sharing weights for only one
epoch in contrast to 150 epochs in ENAS. Secondly, ENAS has
to train the LTSM controller during the process of architecture
search, while our method only needs to change an edge or an
activation function in every epoch.

D. Transfer to WT2 dataset

WT2 is a larger dataset than PTB. To validate the usefulness
of our recurrent cell learned on PTB dataset, we transfer
the architecture learned on PTB dataset to WT2 dataset. In
addition, we limit the size of parameters to 33M for all
models in consideration of increasing complexity. We train
the recurrent cells discovered by ENAS and our method with
the identical experimental environment.

Table II presents the results for all the recurrent cells on
WT?2 dataset. The recurrent cell we discovered achieves the
test perplexity of 67.5, which is lower than ENAS by 0.5. It
demonstrates that the recurrent architecture discovered by our
method transfers to WT2 dataset better than ENAS. In addition
to greatly enhanced efficiency, the experimental results further
illustrates the superiority of our approach, that the architecture
we discovered is scalable.

—+— R=500, S=80

R=1000, S =40

\ =+ R=1000, S=40
225 —— R=2000, $=20
== R=4000, S=10

175 R=2000, S=20: min(ppl)=83.28

Perplexity

Epochs
Fig. 7: The choice of R and S on WT2 dataset. X-axis: The
number of epochs; Y-axis: The test perplexity of the recurrent
architectures with different configurations. During 50 epochs,
the minimum value of test perplexity (83.28) appears in the
fourth case: R = 2000, .S = 20.

E. Searching for Recurrent Architecture on WT2 dataset

We further search for the recurrent cell on WT2 dataset.
Our set of available operations still includes tanh and ReLU
and our recurrent cell consists of N = 12 nodes. Because the
dataset is larger, we search 40,000 recurrent architectures.

First, we explore the combination of R and S. And we
train the final architecture discovered in each combination for
only 50 epochs. The total number of recurrent architectures we
sampled is Rx .S = 40, 000. Five combinations are determined
in the order of increasing R, which is (R = 500,5 = 80),
(R = 800,5 = 50), (R = 1000, S = 40), (R = 2000, S =
20), and (R = 4000,S = 10) respectively. As illustrated
in Fig. 7, R = 2000 and S = 20 is the best choice. With
this configuration, the architecture we discovered achieves
the minimum test perplexity of 83.28 within 50 epochs. It
means that our method exploits 20 neighborhood solutions for
the current candidate architecture and then samples a random
solution for global exploration.

With the configuration of R = 2000, 5 = 20, we discover
the final recurrent cell as shown in Fig. 8. As shown in Table
II, the recurrent cell discovered by our method achieves the
test perplexity of 67.3.

In terms of ENAS, we use the original ENAS code to search
for the architecture in the reduced search space. The results
show that the performance of the architecture searched in the
reduced search space on the WT2 dataset is better than the
performance of the architecture transferred from PTB dataset.

However, the overall results on the WT2 dataset are less
strong than those on the PTB dataset in Table I. Several
models designed by human experts [24], [25], [26] ex-
ceed our recurrent architecture. Our architecture is an RNN,
which is naturally weaker than LSTM for processing lan-
guage tasks. Besides, these models optimized original LSTM
by using some techniques, such as increasing limitation of
Softmax bottleneck.
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Fig. 8: The RNN architecture discovered by our method for
WT?2 dataset.

In terms of efficiency, the overall cost is 66 minutes on a
single GPU of NVIDIA 1080Ti to search the architecture on
WT?2 dataset.

V. CONCLUSION

Under the premise of guaranteeing the high quality of
resulting architectures, our priority is enhancing the efficiency
of NAS. In this paper, we propose that randomness-enhanced
tabu algorithm works as a controller to sample recurrent
architectures, which could balance the global exploration and
local exploitation of solutions. In addition, reduced search
space is applied to our method, which has a positive effect
on searching for a promising neural architecture. In the exper-
iments, we found a state-of-the-art recurrent architecture on
PTB dataset and the architecture is scalable for WT2 dataset.
In addition, the extended experiments on the WT2 dataset
also show promising results. In the process of evaluating the
sampled architectures, weight sharing plays a central role to
significantly shorten search time. More aggressively, we only
train the shared parameters for one epoch to pay more focus
on network topology instead of network parameters. In the
future, we will explore more possibilities for search space and
assessment strategies to address more complex NAS tasks.
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