
Time sensitivity and self-organisation in
Multi-recurrent Neural Networks

Oluwatamilore Orojo
∗School of Science and Technology

Nottingham Trent University
Nottingham NG11 8NS, United Kingdom

oluwatamilore.orojo@ntu.ac.uk

Jonathan Tepper∗
Perceptronix Ltd

Avon Way,
Derby DE65 5AE, United Kingdom

jtepper@perceptronix.net

T.M. McGinnity∗
Intelligent Systems Research Centre
University of Ulster, Magee Campus,
Derry BT48 7JL, United Kingdom

tm.mcginnity@ulster.ac.uk

Mufti Mahmud
School of Science and Technology

Nottingham Trent University
Nottingham NG11 8NS, United Kingdom

mufti.mahmud@ntu.ac.uk

Abstract—Model optimisation is a key step in model devel-
opment and traditionally this was limited to parameter tuning.
However, recent developments and enhanced understanding of
internal dynamics of model architectures have led to various
exploration to optimise and enhance performance through model
extension and development. In this paper, we extend the ar-
chitecture of the Multi-recurrent Neural Network (MRN) to
incorporate self-learning recurrent link ratios and periodically
attentive hidden units. We contrast and show the superiority of
these extensions to the standard MRN for a complex financial
prediction task. The superiority is attributed to i) the ability
of the self-learning recurrent link ratios to dynamically utilise
data to identify optimal parameters of its memory mechanism
and ii) the periodically attentive units enabling the hidden layer
capture temporal features that are sensitive to different periods
of time. Finally, we evaluate our extended MRNs (Self-Learning
MRN (SL-MRN) and Periodically Attentive MRN (PA-MRN)),
against two current state-of the-art models (Long-Short Term
Memory and Support Vector Machines) for an eye state detection
task. Our preliminary results demonstrate that the PA-MRN
and SL-MRN outperform both state-of-the-art models. These
results demonstrate that the MRN extensions are suitable models
for machine learning applications and these findings would be
further explored.

Index Terms—neural network, attentive nodes, self-learning,
multi-recurrent neural network

I. INTRODUCTION

Artificial neural networks (ANNs) are powerful machine
learning techniques widely applied for problem solving.
Specifically, they have been shown to be an effective learning
paradigm which provide state-of-the-art performance in a
variety of tasks such as biological data mining [1], image
analysis [2], anomaly detection [3], disease detection [4],
financial forecasting [5], natural language processing [6] and
strategic game playing [7].

ANNs are simplified yet powerful computational models
of the neural apparatus underpinning the human brain [8].

The authors would like to thank Nottingham Trent University for their
funding (Vice-Chancellor’s Doctoral Scholarship).

Particularly, they have successfully enabled effective i) ap-
proximation of complex non-linear mappings and handling
of ’noisy’ signals, ii) prediction without a priori distribution
assumptions (which can obscure learning) and iii) adaptation
and incorporation of new data [9].

Historically, ANNs are trained on a given dataset and
optimized solely through hyper-parameter tuning for improved
performance. For example, Ulbricht’s Multi Recurrent Net-
work (MRN) requires the designer to determine both the
learning hyper-parameters (such as; learning rate and momen-
tum) and architecture hyper-parameters (such as; number of
hidden units, number of memory banks for each layer and the
weightings for both self- and layer-level links) [10].

Over the last few decades, researchers have sought to further
enhance and exploit ANNs. In particular, researchers have
identified that endowing ANNs either directly by extending
their architecture (for example; incorporating self-learning,
self-organising, internal decays or attentive nodes) or indi-
rectly, in combination with other techniques (such as; wavelet
or fuzzy learning) have largely enhanced performance.

In this paper, we seek to extend Ulbricht’s original MRN
to specifically overcome two key limitations; i) the require-
ment of designer input to determine self- and layer-recurrent
link ratios and ii) gradient descent learning problem and
catastrophic interference of hidden states due to all temporal
features being super-imposed onto a single homogeneous
hidden feature layer. To resolve the first issue, we will extend
the architecture of an adapted version of Ulbricht’s proposed
model, the MRN, by incorporating self-learning link ratios
within its memory banks to identify whether this extension
will enhance performance. Secondly, to alleviate the issue
of temporal pattern interference, we introduce periodically
attentive nodes within the hidden layer of Ubricht’s MRN. The
main contribution of this paper is algorithmic development: we
are among the first to exploit algorithmic development in the
MRN.

The structure of the paper is as follows. A brief summary

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

of self-learning and attentive nodes within neural network is
given in Section 2, The methodology is given in Section 3.
The proposed model extensions are applied for financial and
detection tasks and results are given in Section 4 and Section
5 concludes.

II. BACKGROUND

A. The Multi-recurrent Neural Network (MRN)

The Multi-recurrent Neural Network (MRN) developed by
Ulbricht is a powerful dynamic modelling tool with a unique
memory mechanism which enables enhanced information pro-
cessing and signal extraction. Ulbricht [10] and more recently
Tepper et al. [11] and Orojo et al. [5] demonstrate that the
MRN, a slightly more sophisticated class of Simple Recurrent
Network (SRN), is able to capture better the latent signal in
time-series data and found that the MRN dynamics improved
learning and achieved better accuracy (compared to the SRN,
NARX, ESN and LSTM networks). However, akin to the
numerous ANN variants, the MRN requires parameter tuning
by the user which can be a lengthy process. In addition,
the MRN is not immune to the gradient descent problem
and catastrophic interference popularly known to adversely
affect neural networks. Ulbricht [10], particularly attempts to
deal with the gradient descent problem by employing multiple
varying strengths of memory banks to preserve information
and prevent the network from ’forgetting’. This has proven
to enhance learning and performance as shown by [10]–[12].
However, the MRN configuration does not specifically deal
with the simultaneous response of both long and short term
components as described in [13] and as a result susceptible to
the gradient descent problem.

Therefore, we seek to investigate two techniques namely
self-learning and periodic attentiveness to mitigate some weak-
nesses of the MRN.

B. Self-Learning in ANNs

A number of authors such as [14]–[18] have investigated and
employed various self-learning schemes in neural networks.
For example, Hartstein & Koch [15] prove that multiplicative
synapses are not mandatory in neural networks and that self-
learning occurs as the networks utilize its inputs relative
to learnt threshold voltages. Particularly, the learning of the
voltage thresholds occurs using a Hebbian rule and these
learnt thresholds are believed to contain the memories of these
networks. They view and demonstrate the concept of self-
learning in their network as the dynamic learning capability of
a network irrespective of its synapse function. Conclusively,
their work shows that neural networks in and of themselves
are robust and possess innate self-learning abilities.

Bouchachia & Ortner [14], on the other hand, implement
the idea of self learning in a Recursive Neural Network by
adopting semi-supervised learning for their dataset which is
comprised of both labelled and unlabelled data, thus coercing
the network to harness its structure to extract and learn from
the limited labeled data. Other authors such as [19] and [20]
use similar techniques particularly grouping the unlabeled data

using a relevant scoring system. Lee, et al. [16] build on
the idea of self-learning further by combining the following
schemes; pre-training, dropout and error forgetting which they
show led to improved performance. In addition, Nguyen &
Widrow [17], show that neural networks can learn indepen-
dently and demonstrates that limited user input and design is
achievable.

Research on self-learning/training in neural networks ap-
pears to mainly occur in the ’forward’ layers. There is how-
ever limited work on self-learning for the context/recurrent
layer(s) in recurrent neural networks. These layers are essential
for processing temporal data, particularly they serve as the
networks ’memory’ allowing the network to ’remember’ past
information which is essential for prediction. In an attempt to
bridge this gap, we seek to identify if we can harness the self-
learning ability of a neural network within its recurrent layer(s)
to enhance learning and improve performance. We would
explore and introduce self-learning in the MRN’s ’memory’
layer to understand whether the MRN has the potential to
learn specific ratios for the self- and layer-recurrency links for
a given task, thus eliminating parameter tuning for the memory
banks.

C. Temporal Attentiveness in ANNs

RNNs are notoriously known to suffer from the gradient
descent problem. Either they explode where the gradients in-
fluenced by the long-term components rapidly increase during
training or they vanish rapidly to zero. These behaviours are
largely caused by the long-term components in the network
[21]. Particularly, all components within the network (that
is both short-term and long-term) respond simultaneously to
every time period and as such these networks are unable to
preserve components for the long-term dependency task once
the short-term dependency learning has occurred [13]. This
behaviour is reflective of the synchronous neural firing in the
brain for representing information [22]. Additionally, ANNs
suffer from catastrophic interference, a significant problem
caused by continual learning where the network forgets knowl-
edge acquired from previous tasks (or data distributions) due
to the connectionist nature of these networks [23], [24].

O’Connell [13] sought to deal with this problem within
Simple Recurrent Networks (SRNs) by employing Periodically
Attentive (PA) units to extend the temporal capacity of the
SRN. Particularly, he found that for learning a long term
dependency task such as the Embedded Reber Grammar, the
vanilla SRN was unable to learn both the short and long term
predictors for the task simultaneously. In addition, given the
recurrence of the short-term error, the resources of the network
were predominately utilised for the short-term task [13].

These PA units are configured to receive inputs at regular
intervals such that they forces the network to partition its units
into long and short term [13]. As a result, even if the network
initially learns the short term prediction task (that is most units
in the hidden layer are allocated for the short-term task), some
units will still be available to learn the long-term prediction
task as they will not have been satisfactorily allocated as short

term predictors. Thus PA units ensure appropriate resource
allocation for long term dependency tasks [13].

Other researchers such as [25]–[31] have achieved vary-
ing success by embedding attentiveness in neural networks.
Chaudhari, [32], provides an overview of the implementations
of attention, neural network models employing attention and
in particular discussing the significant gains from attention
incorporation in neural networks.

Given the success with embedded attention in neural net-
works, in this paper, we seek to explore attentiveness in a
neural network variant to encourage long-term dependency
learning and fully exploit the ability of the MRN. We will
extend the methodology in [13] to the MRN in an attempt
to i) overcome the vanishing gradient problem by leaving
node information from previous time periods active for longer
(which is then further embedded within the memory banks)
and ii) reduce catastrophic interference by dedicating hidden
units to specific phases of time.

III. METHODOLOGY

A. Data and Forecasting Methodology

The proposed models will be benchmarked on two datasets
in different domains to assess their performance and transfer-
ability (that is their ability to generalise in different context).

1) Oil price data: The dataset and forecasting methodology
employed is detailed in [5]. In this paper, the best window size
(300) presented in [5] is employed.

2) Electroencephalogram (EEG) data: EEG data created by
Rösler and Suenderman [33] for eye state detection was used
as a benchmark. There are 14,980 instances of eye state with
each instance consisting of 14 EEG features and an eye state
class/label (0: open (55%), 1: closed (45%)). The EEG features
were standarised using the mean and standard deviation.

B. Models

Multi-recurrent Neural Networks (MRNs) originally pro-
posed by [10] utilise a combination of repeated memory banks
(these are feedback activations from one or more layers in the
network’s architecture) with varying strengths. Particularly, the
composition in the memory banks is determined by a ratio of
self- and layer-level recurrency for the number of memory
banks.

1) Introducing Self Learning in the MRN: The MRN is
configured with additional hidden units which act as the Ratio
Control Units (RCUs) that determine the self- and layer-
recurrency ratio links in the memory banks. Thus the hidden
units in the proposed MRN are larger than in a vanilla MRN.
These additional units are treated like the other hidden units.
After a forward pass and/or backpropagation (when the errors
are sent back through the network in order to minimize the
cost function by adjusting the network’s parameters (weights,
and biases)), the RCUs are updated and used for copying the
new available information. A modified MRN architecture is
illustrated in Fig. 1 where the RCUs are represented as the
black hidden units.

Context Units

Hidden Units

Output Units

Previous Hidden UnitsPrevious Internal Output

Copy

Copy

......

Fig. 1. MRN with self-learning links (adapted from [5])

The modified MRN functions are as follows. Given the
inputs at time t, It, the hidden units at time t − 1, Ht−1
and the hidden memory at time t− 1, Mt−1h , the volume of
information stored in the hidden memory at time t is calculated
as:

Mth = (RCUth ×Ht−1) + ((1−RCUth)×Mt−1h) (1)

where RCUth are randomly initialized and thereafter updated
from the allocated hidden units, the output units at time t−1,
Ot−1, the output memory at time t−1, Mt−1o , the volume of
information stored in the output memory at time t is calculated
as:

Mto = (RCUto ×Ot−1) + ((1−RCUto)×Mt−1o) (2)

where RCUto are randomly initialized and thereafter updated
from the allocated hidden units and their respective weights to
the hidden layer Wih , WMhh

and WMoh
, the net hidden units

at time t are calculated as:

Ĥt =
∑

WihIt +
∑

WMhh
Mth +

∑
WMoh

Mto (3)

The hidden units at time t are derived by passing the net
hidden units at time t through the chosen activation function
for the hidden layer (fh) and the RCUs are updated as:

Ht = fh(Ĥt)

RCUth = Ht[0 : nh]

RCUto = Ht[(nh + 1) : no]

(4)

where nh is the total number of memory banks for the
hidden layer and no is the total number of memory banks for
the output layer. Given the hidden units Ht at time t and the
hidden to output weights Who, the net output units at time t are
calculated and passed through the chosen activation function
for the output layer:

Ôt =
∑

Who
Ht

Ot = fo(Ôh)
(5)

2) Introducing Periodically Attentive (PA) Units in the
MRN: The MRN is configured such that PA units receive
patterns in a window sequence periodically and non - PA units
receive patterns at every time-step (note that with every new
window the hidden activations are reset to the mid-point of
the hidden unit activation function). Consider a sequence of
12 observations with a time attentive sensitivity of 3 thus we
divide the PA units into 3 Time Attentive Periods (TAP) and
the remaining units (if any) are responsive to all time periods
such that they have an Holistic Time Attentive Period (H-TAP)
(that is units that are active at every period). The PA-MRN
processes the sequence as shown in Table I (Note: pt refers to
a given pattern at time t, a phase consists of all TAPs, a minus
sign indicates the beginning of a new sequence where the units
are set to a known initial value based on the mid-point of the
hidden unit activation function and a hat symbol (∧) indicates
that the hidden unit activation values of the nodes associated
with that time period remain fixed/unchanged).

TABLE I
EXAMPLE OF PERIODICALLY ATTENTIVE UNITS (FOR A WINDOW OF SIZE

12)

Time step TAP 1 TAP 2 TAP 3 H-TAP Phase
1 p1 - - p1 1
2 ∧ p2 - p2 1
3 ∧ ∧ p3 p3 1
4 p4 ∧ ∧ p4 2
5 ∧ p5 ∧ p5 2
6 ∧ ∧ p6 p6 2
7 p7 ∧ ∧ p7 3
8 ∧ p8 ∧ p8 3
9 ∧ ∧ p9 p9 3
10 p10 ∧ ∧ p10 4
11 ∧ p11 ∧ p11 4
12 ∧ ∧ p12 p12 4

3) Baseline Models: Two classifiers, Long-Short Term
Memory (LSTM) and Support Vector Machine (SVM) are
compared to the models presented in this paper.
• LSTM: Two different LSTM models with different opti-

mizers (Adam and Root Mean Square Propagation (RM-
Sprop)) are employed. All the LSTM models have 2
LSTM layers and 1 dense layer to enable effective repre-
sentation. The first LSTM employs a hyperbolic tangent
activation function while the second LSTM employs a
sigmoidal activation function.

• SVM: SVMs are widely used for classification tasks and
in this paper we employ three SVM models with different
kernels (polynominal, sigmoid and Radial Basis Function
(RBF)).

IV. RESULTS

In this section, three variants of the MRN are benchmarked
on oil price dataset and comparative results presented. In
order to access the transferability and generalisation of these
extensions, the models will be benchmarked in a different
domain for time-series processing using EEG data of similar
complexity and compared with current state-of-the-art models;

LSTM and SVM. Various combinations of parameters were
exploited and the best models were selected.

A. Financial Application

Oil price prediction task is a notoriously challenging yet
important task, particularly as oil prices play a key role in
guiding an economy’s trajectory and are key determinants of
a nation’s well-being [5]. In this paper, three variants of the
MRN are applied for the oil price prediction task and the
results are compared. The MRN models used a sigmoid acti-
vation function for the hidden layer and the linear activation
function for the output layer.

Given the success with the MRN and noise injection re-
ported by Tepper et al. [17], we similarly adopt this method,
however, we inject noise into the weights of the network rather
than through the inputs.

1) Vanilla MRN and SL-MRN: The vanilla MRN is com-
pared to the SL-MRN and in Table II the Root Mean Squared
Errors (RMSEs) are presented. The MRN with self-learning
links in general outperforms the vanilla MRN. In particular,
it requires a smaller network thus showing the ability of the
network to robustly and adequately use the available data to
determine optimal ratio links.

TABLE II
COMPARATIVE NETWORK PERFORMANCE OF THE VANILLA MRN AND MRN

WITH SELF-LEARNING LINKS

Horizon Memory Bank Vanilla
MRN

MRN with
self-learning
links

1
[0, 5, 4] 0.3679 0.4359
[0, 3, 0] 0.4109 0.3643

3
[0, 3, 2] 0.7455 0.9789
[0, 3, 0] 0.8323 0.6970

6
[0, 4, 4] 0.9585 0.9797
[0, 3, 3] 1.1123 0.9329

12
[0, 4, 3] 1.0152 1.2151
[0, 4, 2] 1.2894 1.0979

Interestingly, it can be seen that using the optimal number of
memory banks for the vanilla MRN with the MRN with self-
learning links causes a drop in performance. This behaviour is
probably due to overfitting where the network begins to learn
and fit to the peculiarities of the data instead of learning for
the given task. The learned ratio links for the best SL-MRN
at different horizons are shown in Table III.

The SL-MRN is particularly suited for complex time series
problems as it enables the adjustment of the RCUs based on
the error gradients which are calculated from the complex
input-output mappings and the networks predictions and this
behaviour (that is simultaneous learning) is shown to enhance
the network’s performance.

2) Vanilla MRN and PA-MRN: The Vanilla MRN is
compared to the PA-MRN and the results are presented in
Table IV. The table shows the number of PA units used, for

TABLE III
LINK RATIOS CONFIGURATION FOR THE VANILLA AND MRN WITH

SELF-LEARNING LINKS (MB stands for Memory Bank)

Ratio links for memory banks
Layer Input Hidden Output
Horizon Links Standard

links
Learnt
links

Standard
links

Learnt
links

1 (MB=[0,3,0]) 0
0.3333, 0.8275,

0 00.6667 0.6198,
1 0.5951

3 (MB=[0,3,0]) 0
0.3333, 0.1851,

0 00.6667, 0.1152,
1 0.2488

6 (MB=[0,3,3]) 0
0.3333, 0.5939, 0.3333, 0.2008,
0.6667, 0.6241, 0.6667, 0.4696,
1 0.1649 1 0.4156

12 (MB=[0,4,3]) 0
0.25, 0.0861, 0.5, 0.7988,0.5, 0.4118, 0.5 0.76320.75, 0.0454,
1 0.1473

example 17 (3) refers to 17 periodically attentive units divided
into 3 batches with each batch receiving an input every 3rd

time-step and 3 (20 - 17) units attentive to all time-steps.
(Note: all networks had 20 hidden units but memory banks
and window sizes varied to encourage effective modeling).

As seen from Table IV, the PA-MRN outperforms the
vanilla MRN at an horizon of 3 and 6 however, for an horizon
of 12 fairs comparatively to the vanilla MRN. For an horizon
of 1, the vanilla MRN performs better. In particular, during
training the PA-MRN had large rapid oscillations between er-
rors and this unstable behaviour likely hindered the prediction
performance. Secondly, the PA-MRN needs more hidden units
to compensate for the partition of units as the units in some
partitions were not sufficient to learn the task. Importantly, for
the horizon of 3 and 6, we see the potential of the PA-MRN
and with adequate optimisation, the PA-MRN possesses the
ability to consistently outperform the vanilla MRN which has
been optimised for the task. Finally, the prediction accuracy
for the PA-MRN used smaller window sizes (10, 15 and
150) thus showing its robustness to learn effectively from the
data. (Note: large window sizes such as those used with the
vanilla MRN (300) led to rapid gradient descent and as a
result hindered the learning in the network). The PA-MRN’s
effective use of smaller window sizes enables early prediction
and indication and this is particularly suited to real-time tasks
where limited data is available at any point in time.

TABLE IV
COMPARATIVE NETWORK PERFORMANCE OF THE VANILLA MRN AND

PA-MRN

Horizon 1 3
MRN PA-MRN MRN PA-MRN

PA Units 0 20 (2) 0 17 (3)
RMSE test set 0.3679 0.3986 0.7455 0.6796
Horizon 6 12

MRN PA-MRN MRN PA-MRN
PA Units 0 20 (5) 0 20(5)
RMSE test set 0.9585 0.9023 1.0152 1.09

B. Eye Detection Task

In recent years, there has been an increasing interest in
eye state detection particularly for applications such as facial
expression recognition, physiological state detection, human-
computer interaction, driver fatigue detection and many more
[34], [35]. In this paper, a number of classifiers are applied
for the eye state detection task that is to determine from EEG
signals whether the eyes are open or closed (see Fig. 2 and
preliminary results are presented. The MRN models used the
hyperbolic tangent activation function for the hidden layer and
the sigmoid activation function for the output layer.

Two sets of MRN models were used to assess the
performance, one with noise injection and another without
noise injection. In addition, given the findings from the oil
price prediction task with the PA-MRN, for this task, the
PA-MRN models were trained with a higher number of hidden
nodes to ensure there were sufficient feature nodes available
for each time phase. (Note: for comparability, experiments
with a similar size of hidden nodes was conducted for the
Vanilla MRN and SL-MRN models).

...
...
...
..

...
.

...
.

C
L

A
S

S
IF

IE
R

Closed

Open

INPUTS OUTPUTS

Fig. 2. Eye detection task for the classifiers

In order to assess the performance of the chosen classifiers,
the Area Under Curve (AUC) score was calculated and is
presented in Table V, the MRN extensions achieve the best
scores. This is due to the extensions i) better utilization of
the MRNs architecture to process the data and learn the task
which enables superior performance and ii) the PA - MRN
particularly ensures the preservation of information through
effective unit allocation within the hidden layer. The MRN
models without noise injection performed best for this task.

TABLE V
COMPARATIVE RESULTS FOR ALL THE CLASSIFIERS BENCHMARKED ON

THE EEG EYE STATE DATA

Models AUC score
PA - MRN 0.9
MRN - Self-learning links 0.877
Vanilla MRN 0.854
SVM (sigmoid) 0.85
LSTM (RMSProp) 0.849
LSTM (Adam) 0.826
SVM (polynomial) 0.622
SVM (RBF) 0.555

V. CONCLUSION

The Multi-recurrent Network has been presented by a num-
ber of researchers as a powerful paradigm for a number of
machine learning applications however it is prone to limita-
tions akin to similar paradigms. In particular, we address two
main limitations of the MRN; i) ad-hoc user design and ii)
diminishing gradient and catastrophic interference. The MRN
is extended with i) self-learning links to encourage dynamic
learning and reduced user design and ii) periodically attentive
nodes to ensure the network learns all tasks (short and long)
and preserves information. The MRN extensions are compared
to the vanilla MRN for a financial task and both extensions
demonstrate superiority. In particular, we identified that i) the
SL-MRN requires less memory banks and therefore weights
as it is able to dynamically learn the ratio of current and
previous information to take forward to the next time-step and
ii) the PA-MRN required a smaller window size as information
is stored in a manner that enables temporal relationships to
be established more effectively. The model extensions are
then compared to two other classifiers; LSTM and SVM for
an eye detection task and preliminary results shows that the
extensions outperforms both classifiers. These findings will be
further explored to assess generalisation of these extensions
and transferability to other domains. Future work will also
investigate the suitability of the MRN and its variants for
complex higher-dimensional time series processing to identify
turning points and provide early warning indication and inform
intervention measures.

REFERENCES

[1] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applications
of deep learning and reinforcement learning to biological data,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 6,
pp. 2063–2079, 2018.

[2] H. M. Ali, M. S. Kaiser, and M. Mahmud, “Application of convolu-
tional neural network in segmenting brain regions from mri data,” in
International Conference on Brain Informatics. Springer, 2019, pp.
136–146.

[3] S. W. Yahaya, A. Lotfi, and M. Mahmud, “A consensus novelty detection
ensemble approach for anomaly detection in activities of daily living,”
Applied Soft Computing, vol. 83, p. 105613, 2019.

[4] M. B. T. Noor, N. Z. Zenia, M. S. Kaiser, M. Mahmud, and S. Al Ma-
mun, “Detecting neurodegenerative disease from mri: A brief review
on a deep learning perspective,” in International Conference on Brain
Informatics. Springer, 2019, pp. 115–125.

[5] O. Orojo, J. Tepper, T. M. McGinnity, and M. Mahmud, “A Multi-
recurrent Network for Crude Oil Price Prediction,” Proceedings of the
IEEE Symposium Series on Computational Intelligence, Xiamen, China,
Dec. 2019

[6] G. Rabby, S. Azad, M. Mahmud, K. Z. Zamli, and M. M. Rahman,
“Teket: a tree-based unsupervised keyphrase extraction technique,”
Cognitive Computation, 2020, doi: 10.1007/s12559-019-09706-3, [epub
ahead of print].

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[8] S. Shalev-Shwartz and S. Ben-David, ”Understanding machine learning:
from theory to algorithms,” New York, NY, USA: Cambridge University
Press, 2014.

[9] T. O. Ayodele, “Types of Machine Learning Algorithms,” in New Ad-
vances in Machine Learning, Y. Zhang, Ed.InTech, Feb. 2010. [Online].
Available: http://www.intechopen.com/books/new-advances-in-machine-
learning/types-of-machine-learning-algorithms

[10] C. Ulbricht, “Multi-recurrent Networks for Traffic Forecasting,” Pro-
ceedings of the National Conference on Artificial Intelligence, vol. 2,
pp. 883–888, 1994.

[11] J. A. Tepper, M. S. Shertil, and H. M. Powell, “On the importance
of sluggish state memory for learning long term dependency,” Knowl.
Based Syst., vol. 96, pp. 104–114, Mar. 2016.

[12] J. Binner, P. Tino, J. Tepper, R. Anderson, B. Jones, and G. Kendall,
“Does money matter in inflation forecasting?” Physica A, vol. 389, no.
21, pp. 4793–4808, Nov. 2010.

[13] T. C. O’Connell, “Using Periodically Attentive Units to Extend the
Temporal Capacity of Simple Recurrent Networks,” PhD. disserta-
tion,University at Albany, State University of New York, New York,
NY,USA.

[14] A. Bouchachia and A. Ortner, “Self-learning recursive
neural networks for structured data classification,” in 2014
International Joint Conference on Neural Networks(IJCNN).
Beijing, China: IEEE, Jul.2014, pp.808–815. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6889804

[15] A. Hartstein and R. H. Koch, “A Self-Learning Neural Network,” in
Advances in Neural Information Processing Systems 1, D. S. Touret-
zky, Ed.Morgan-Kaufmann, 1989, pp. 769–776. [Online]. Available:
http://papers.nips.cc/paper/189-a-self-learning-neural-network.pdf

[16] H.-W. Lee, N.-r. Kim, and J.-H. Lee, “Deep Neural Network
Self-training Based on Unsupervised Learning and Dropout,” IJ-
FIS, vol. 17, no. 1, pp. 1–9, Mar. 2017. [Online]. Available:
http://www.ijfis.org/journal/view.html? doi=10.5391/IJFIS.2017.17.1.1

[17] D. H. Nguyen and B. Widrow, “Neural Networks for Self-Learning
Control Systems,” 1990 p. 6.

[18] V. Reddy, “Self Trained Artificial Neural Network,” 2004.
[19] A. Skabar, “Augmenting Supervised Neural Classifier Training Using a

Corpus of Unlabeled Data,” vol. 2479, 2002, pp. 174–185.
[20] A. Verikas, A. Gelzinis, and K. Malmqvist, “Using unlabelled data

to train a multilayer perceptron, ”Neural Processing Letters, vol. 14,
pp.179–201, 12 2001

[21] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
Recurrent Neural Networks,” arXiv:1211.5063 [cs], 2012.

[22] R. Brette, “Computing with Neural Synchrony,” PLoS Comput Biol, vol.
8, no. 6, p.e1002561, Jun. 2012.

[23] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A.Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” arXiv:1612.00796 [cs, stat],
Jan. 2017, arXiv:1612.00796.

[24] S. Sodhani, S. Chandar, and Y. Bengio, “Towards Training Recurrent
Neural Networks for Lifelong Learning,” arXiv:1811.07017 [cs, stat],
Sep. 2019, arXiv: 1811.07017.

[25] P. Zhang, J. Xue, C. Lan, W. Zeng, Z. Gao, and N. Zheng, “Adding At-
tentiveness to the Neurons in Recurrent Neural Networks,” in Computer
Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y.
Weiss, Eds. Cham: Springer International Publishing, 2018, vol. 11213,
pp. 136–152.

[26] W. Yin and H. Schütze, “Attentive Convolution: Equipping CNNs with
RNN-style Attention Mechanisms,”Transactions of the Association for
Computational Linguistics, vol. 6, pp. 687–702, Dec. 2018.

[27] W. Yin W. Yin, S. Ebert, and H. Schütze, “Attention-Based Convolu-
tional Neural Network for Machine Comprehension,” in Proceedings
of the Workshop on Human-Computer Question Answering.San Diego,
California: Association for Computational Linguistics, 2016, pp. 15–21.

[28] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
Attention Networks for Document Classification,” in Proceedings of
the2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. San
Diego, California: Association for Computational Linguistics, 2016, pp.
1480–1489.

[29] L. Liu, R. Zhang, J. Peng, G. Li, B. Du, and L. Lin, “Attentive
Crowd Flow Machines,” arXiv:1809.00101 [cs, stat], Aug. 2018, arXiv:
1809.00101.

[30] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang,
and X. Tang, “Residual Attention Network for Image Classification,”
in2017IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI: IEEE, Jul. 2017, pp. 6450–6458.

[31] Y. Kim, C. Denton, L. Hoang, and A. M. Rush, “Structured Attention
Networks,” p. 21, 2017 arXiv:1702.00887 .

[32] S. Chaudhari, G. Polatkan, R. Ramanath, and V. Mithal, “An Attentive
Survey of Attention Models,” arXiv:1904.02874 [cs, stat], Apr. 2019,
arXiv:1904.02874.

[33] O. Rosler and D. Suendermann, “A First Step towards Eye State
Prediction Using EEG,” 2013, p. 4.

[34] F. Söylemez and B. Ergen, “Eye Location and Eye State Detection in Fa-
cial Images Using Circular Hough Transform,” in Computer Information

Systems and Industrial Management, K. Saeed, R. Chaki, A. Cortesi,
and S. Wierzchoń, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, vol.8104, pp. 141–147.

[35] Ki Kim, Hyung Hong, Gi Nam, and Kang Park, “A Study of Deep
CNN-Based Classification of Open and Closed Eyes Using a Visible
Light Camera Sensor,”Sensors, vol. 17, no. 7, p. 1534, Jun. 2017.

