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Abstract—Personalized tag recommender systems recommend
a set of tags for items based on users’ historical behaviors,
and play an important role in the collaborative tagging systems.
However, traditional personalized tag recommendation methods
cannot guarantee that the collaborative signal hidden in the
interactions among entities is effectively encoded in the process
of learning the representations of entities, resulting in insuffi-
cient expressive capacity for characterizing the preferences or
attributes of entities. In this paper, we proposed a graph neu-
ral networks boosted personalized tag recommendation model,
which integrates the graph neural networks into the pairwise
interaction tensor factorization model. Specifically, we consider
two types of interaction graph (i.e. the user-tag interaction
graph and the item-tag interaction graph) that is derived from
the tag assignments. For each interaction graph, we exploit
the graph neural networks to capture the collaborative signal
that is encoded in the interaction graph and integrate the
collaborative signal into the learning of representations of entities
by transmitting and assembling the representations of entity
neighbors along the interaction graphs. In this way, we explicitly
capture the collaborative signal, resulting in rich and meaningful
representations of entities. Experimental results on real world
datasets show that our proposed graph neural networks boosted
personalized tag recommendation model outperforms the tradi-
tional tag recommendation models.

I. INTRODUCTION

With the rapidly increasing of available information on
Internet, the problem of information overload has become a
big issue that hinders users to quickly find related information
from massive data. Recommendation systems [1] have become
essential intelligent components in application platforms such
as e-commerce, movie websites and online news. Recom-
mendation system mainly mines users’ implicit preferences
based on historical user data (including browsing, clicking, or
buying), providing users with personalized recommendation
services. Thereby, recommender systems can effectively alle-
viate the problem of information overload, and have become
a research hotspot in both the academia and industry.

As a branch of the recommendation systems, tag recom-
mendation systems automatically recommend a list of tags for
users to annotate an item. Collaborative tagging systems [2],

[3] allow users to upload items (e.g. photos, songs, movies and
websites) and annotate them with keywords, so-called tags.
In the collaborative tagging systems, besides being used to
describe the multiple facets of items, tags are beneficial to
these systems for efficiently managing and searching related
items. Tag recommendation can be roughly divided into non-
personalized and personalized tag recommendation according
to whether the users’ personalized preferences are consid-
ered when making tag recommendation. Differ from non-
personalized tag recommendation systems [4]–[7] that provide
all users with the same tags for a certain item, personalized tag
recommendation systems [2], [3], [8], [9] provide personalized
tag recommendation for each user by taking users’ tagging
preferences into account, which makes personalized tag rec-
ommendation more challenging than non-personalized tag
recommendation. Due to users’ unique personality and habits,
different users usually assign different tags for a given item.
Hence, personalized tag recommendation is more meaningful
and practical for real-world tag recommendation scenarios.
The most popular personalized tag recommendation models
are PITF [9] and NLTF [10]. PITF uses pairwise interactions
between users, items, and tags modeling user preferences,
and adopting BPR [11] optimization criteria improves the
performance of tag recommendation. Different from the linear
model PITF, NLTF is a personalized tag recommendation
algorithm based on Gaussian kernel for non-linear tensor
factor factorization, and uses the Gaussian distribution to
extend tag recommendations to a non-linear space.

Recently, deep learning techniques have shown great po-
tential in various fields, such as natural language processing
and computer vision. Among them, the graph neural networks
(GNNs) [12] is an effective graph representation learning
framework, which learns the representations of node or sub-
graph that preserve the structure of target graphs. In the
field of recommendation systems, some researcher incorporate
the GNN technique into traditional recommendation models
to improve the recommendation performance [13]–[16]. For
example, in [13], Qian et al. proposed a news recommendation
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model, called IGNN, which integrates a user-item interactions
graph and a knowledge graph into the news recommendation
model. Fan et al. [14] presented a graph neural network
framework, named GraphRec, for social recommendation.
In [15], Wu et al. proposed a novel method for session-
based recommendation with graph neural networks, called SR-
GNN. Wang et al. [16] proposed a recommendation model
based on graph neural networks, which exploits the user-item
graph structure by propagating embeddings on it. As shown
in the above works, graph neural networks could provide
great potential to advance the item recommendation models.
However, few works have employed the GNNs techniques
to boost the personalized tag recommendation. In addition,
traditional personalized tag recommendation methods can not
guarantee that the collaborative signal hidden in the interaction
information, which can be viewed as the behaviorial similarity
between interacted entities, is explicitly encoded in the process
of learning the representations of entities (i.e., users, items and
tags), resulting in insufficient expressive capacity for charac-
terizing the preferences or attributes of entities. Intuitively, it
is beneficial for personalized tag recommendation models to
integrate the collaborative signal into the process of learning
the representations of entities in an explicit manner.

In this paper, inspired by [16], we proposed a graph neural
networks boosted personalized tag recommendation model
(GNN-PTR), which integrates the graph neural networks into
the classic pairwise interaction tensor factorization model.
Specifically, we consider two bipartite interactions derived
from the user-item-tag assignment information, i.e. the user-
tag interactions and item-tag interactions. Then, for each type
of interactions, we exploit the graph neural networks to enrich
the representations of entities by aggregating the messages of
their neighbors, which is propagated over the corresponding
interaction graph. In this way, we explicitly injects the col-
laborative signal that is encoded in the structure of interaction
graphs into the process of learning representations of entities.
Finally, we adopt the Bayesian personalized ranking (BPR)
optimization criterion [11] to optimize the model parameters
of GNN-PTR.

The key contributions of our work are summarized as
follows:
• We proposed a graph neural networks boosted personal-

ized tag recommendation model, which boosts the classic
pairwise interaction tensor factorization model by utiliz-
ing the graph neural networks.

• For the task of personalized tag recommendation, we
propose to take two types of interactions into account,
i.e. the user-tag interactions and the item-tag interactions,
and integrate the collaborative signal that is encoded in
the entity interaction graphs into the process of learning
representations of entities by leveraging the embedding
propagation layers.

• We conduct comprehensive experiments on real world
datasets to evaluate the effectiveness of our proposed
graph-neural-networks-based personalized tag recom-
mendation model. Experimental results show that our

proposed method outperforms the state-of-the-art person-
alized tag recommendation methods.

II. RELATED WORK

In this section, we review the major related work, including
the personalized tag recommendation methods and the graph
neural-network-based item recommendation algorithms.

A. Personalized Tag Recommendation Methods

Personalized tag recommendation is still an emerging re-
search area and the literature concerning personalized tag
recommendation is sparse. Typical representative personalized
tag recommendation methods include HOSVD [8], RTF [17],
PITF [9] etc.

The tagging information naturally can be represented by
a 3-order tensor since the tagging information encodes the
ternary relationships between users, items and tags. Hence,
most of existing personalized tag recommendation methods are
built on tensor factorization techniques, especially the Tucker
Decomposition (TD) model. For instance, in [8], Symeonidis
et al. developed a unified framework to model three types
of entities (i.e. users, items and tags), and applied the Higher
Order Singular Value Decomposition (HOSVD) technique [18]
to reveal the latent semantic associations between users, items
and tags. Cai et al. [19] proposed the lower-order tensor
decomposition (LOTD) for tag recommendation. The LOTD
utilizes low-order polynomials to enhance statistics among
users, items and tags. Both the HOSVD [8] and LOTD [19]
basically adopts the point-wise regression method to learn the
factorization model from observed tagging data. By contrast,
Rendle et al. [17] proposed the Ranking with Tensor Factor-
ization (RTF), which learns personalized ranking of user pref-
erences for tags by optimizing the ranking statistic AUC (area
under the ROC-curve) rather than optimizing the square-loss.
The computation cost of Tucker Decomposition model used
in both HOSVD and RTF makes them infeasible for large-
scale personalized tag recommender systems since the model
equation of Tucker Decomposition results in a cubic runtime
in the factorization dimension. In [9], Rendle et al. proposed
the Pairwise Interaction Tensor Factorization (PITF) model,
which explicitly models the pairwise interactions between
users, items and tags. To increase the capacity of personalized
recommendation model, Fang et al. [10] proposed a non-
linear tensor factorization method, named NLTF. NLTF also
enhances PITF by exploiting the Gaussian radial basis function
to capture the complex relations between users, items and tags.
In [20], Yuan et al. proposed an attention-based method, called
ABNT, which utilizes the multi-layer perceptron to model the
non-linearities of interactions between users, items and tags.

B. The Graph Neural-Network-based Item Recommendation
Methods

Typical graph-neural-networks-based item recommendation
algorithms include GraphRec [14], IGNN [13], SR-GNN [15],
NGCF [16] and so on.



In [13], Qian et al. proposed a news recommendation model,
called IGNN, which integrates a user-item interaction graph
and a knowledge graph into the news recommendation model.
Specially, IGNN utilizes the knowledge-aware convolutional
neural networks to extract the knowledge-level information
from the knowledge graph. Meanwhile, it leverage a graph
neural network to fuse the high-order collaborative signals in
the process of learning users and news representations. Fan et
al. [14] presented a graph neural network framework, named
GraphRec, for social recommendation. The GraphRec coher-
ently models the user-user social graph, the user-item interact
graph as well as the heterogeneous strengths. In [15], Wu et al.
proposed a novel method for session-based recommendation
with graph neural networks, called SR-GNN. The SR-GNN
models separated session sequences into graph structure data
and utilizes graph neural networks to capture complex item
transitions. Wang et al. [16] proposed a recommendation
model based on graph neural network, which exploits the user-
item graph structure by propagating embeddings on it. Ying et
al. [21] developed a graph convolutional network algorithm,
called PinSage, which combines random walks and graph
convolutions to generate embeddings of nodes that incorporate
both graph structure as well as node feature information. In
[22], Berg et al. proposed a graph auto-encoder framework
for matrix completion. The graph auto-encoder products latent
features of user and item node through a form of message pass-
ing on the bipartite user-item interaction graph. Wu et al. [23]
proposed a graph convolutional neural network based social
recommendation model, which utilizes the graph convolutional
networks to capture how users’ preferences are influenced by
the social diffusion process in social networks. Despite the
considerable progress made by the GNN in the field of item
recommendation, few studies have been conducted to exploit
the GNNs to advance the personalized tag recommendation.
Different from the above existing studies, in this paper, we
leverage the GNNs technique to deal with the problem of
personalized tag recommendation.

III. PRELIMINARIES

A. Problem Description

Differ from traditional item recommendation systems with
two types of entities, i.e. users and items, personalized tag
recommender systems usually consists of three types of en-
tities: the set of users U , the set of items I and the set of
tags T . The interaction information between user, item and
tag is represented as S ⊆ U × I × T . A ternary (u, i, t) ∈ S
indicates that the user u has annotate the item i with the tag t.
In addition, we call a user-item pair (u, i) as a post following
the common used scheme in [9], [17]. The set of observed
user-item pairs PS in S is defined as:

PS = {(u, i) |∃t ∈ T : (u, i, t) ∈ S} (1)

From the ternary relation set S, personalized tag recommen-
dation methods, especially tensor factorization-based methods,

usually deduce a three-order tensor Y ∈ R|U |×|I|×|T |, whose
element yu,i,t is defines as:

yu,i,t =

{
1, (u, i, t) ∈ S
0, otherwise,

(2)

The interpretation scheme for Y is similar to the scheme that is
used in one-class collaborative filtering [24], [25], i.e., yu,i,t =
1 indicates a positive instance, and the remaining data is the
mixture of negative instances and missing values.

Personalized tag recommender systems aim at recommend-
ing a ranked list of tags to users for annotating an item.
Formally, the ranked list of Top-N tags given the user-item
pair (u, i) is defined as,

Top(u, i,N) =
N

argmax
t∈T

ŷu,i,t (3)

where N denotes the number of recommended tags. And ŷu,i,t
indicates the probability of the user u annotates the item i with
the tag t.

B. Pairwise Interaction Tensor Factorization
Based on the three-order tensor Y , PITF learns latent feature

matrices: U ∈ R|U |×d, I ∈ R|I|×d,TU ∈ R|T |×d,TI ∈
R|T |×d ( d is the factorization dimension), which corresponds
the latent user feature matrix, the latent item feature matrix,
the latent user-specific tag feature matrix and the latent item-
specific tag feature matrix, respectively. PITF explicitly mod-
els the pairwise interactions between users, items and tags by
using the following score function ŷu,i,t, formally,

ŷPITF
u,i,t =

d∑
f=1

Uu,fTU
t,f +

d∑
f=1

Ii,fTI
t,f (4)

The first part of equation (4) models the interaction between
users and tags, and the second part models the item-tag
interaction. In addition, PITF assumes that users prefer the
observed tag t over the unobserved tag t′. In other words,
given a user-item pair (u, i), ŷu,i,t > ŷu,i,t′ if the user u has
annotated the item i with the tag t instead of using the tag
t′. In this paper, we use t to represent the positive tag, i.e.
the observed tag, and t′ to denote the negative tag, i.e. the
unobserved tag. Hence, the training set DS (i.e., the set of
quadruple (u, i, t, t′)) with the pairwise constraint is defined
as:

DS = {(u, i, t, t′)|(u, i, t) ∈ S ∧ (u, i, t′) /∈ S} (5)

Then, PITF adopts the Bayesian Personalized Ranking
(BPR) optimization criterion [11] to estimate model parame-
ters Θ = {U, I,TU ,TI}, and the objective function of PITF
is:

LPITF = min
U,I,TU ,TI

∑
(u,i,t,t′)∈DS

− lnσ(ŷu,i,t,t′) + λΘ||Θ||2F

(6)

where ŷu,i,t,t′ = ŷPITF
u,i,t − ŷPITF

u,i,t′ is a real value function that
captures the relationship between the user u, the item i, the
tags t and t′. σ(x) is the sigmoid function 1

1+e−x . And λΘ

denotes the regularization parameter.



Fig. 1. The framework of our proposed personalized tag recommendation algorithm

IV. THE GRAPH NEURAL NETWORKS BOOSTED
PERSONALIZED TAG RECOMMENDATION MODEL

In this section, we present the details of our proposed
graph neural networks based personalized tag recommendation
model.

A. The Framework of Personalized Tag Recommendation
Method Based on GNNs

Figure 1 presents the architecture of our proposed model,
which mainly consists of three layers: the embedding layer,
the embedding propagation layer and the prediction layer.
The main function of each layer described as follows: (1)
the embedding layer obtains the embedding representations
of users, items and tags based on their IDs; (2) the em-
bedding propagation layer implements messages propagation
and messages aggregation; (3) the prediction layer ensembles
multiple representations for each type of entities and outputs
the predicted score for a (user, item, tag) triplet. In the
following sections, we describe the details of each component.

1) Embedding Layer: In the embedding layer, we project
users, items and tags into a low-dimensional space according
to their IDs. Specifically, a training instance is a quadruple
(u, i, t, t′), where u and i denote the indexes of user u and
item i, respectively. t and t′ are the corresponding positive
and negative tag indexes with respect to the post (u, i),
respectively. We get the embedded representations of the user
u, the item i, the positive tag t and the negative tag t′ by the
lookup operation over the embedding matrices. Formally,

eu = U.onehot(u), ei = I.onehot(i),

eU
t = TU .onehot(t), eU

t′ = TU .onehot(t′),

eI
t = TI .onehot(t), eI

t′ = TI .onehot(t′),

(7)

where onehot(.) denotes the one-hot encoding operation.

2) Embedding Propagation Layers: The goal of embedding
propagation layers is to capture the collaborative signal and
enrich the representations of users, items and tags. The collab-
orative signal is not explicit, which is latent in the interaction
among users, items and tags. In the embedding propagation
layers, we mainly exploit the GNNs to explicitly capture the
collaborative signal among interacted entities.

Generally, in personalized tag recommendation systems,
there are three types of interactions, i.e. user-tag interactions,
item-tag interactions and user-item interactions. Similar to [9],
in this paper, we only consider user-tag interactions and item-
tag interactions. For each type of interactions, we employ the
message-passing mechanism to capture collaborative signal
along the corresponding bipartite, which is derived from their
interaction information. In each type of interactions, there
are two types of messages that transmit along the interaction
graph. Take the user-tag interaction as an example, the propa-
gated messages include the information that propagates from
tag node to user node as well as information that propagates
from user node to tag node.

Given a user-tag pair (u, t), the propagated messages be-
tween the user u and the tag t are defined as follows:

mu←t = put
(
W1e

U
t +W2

(
eu � eUt

))
mt←u = ptu

(
W1eu +W2

(
eUt � eu

)) (8)

where mu←t and mt←u indicate the messages that transmit
from the tag t to the user u and from the user u to the tag t,
respectively. And � indicates the element-wise product. The
put and ptu are decay factors that are used to control each
message propagation. Formally, put and ptu are defined as the
Laplacian norm 1√

|Nu||Nt|
, where Nu and Nt represent the

first-hop neighbors of the user u and tag t, respectively. The
W1,W2 ∈ Rd′×d are training weight matrices, where d′ is the
transformation size.



Given the definition of propagation messages as well as the
neighborhood structure of one node, we can aggregate the mes-
sages to form a new representation for nodes, which explicitly
encodes the first-order connectivity between interacted entities.
Formally, by assembling the messages that are transmitted by
the direct neighbors, the assembled representations for the user
u and the tag t are as follows:

e(1)
u = LeakyReLU

(
mu←u +

∑
t∈Nu

mu←t

)

eUt
(1)

= LeakyReLU

(
mt←t +

∑
u∈Nt

mt←u

) (9)

where LeakyReLU is an activation function [26], which non-
linearly transforms the propagated messages. And the mu←u

and mt←t consider the self-connections of the user u and the
tag t, respectively.

By assembling the messages propagated from the direct
neighbors, the assembled representations e(1)

u and eUt
(1) ex-

plicitly consider the first-order connectivity information. In
order to further enrich the representations, we inject the high-
order connectivity information into the embedded represen-
tations of nodes by stacking more embedding propagation
layers. In other words, we assemble the messages from high-
hop neighbors to generate the representations of users, items
and tags. Specifically, with l embedding propagation layers,
the assembled representations of the user u and the tag t are
formulated as:

e(l)
u = LeakyReLU

(
m(l)

u←u
+
∑
t∈Nu

m
(l)
u←t

)

eUt
(l)

= LeakyReLU

(
m

(l)
t←t +

∑
u∈Nt

m
(l)
t←u

) (10)

where m(l)
∗←? denotes the message that is propagated from their

corresponding l-hop neighbors. Formally,{
m

(l)
u←t = put

(
W

(l)
1 eUt

(l−1)
+W

(l)
2

(
e

(l−1)
u � eUt

(l−1)
))

m
(l)
u←u =W

(l)
1 e

(l−1)
u{

m
(l)
t←u = put

(
W

(l)
1 eUt

(l−1)
+W

(l)
2

(
e

(l−1)
u � eUt

(l−1)
))

m
(l)
t←t =W

(l)
1 eUt

(l−1)

(11)

where W (l)
1 ,W

(l)
2 ∈ Rdl×dl−1 are the weight transformation

matrices, and the dl is transformation size. The e
(l−1)
u and

eUt
(l−1) are the embedded representations that are obtained at

the (l − 1)th embedding propagation layer.
So far, we have described how to stack multiple embedding

propagation layers to capture the collaborative signal between
users and tags. Similarly, we adopt the similar architecture to
deal with the item-tag interaction information, and capture the
collaborative signal between items and tags by propagating and
assembling embedded representations of neighbors of items or
tags. In this way, we enrich the representations of items and

tags by exploiting the connectivity information encoded in the
item-tag interactions.

3) Prediction Layer: By stacking multiple embedding prop-
agation layers, we obtain the set of embedded representations
of users, items and tags:{

e(1)
u , e(2)

u , · · · , e(l)
u

}
{
e

(1)
i , e

(2)
i , · · · , e(l)

i

}
{
eUt

(1)
, eUt

(2)
, · · · , eUt

(l)
}

{
eIt

(1)
, eIt

(2)
, · · · , eIt

(l)
}

(12)

For each entity, the element e(l)
∗ is the output of embedding

propagation layer that assembles messages propagated from
the l-hop neighbors. Hence, different element of one set
focuses on different order of connectivity information, and
characterizes different aspect of users’ preferences, items’ and
tags’ characteristics. For each entity, since each element has
contributions to the embedded representations of the entity, we
concatenate all elements to get the final representation for the
entity,

e∗u = e(1)
u ||e(2)

u || · · · ||e(l−1)
u ||e(l)

u

e∗i = e
(1)
i ||e

(2)
i || · · · ||e

(l−1)
i ||e(l)

i

eUt
∗
= eUt

(1)||eUt
(2)|| · · · ||eUt

(l−1)||eUt
(l)

eIt
∗
= eIt

(1)||eIt
(2)|| · · · ||eIt

(l−1)||eIt
(l)

(13)

where || is the concatenation operation.
In the way, the final representations of entities is endowed

with rich semantics, which include both low-order and high-
order connectivity information and capture the collaborative
signal among interacted entities. Hence, the final represen-
tation scheme could increase the expressiveness of entity
embeddings.

Based on the final representations of users, items and tags,
we also explicitly model the pairwise interaction between
users, items and tags, which is similar to the PITF [9]. Given
a triplet (u, i, t), the predicted score ŷu,i,t is computed as:

ŷu,i,t =
∑
k

e∗u,f · eUt,f
∗
+
∑
k

e∗i,f · eIt,f
∗

(14)

where k is the dimension of the final representations of
entities.

B. Model Parameters Learning

We adopt the widely used ranking optimization criterion,
i.e. the bayesian personalized ranking [11], to learn the model
parameters of our proposed graph neural networks boosted
tag recommendation model. The objective function of our
proposed method is defined as follows:

L = min
Φ

∑
(u,i,t,t′)∈DS

− lnσ(ŷu,i,t − ŷu,i,t′) + λΦ||Φ||2F

(15)



where (u, i, t, t′) is the training data, which include two in-
stances, i.e. a positive instance (u, i, t) and a negative instance
(u, i, t′). And Φ = {U, I,TU ,TI ,W

(i)
1 ,W

(i)
2 , i = 1, 2, ..., l}

is the model parameters. λΦ denotes regularization coefficient
that controls the effect of the regularization terms. In addition,
we adopt the mini-batch Adam optimizer to optimize the
objective function L.

V. EMPIRICAL ANALYSIS

In this section, we conduct several groups of experiments
on two real-world datasets to compare the performance of our
proposed personalized tag recommendation method with other
state-of-the-art methods.

A. Dataset

In our experiments, we choose two public available datasets,
i.e. Last.fm and ML10M 1, to evaluate the performance of our
proposed tag recommendation algorithm. Similar to [9], [17],
we preprocess each dataset to get their corresponding p-core,
which is the largest subset with the property that every user,
every item and every tag has to occur at least p times. In our
experiments, all datasets are 5-core and 10-core. The general
statistics of datasets are summarized in Table I.

TABLE I
DESCRIPTION OF DATASETS

Dataset #Users #Items #Tags
lastfm-core5 1348 6927 2132
lastfm-core10 966 3870 1024
ml-10m-core5 990 3247 2566
ml-10m-core10 469 1524 1017

B. Evaluation Metrics

We adopt the common evaluation protocol, which is widely
used in [9], [17]. Specifically, for each user, we randomly
select one post and remove the triples that related to the
selected post from S to Stest. The remaining observed user-
item-tag triples are the training set Strain := S\Stest. Similar
to the classic item recommendation problem, the personalized
tag recommendation provides a top-N highest ranked list of
tags for a (user, item) pair. Hence, we employ two widely
used ranking metrics to measure the tag recommendation
performance of all compared methods, i.e., Precision@N
and Recall@N , where N denotes the length of ranked tag
recommendation list. Formally,

Prec@N :=
1

|PStest |
∑

(u,i)∈PStest

|Top (u, i,N) ∩ {t| (u, i, t)∈Stest}|
N

Rec@N :=
1

|PStest |
∑

(u,i)∈PStest

|Top (u, i,N) ∩ {t| (u, i, t)∈Stest}|
|{t| (u, i, t) ∈ Stest}|

where |PStest
| is the number of posts then are included in

the test set Stest. For both metrics, we set N = 3, 5, 10, 20 to
evaluate the performance in our experiments.

1Two datasets can be found in https://grouplens.org/datasets/hetrec-2011/

C. Experimental Settings

We choose the following traditional tag recommendation
algorithms as baselines:
• PITF: PITF [9] was proposed by Rendle and Steffen. It

explicitly models the pairwise interaction between users,
items and tags, and is a strong competitor in the field of
personalized tag recommendation.

• NLTF: NLTF [10] was proposed by Fang et al. It is a
non-linear tensor factorization model, which enhances the
PITF by exploiting the Gaussian radial basis function to
capture the non-linear interaction relations among users,
items and tags.

• ABNT: ABNT [20] was proposed by Yuan et al. It utilizes
the multi-layer perceptron to model the non-linearities of
interactions between users, items and tags.

To make a fair comparison, we set the parameters of
each model based on respective references or based on our
experiments, such that the recommendation performance of the
compared models is optimal under these parameters. For all
compared methods, the dimension of latent factor vector d is
tuned amongst {8, 16, 32, 64, 128, 256}. The mini-batch size is
selected from {512, 1024, 2048} and the learning rate is tuned
amongst {0.001, 0.005, 0.01}. The regularization coefficient
is chosen from {0.001, 0.005, 0.01, 0.05}. All latent factor
vectors and parameters are randomly initialized using the
Gaussian distribution with mean of 0 and standard deviation
of 0.01. For most datasets and baselines, we empirically set
the dimension of latent factor vector d with 64, the number
of batch is 512, the learning rate is set to 0.001, and the
regularization coefficient is 0.01. For the ABNT, the structure
of multi-layer perceptron follows the tower structure, i.e. the
dimension of hidden layer is half of that of the previous
hidden layer. For our proposed method, we set the number
of embedding propagation layers l = 3.

D. Performance Comparison

Tables II, III, IV, V report the tag recommendation quality
of all compared methods on four datasets.

TABLE II
PERFORMANCE COMPARISONS ON LASTFM-CORE5

Method PITF NLTF ABNT GNN-PTR
Pre@3 0.21266 0.19486 0.15628 0.23244
Pre@5 0.17893 0.16780 0.13531 0.19125

Pre@10 0.12737 0.11907 0.10178 0.13272
Pre@20 0.08323 0.07986 0.06996 0.08468
Rec@3 0.25711 0.22753 0.15691 0.32444
Rec@5 0.34786 0.32389 0.21940 0.41697
Rec@10 0.48138 0.45230 0.32984 0.54541
Rec@20 0.60074 0.57657 0.44266 0.65544

From Table II to Table V, we have the following obser-
vations: (1) On four datasets, PITF achieves a better per-
formance than NTLF and ABNT, which demonstrates the
strong competitiveness of PITF model. On the other hand,
the observation also indicates that integrating the multi-layer



perceptron into PITF framework cannot guarantee improve-
ments of tag recommendation quality, although ABNT is built
upon the PITF. One possible reason is that the ABNT involves
more trainable parameters, whereas train data available is
insufficient for learning its model parameters. (2) For each
compared method, its recommendation performance is better
on the core-10 datasets than that on the corresponding core-5
datasets. This observation indicates that increasing the density
of datasets could boost the tag recommendation performance.
(3) Our proposed graph neural networks based personalized
tag recommendation method consistently outperforms other
methods, which demonstrates the effectiveness of our proposed
method. In terms of precision@3, our proposed GNN-PTR
model improves the PITF by 9.3% and 4.1% on last.fm-core5
and ml-10m-core5, respectively. In terms of precision@5,
the improvements of GNN-PTR over PITF are 2.7% and
18.6% on last.fm-core10 and ml-10-core10, respectively. To
some extent, the improvements are considerable. Hence, this
observation confirms that integrating the collaborative signal
into the learning of embeddings in an explicitly manner is
beneficial for the personalized tag recommendation model.

TABLE III
PERFORMANCE COMPARISONS ON LASTFM-CORE10

Method PITF NLTF ABNT GNN-PTR
Pre@3 0.25132 0.24431 0.16406 0.26467
Pre@5 0.20875 0.20624 0.13665 0.21429
Pre@10 0.14577 0.12493 0.09413 0.14617
Pre@20 0.08931 0.08205 0.06796 0.09224
Rec@3 0.32035 0.28448 0.15792 0.34791
Rec@5 0.41583 0.40170 0.21895 0.45288
Rec@10 0.56539 0.55412 0.30336 0.58738
Rec@20 0.69311 0.68562 0.45190 0.71441

TABLE IV
PERFORMANCE COMPARISONS ON ML-10M-CORE5

Method PITF NLTF ABNT GNN-PTR
Pre@3 0.13976 0.13232 0.08215 0.14545
Pre@5 0.10206 0.09717 0.06283 0.10545
Pre@10 0.06414 0.05960 0.04000 0.06717
Pre@20 0.03768 0.03667 0.02470 0.04046
Rec@3 0.32077 0.29738 0.20888 0.33312
Rec@5 0.39096 0.35602 0.25378 0.39653
Rec@10 0.46230 0.42697 0.30388 0.48516
Rec@20 0.52332 0.51305 0.36596 0.57213

TABLE V
PERFORMANCE COMPARISONS ON ML-10M-CORE10

Method PITF NLTF ABNT GNN-PTR
Pre@3 0.16986 0.14357 0.08955 0.19332
Pre@5 0.11725 0.11429 0.07591 0.13902
Pre@10 0.07443 0.07143 0.05011 0.08422
Pre@20 0.04479 0.04382 0.03369 0.04989
Rec@3 0.37704 0.33881 0.22100 0.46023
Rec@5 0.45230 0.43344 0.30147 0.54606
Rec@10 0.52050 0.53408 0.38579 0.63980
Rec@20 0.60167 0.63966 0.50586 0.73557

E. Impact of The Number of Embeddings Propagation Layers

In our proposed method, the number of embedding propa-
gation layers l is an important parameter that affects the tag
recommendation performance of our proposed model. In this
section, we conduct a group of experiments to explore the
effect of l on tag recommendation performance by varying
the value of l from 1 to 4. Other parameters keep the same
settings as described in Section V-C. The experimental results
in terms of precision@10 on lastfm-core10 and ml-10-core10
are shown in Figure 2.

Fig. 2. Impact of the number of embedding propagation layers

As shown in Fig. 2, our proposed tag recommendation
model is sensitive to the value of l. With the number of
embedding propagation layers increases, the Prescision@10
of GNN-PTR firstly increases. Then, if the number of embed-
ding propagation layers continues to increase and surpasses a
threshold value, the performance of the proposed model begins
to degrade. The possible reason is that: a large value of l makes
our proposed method leverage the collaborative signal that
is propagated from the relative distant neighbors. Intuitively,
the collaborative signal of the distant neighbors may not be
helpful for enriching the representation of target entities since
the correlations between entity and their distant neighbors are
weak. When the number of embedding propagation layers
l = 3, our proposed personalized tag recommendation method
achieves the best performance.

F. Impact of The Dimension of Latent Feature Vectors

In this section, we vary the dimension of the hidden feature
vectors d in [16, 32, 64, 128, 256] , and investigate the
impact of parameter d on tag recommendation quality. Other
parameters remain unchanged. We only plot the precision@10
of GNN-PTR on lastfm-core10 and ml-10m-core10 in Fig. 3.
Other metrics show similar trends.

As we can see, the dimension of latent feature vectors d
also affects the recommendation performance of GNN-PTR.
In the early stage, the recommendation performance of GNN-
PTR is constantly improving as the value of d increases. Then,
when the value of d reaches to 128, the curve of precision@10
remains stable and the tag recommendation performance does
not further improve as we further increase the value of d. This
is because that if the latent feature vectors can capture the



Fig. 3. Impact of parameter d.

interacted entities’ preferences or characteristics effectively,
further increasing the value of d could not enhance the
representation capacity of our proposed model. Our proposed
recommendation method achieves its best performance when
d is equal to 128.

VI. CONCLUSION

Traditional personalized tag recommendation methods ig-
nore the collaborative signal in the process of learning repre-
sentation of entities, leading to the lack of expressive ability
for characterizing the preferences or attributes of entities. In
this paper, we proposed a graph neural networks boosted
personalized tag recommendation model, which integrates the
graph neural networks into the pairwise interaction tensor
factorization model. Based on the user-item-tag interaction
triples, we consider two types of interactions, i.e. the user-tag
interactions and the item-tag interactions. We exploit the graph
neural networks to capture the collaborative signal between
interacted entities as well as integrate the collaborative signal
into the learning of representations of entities by performing
messages propagation over the entity interaction graphs. Ex-
perimental results show that our proposed method outperforms
the state-of-the-art personalized tag recommendation methods.
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