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Abstract—Deep reinforcement learning (RL) is known as an
emerging research trend in machine learning for autonomous
systems. In real-world scenarios, the extrinsic rewards, acquired
from the environment for learning an agent, are usually missing
or extremely sparse. Such an issue of sparse reward constrains
the learning capability of agent because the agent only updates
the policy when the goal state is successfully attained. It is always
challenging to implement an efficient exploration in RL algo-
rithms. To tackle the sparse reward and inefficient exploration,
the agent needs other helpful information to update its policy
even when there is no interaction with the environment. This
paper proposes the stochastic curiosity maximizing exploration
(SCME), a learning strategy explored to allow the agent to act as
human. We cope with the sparse reward problem by encouraging
the agent to explore future diversity. To do so, a latent dynamic
system is developed to acquire the latent states and latent
actions to predict the variations in future conditions. The mutual
information and the prediction error in the predicted states and
actions are calculated as the intrinsic rewards. The agent based
on SCME is therefore learned by maximizing these rewards to
improve sample efficiency for exploration. The experiments on
PyDial and Super Mario Bros show the benefits of the proposed
SCME in dialogue system and computer game, respectively.

Index Terms—deep reinforcement learning, sparse reward,
intrinsic reward, exploration, dialogue system

I. INTRODUCTION

Recent rapid development in deep neural networks has
brought a great success in deep reinforcement learning (RL)
[1] for numerous complicated applications in the domains of
natural language processing [2], [3], computer vision, game
playing, robotic control and autonomous driving. A typical
natural language application based on RL is the task-oriented
dialogue system. Deep RL is feasible to carry out a deep policy
network which implements a successful dialogue to meet a
specific task. In general, a reinforcement learning system aims
to train an agent or learn a policy to interact with environment
via sequential decision making. During the learning procedure,
such an agent obtains the observations from environment,
decides an action according to the policy, and then receives the
feedback which is known as the reward. Agent is learned to
choose an action through many trials and errors. The goal of
RL is to build an agent by maximizing total rewards provided
by the environment.

In general, RL methods are categorized into model-based
RL and model-free RL according to the updating procedure
and the way of making decisions. Model-based RL aims to
learn the state transition of the environment based on Markov
decision process (MDP) by using the trajectories which are

stored while interacting with environment. An accurate model
of the MDP is hard to build in complicated environments. It
is accordingly popular to construct the model-free agent for
deep RL which learns the value function for states while the
prediction of next state is avoided. The agents in model-free
RL can be further divided into three types including value-
based, policy-based and actor-critic agents. First, the value-
based agent decides a random action or an optimal action with
the highest probability. This agent continuously updates the
state value estimator. Second, the policy-based agent directly
updates the parameterized policy through the policy gradient
[4]. Third, the actor-critic agent is seen as a hybrid agent
in sequential learning which is not only trained by updating
the parameterized policy but also adjusting the state value
estimator. As a human being, we can easily understand the
environment and predict the future when facing the unseen
scenarios. But, such a task is challenging for a reinforcement
learner who would like to build the model-based agent to deal
with sequential decision problem. This paper addresses how
MDP is implemented to carry out the model-based agent where
the total reward is maximized through understanding the state
transition of environments. We pursue an agent who is similar
to the role of humans in terms of predicting the future and
planning the direction. An agent is constructed to act for self
learning through exploration of useful states based on a latent
dynamic system.

This study builds the latent dynamic system to carry out the
proposed stochastic curiosity maximizing exploration (SCME)
for deep RL. The latent dynamics of states and actions are
represented by means of the variational autoencoder (VAE)
[5], [6]. Basically, VAE is a powerful generative model which
comprises an inference model as an encoder and a generative
model as a decoder. The encoder compresses the states and
actions into latent representations while the decoder generates
the synthesized samples from latent state and action space.
Given the latent states and actions, the second step is to predict
the variational future. If the future latent state differs from the
actual latent state, it means that the agent still has some region
which has not been explored. Finally, the agent measures the
mutual information between the predicted latent state and la-
tent action. Agent is designed to explore those predicted states
with large mutual information. This information is treated as
intrinsic reward to be maximized to encourage exploration.
In the experiments, we compare the performance of SCME
with the exploration strategy based on deep Q network [7],
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[8]. An open-source and end-to-end statistical spoken dialogue
system toolkit based on PyDial [9], [10] is investigated. PyDial
module is evaluated with 18 environments based on different
conditions. We examine the benefits of SCME in different
environments. The objective function using SCME consists
of a number of loss functions. Each function is demonstrated
to be considerable with individual function. The influence of
each intrinsic reward is analyzed. The performance of SCME
in presence of the other exploration strategy based on the
asynchronous advantage actor-critic [11] in Super Mario Bros
with dense and sparse rewards is also evaluated.
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Fig. 1. Spoken dialogue is constructed as reinforcement learning system.

II. BACKGROUND SURVEY

This section addresses the statistical spoken dialogue proce-
dure which is seen as an autonomous system where deep re-
inforcement learning is performed to explore for task-oriented
goal. Finding an informative intrinsic reward is crucial. A
couple of learning strategies for exploration are introduced.

A. Statistical Spoken Dialogue System

A statistical spoken dialogue system (SDS) is composed
of different modules where each module plays a specific
role. SDS is basically a very complicated system with var-
ious uncertainties where several issues should be handled
simultaneously. Figure 1 shows how a dialogue system is
constructed and simulated as a RL scenario. A user interacts
with dialogue system using speech input via automatic speech
recognition (ASR), and then receives a spoken response via
text-to-speech (TTS) synthesis. ASR module calculates the
posterior probabilities of words in text sequence correspond-
ing to an utterance. Instead of retaining the most probable
hypothesis only, the N-best list of sentence hypotheses with
the corresponding probabilities is often retrieved by ASR. The
spoken language understanding (SLU) module is then used
to understand the semantics of sentence hypothesis given the
outputs of ASR. SLU module produces a type of meaning for
input utterance based on a slot-value pair which is seen as the
state. The dialogue management (DM) uses this observation
for sequential belief tracking and decision making according to
the learned policy. DM is the core module for taking actions
in dialogue system. Such a module sufficiently reflects the
behavior of SDS. Basically, DM is comparable as human brain,
belief tracking captures the memory trajectory of a human,

and policy acts for choosing actions. The behavior of policy
is similar to the agent in RL. The natural language generation
(NLG) module generates the sentence based on the actions
from DM. TTS module receives the text from NLG, and then
synthesizes an agent voice to interact with user. To facilitate
the interaction between agent and user, deep RL is performed
to build an efficient policy to accomplish the dialogue task.

B. Deep Reinforcement Learning

Deep Q network (DQN) [7], [8], [12] is one of the most
successful algorithms for deep RL. DQN builds a value-based
agent where a deep neural network (DNN) is incorporated to
calculate the state-action value functions Qθ(st, at) in network
outputs at each time t for individual actions at where state st
is used as input. This calculation is to estimate the expected
return Q(st, at) = E[Rt|st, at] where Rt =

∑∞
k=0 γ

krt+k
as the state-action value function. Here, rt is the extrinsic
reward from environment and γ ∈ (0, 1] is a discount factor.
DNN parameters θ in value network Qθ(st, at) is updated by
minimizing a square error loss function

J(θ) =
(
rt + γmax

a
Qθ(st+1, a)−Qθ(st, at)

)2

(1)

DQN aims to predict the Q value Qθ(st, at) which gets
close to the temporal-difference (TD) [13], [14] target rt +
γmaxaQ(st+1, a). TD error is minimized. In addition to this
value network, DQN implements Q learning by using replay
buffer as well as target network. Replay buffer memories the
transitions {st, at, rt, st+1} which are sampled in minibatch
to calculate the gradient of J(θ) with respect to θ where the
slow convergence in Q learning due to too close consecutive
states is improved. Besides, there is no correct target in Q
learning. An additional target network is merged to calculate
rt+γmaxa Q̂θ̂(st+1, a) as TD target. It is not suitable to use
the same network to calculate target value Q̂θ̂(st+1, at) and
Q value Qθ(st, at). Parameter of target network θ̂ is reset by
that of value network θ periodically every a number of time
steps. Exploration based on ε-greedy algorithm is applied.

Mnih et al. [11] proposed an asynchronous approach to deep
RL based on an actor-critic agent. Rather than communicating
with single environment in DQN, this agent communicates
with several environments at the same time. The asynchronous
advantage actor-critic (A3C) agent consists of a global network
and multiple workers with individual parameters in presence
of multiple environments. Each worker interacts with its own
copy of environment The benefit of using A3C is that replay
buffer is not required since there is no correlation between
different environments. This A3C works better because the
overall experiences from multiple workers provide more di-
versity in training procedure. A3C uses the actor-critic archi-
tecture which maintains a policy πθ(at|st) with parameter θ
as actor and estimates the state value function Vθv (st) with
parameter θv by critic where V (st) = Ea[Q(st, a)]. Policy
and state value function are updated every tmax time steps or
at the terminal state. An advantage of action at in state st is
estimated by A(st, at) = Q(st, at)−V (st). According to A3C



algorithm, the updating of θ in policy network πθ(at|st) is
based on promoting the advantage over increasing the reward
by using the gradient ∇θ′ log πθ′(at|st)Aθ,θ′v (st, at) where an
estimate of advantage function is yielded by

Aθ,θv (st, at) =

k−1∑
i=0

γirt+i + γkVθv (st+k)− Vθv (st). (2)

The updating of θv in value function Vθv (st) is also performed
by using the gradient ∇θ′v (Aθ′,θ′v (st, at))

2. Exploration in
A3C is based on maximizing the diversity over actor-learners.
Basically, the exploration in DQN and A3C is insufficient. The
convergence in learning procedure is likely degraded.

C. Efficient Exploration for Environment Dynamics

In reinforcement learning, the agent typically receives a
positive reward when a specific goal is achieved. A penalty
with negative reward is obtained if the agent fails to meet the
requirement. However, in many scenarios, the agent neither
succeeds nor fails to achieve final goal. Accordingly, there
is no reward received from environment. The sparse reward
problem happens. This problem is especially serious when
the state space is large. In addition, the random exploration
using the ε-greedy is difficult to reach many rare states in
complicated environment. The efficiency for exploration in
DQN is limited. How to deal with the sparse reward and carry
out an efficient exploration is crucial for deep RL. In what
follows, two previous approaches to improve exploration are
surveyed. The intrinsic rewards are calculated.

It is important to balance the trade-off between exploration
and exploitation for RL. To improve the learning efficiency for
scalable RL, the exploration strategy based on variational in-
formation maximizing exploration (VIME) [15] was proposed.
VIME used the entropy search, a popular Bayesian optimiza-
tion method, to encourage agent to explore efficiently. The
maximization of information gain was implemented to realize
the agent’s belief in environment dynamics. Correspondingly,
the sum of entropy reduction due to new state st+1 along
a trajectory

∑
t(H(θ|ξt, at) − H(θ|st+1, ξt, at)) given with

an experience of history is calculated. H(·) is the entropy
function. The intrinsic reward at each time t is expressed as

rit = KL(p(θ|st+1, ξt, at)‖p(θ|ξt)) (3)

where KL(·‖·) denotes the Kullback-Leibler (KL) divergence,
θ denotes the parameter of transition model p(st+1|st, at, θ)
and ξt = {s1, a1, . . . , st} denotes the history of an agent who
experiences until time step t. In practice, the KL divergence
in Eq. (3) is implemented by KL(q(θ|φt+1)‖q(θ|φt)) using
variational distribution q(θ|φt) with parameter φt updated
by variational inference at each time t. Agent is trained by
maximizing extrinsic reward ret as well as intrinsic reward rit,
i.e. rt = ret + rit. VIME follows the Bayesian perspective by
maximizing the information gain or the uncertainty reduction
for an agent who explores the environment dynamics through
state transitions. Houthooft et al. [15] applied the Bayes-by-
backprop network (BBN) [16] to learn the state transition of

an environment. Weights of BBN were sampled from Gaussian
distribution which implemented a robust network against the
mode collapse. BBN calculated the entropy reduction or KL
divergence between the posteriors of weight distributions at
consecutive time steps, and used this measure as the intrinsic
reward to encourage agent to explore. An efficient exploration
was performed by maximizing the expected sum of reduction
of uncertainty in environment dynamics. The agent explored
the environment with maximum entropy reduction.

In [17], the curiosity maximizing exploration (CME) was
carried out as a model-based module which was called the
intrinsic curiosity module (ICM). ICM module extracted the
transition information from input tuple {st, at, st+1} and
used it as the intrinsic reward rit for agent learning. CME
trained a forward dynamics model f(·) with parameter θf that
predicted the feature representation of next state φ̂(st+1) =
f(φ(st), at, θf ) where φ(·) was a feature extractor. The dif-
ference between the features of predicted state φ̂(st+1) and
actual state φ(st+1) was measured as the prediction error or a
negative intrinsic reward which was minimized to encourage
the curiosity and pursue the best state prediction during
exploration. The value of intrinsic reward in CME with a
scaling factor η > 0 was computed as

rit =
η

2
‖φ̂(st+1)− φ(st+1)‖22. (4)

A self-supervised prediction was performed. In addition, an
inverse neural network model with parameter θg was merged
to predict an action ât = g(st, st+1, θg) where the discrepancy
between the predicted ât and actual actions at was minimized.
Using CME, the tuples {st, at, st+1} were used to jointly train
the policy network π(·), the feature encoder φ(·), the forward
model f(·) and the inverse model g(·).

III. STOCHASTIC CURIOSITY MAXIMIZING EXPLORATION

VIME promotes the exploration by maximizing the re-
duction of uncertainty using Bayesian neural network while
CME performs the self-supervised exploration by maximizing
the curiosity [18] or minimizing the prediction error of the
compressed states. This paper boosts the strengths of VIME
and CME and proposes the stochastic curiosity maximizing
exploration (SCME) where the information-theoretic curiosity
is maximized for reinforcement learning. Figure 2 shows
the diagram of RL based on SCME. In addition to policy
network πθ(at|st, rt), there are three components in SCME
which include encoder network, curiosity network and the
information network as detailed in what follows.

A. Latent Dynamic System

RL aims to train an agent by using the trajectories of state
st, action at and reward rt at different time steps t [19],
[20]. It is crucial to learn the state transitions or build a
dynamic system for environment dynamics which character-
izes the relations among current state st, action at and next
state st+1. Usually, states and actions are high-dimensional
especially in continuous control tasks. To facilitate stochastic
modeling in RL, this study develops a latent dynamic system
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Fig. 2. Diagram of stochastic curiosity maximizing exploration for reinforce-
ment learning which consists of the policy network (red), the encoder networks
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to simulate the unknown behavior of environment where the
uncertainties of state st and action at are represented for
information-theoretic exploration. In addition to uncertainty
modeling, this latent dynamic system also promotes learning
efficiency for aspects of environment where the redundancy
or irrelevance in information extraction can be reduced during
exploration from high-dimensional state space. In [5], varia-
tional autoencoder (VAE) was proposed as a general extractor
or encoder for random features from inputs. This paper builds
a latent dynamic system where low-dimensional latent states
and actions are extracted by the learned encoders for abstract
and compressed representations of high-dimensional states and
actions, respectively. Variational inference is performed for
curiosity-driven exploration. A variational RL is developed by
maximizing three objectives including

1) evidence lower bounds (ELBOs) of log likelihoods for
states and actions

2) intrinsic reward based on curiosity in terms of the
prediction error of latent state

3) mutual information between new state st+1 and current
action at in latent space.

In the implementation, low-dimensional random state zst and
action zat are calculated by using two encoder networks where
high-dimensional state st and action at are used as inputs,
respectively. It is meaningful to use the same encoder for
current state st and next state st+1. Importantly, stochastic
modeling is embedded in a latent dynamic system based on
zst , zat and zst+1 , which are learned by maximizing the

ELBOs for state and action encoders as given by [5], [21]

L(s; θs, φs) = Lθs + Lφs
= Eqφs (zs|s)[log pθs(s|zs)]− KL(qφs(zs|s)‖p(zs))

(5)

L(a; θd, φd) = Lθa + Lφa
= Eqφa (za|a)[log pθa(a|za)]− KL(qφa(za|a)‖p(za)).

(6)

There are two terms in ELBOs. One is the log likelihoods
{log pθs(s|zs), log pθa(a|za)} with latent variables {zs, za}
sampled by variational distributions {qφs(zs|s), qφa(za|a)}.
The other is the KL terms for regularizing those variational
distributions to get close to their priors {p(zs), p(za)}.

B. Stochastic Curiosity Learning

This latent dynamic system is constructed with twofold
considerations. One is to faithfully reflect stochastic features
from heterogeneous observations of state and action. The other
is to facilitate the stochastic curiosity learning which deals
with sparse reward as well as model uncertainty for exploration
in RL. The agent learns under latent dynamic space based
on the intrinsic reward calculated from current random vari-
ables zst and zat according to curiosity network with output
probability p(ẑst+1

|zat , zst). This network provides high-level
abstraction to predict future state ẑst+1

. The agent of SCME
learns to explore those unseen regions in environment which
are found by optimizing the stochastic curiosity. This curiosity-
driven exploration is performed by maximizing the difference
between the predictive information of next state ẑst+1 and
the information measured by the distribution of next state
zst+1

acquired in real environment. The stochastic curiosity
is measured by KL divergence between the distribution of
predicted state p(ẑst+1

|zst , zat) via curiosity network and the
variational distribution of actual state q(zst+1 |st) via state
encoder. The objective is to explore future in next state by

Lθcur = KL(p(ẑst+1 |zst , zat)‖q(zst+1 |st+1)). (7)

In the implementation, we sample the latent variables of the
predicted state ẑst+1

from predictive distribution as well as the
actual state zst+1 from variational distribution. The intrinsic
reward is correspondingly calculated by rit = ||ẑst+1−zst+1 ||22.
This study further strengthens the information-theoretic learn-
ing in SCME by incorporating a mutual information term as
regularization in curiosity-based intrinsic reward.

C. Information-Theoretical Learning

Information theory provides meaningful criterion to estimate
the informative distributions based on knowledge or constraint
[21]–[24]. This study learns an agent by interacting with envi-
ronment which can enhance the mutual information between
latent variables of the predicted state ẑst+1 and the selected
action zat from policy network. An information network is
merged to compute mutual information at each time t by

I(ẑst+1 , zat) = Ep(ẑst+1
,zat )

[
log

p(ẑst+1
, zat)

p(ẑst+1)p(zat)

]
(8)

which is maximized to encourage the dependencies between
the outputs of curiosity network ẑst+1 and action encoder



zat . The selected action can sufficiently reflect the exploration
based on stochastic curiosity. Intrinsic reward is extended as

r̃it = ||ẑst+1
− zst+1

||22 + I(ẑst+1
, zat) (9)

where the mutual information acts as a regularization which
brings in a regularized latent variable ẑst+1 via information-
theoretic learning for curiosity-driven exploration. However,
it is challenging to construct a neural estimation for mutual
information so that an analytical neural network solution to
deep RL based on SCME can be implemented. Accordingly,
we refer to [25] and derive the variational lower bound of
mutual information, parameterized by neural network, as a
tractable and scalable objective for implementation of SCME.

Basically, the problem is to select a family of functions
Mθ : A×B → R which are parametrized by a neural network
model with parameters θ ∈ Θ. The lower bound of mutual
information is expressed in I(A,B) ≥ IΘ(A,B) where the
bound IΘ(A,B) is derived as a neural information [26]

IΘ(A,B) = sup
θ∈Θ

EPAB [Mθ]− log(EPA⊗PB [eMθ ]) (10)

where PAB and PA ⊗ PB denote the joint and the product
of marginals in probability space, respectively. In implemen-
tation of SCME, the parameter of information network θinf
is incorporated in the lower bound of mutual information
between latent state ẑst+1 and latent action zat . The neural
network parameter θinf is used to calculate the function Mθinf

for the objective of mutual information (MI) Lθinf . The bound
Lθinf is calculated by the joint distribution p(ẑst+1

, zat) and
the marginal distributions p(ẑst+1

) and p(zat) by using N
minibatch samples. Joint distribution is calculated from the
transitions in replay buffer. Marginals are calculated by shuf-
fling the individual samples of ẑst+1

or zat in the transitions.
The Donsker-Varadhan representation of MI is obtained by

I(zs, za) =
∑

zs∈ZS ,za∈ZA

p(zs, za) log
p(zs,za)(zs, za)

pzs(zs)pza(za)

= H(za)−H(za|zs) = KL(pzs,za‖pzspza)

≥ sup
θinf∈Θ

Ep(zs,za)
[Mθinf ]− log(Ep(zs)p(za)[e

Mθinf ])

= 1
N

∑N
n=1Mθinf(z

(n)
s , z

(n)
a )− log( 1

N

∑N
n=1e

Mθinf (z
(n)
s ,z(n)

a ))

, Lθinf .
(11)

D. Implementation Procedure

Deep RL using SCME is then implemented by training
the state encoder (Eq. (5)), action encoder (Eq. (6)), curiosity
network (Eq. (7)), information network (Eq. (11)) and policy
network πθ(at|st) by jointly optimizing four objectives with
two regularization parameters λc and λc

L = L(s; θs, φs) + L(a; θa, φa) + λcLθcur + λiLθinf . (12)

Fig. 2 shows the details of system diagram and optimization
procedure using SCME where the sequence of optimization
steps is addressed. The agent is trained by implementing the
following nine steps where this learner

1) interacts with the environment, and saves the transitions
{st, at, st+1, r

e
t } in the replay buffer

2) samples a minibatch of transitions from replay buffer
3) produces the belief probabilities for each transition

based on the state and action encoders for latent spaces
of current state q(zst |st), next state q(zst+1

|st+1) and
current action q(zat |at)

4) applies the reparameterization trick (by referring to VAE
[5]) to sample latent states zst , zst+1 and action zat

5) uses the samples zat , zst and the curiosity network to
predict the next latent state ẑst+1

via p(ẑst+1
|zat , zst)

6) measures the KL divergence between the predicted
p(ẑst+1

|zat , zst) and the actual latent state distributions
q(zst+1

|st+1)

7) estimates the mutual information I(ẑst+1
, zat) from the

samples ẑst+1
and zat by using information network

8) updates the state encoder φs, action encoder φa, curios-
ity network θcur and information network θinf

9) calculates the intrinsic reward r̃it, explores the environ-
ment and updates the policy network πθ(at|st)

IV. EXPERIMENTS

SCME was implemented for deep RL and evaluated for the
spoken dialogue system based on PyDial toolkit. OpenAI Gym
was used to evaluate deep RL under different conditions.
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Fig. 3. Statistical spoken dialogue system module using PyDial

A. Experiments on PyDial

PyDial [9], [10], [27] is an open-source end-to-end evalu-
ation system for task-oriented dialogue where the benchmark
environments with different dialogue modules are provided
as shown in Figure 3. The dialogue management module
based on deep RL using DQN and other algorithms could be
investigated. Different exploration methods were evaluated by
18 dialogue tasks which were built by 6 environments (with
different semantic error rate (0%,15% or 30%), action masking
(on or off) and user model (standard or unfriendly)) and 3 do-
mains (Cambridge (CR) and San Francisco (SFR) restaurants,
and laptops (LAP)). Action masking was to test the learning



TABLE I
COMPARISON OF SUCCESS RATES AND REWARDS BY USING DIFFERENT EXPLORATIONS IN DQN UNDER 18 BENCHMARKING TASKS.

DQN VIME CME SCME SCME-MI
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

Env. 1
CR
SFR
LAP

92.5%
74.1%
73.0%

12.2
7.6
7.5

91.6%
81.5%
74.0%

12.2
9.0
7.5

94.4%
83.0%
78.3%

12.6
9.3
8.2

94.8%
84.7%
76.8%

12.7
9.6
8.0

95.6%
84.6%
78.5%

13.0
9.7
8.3

Env. 2
CR
SFR
LAP

90.7%
90.1%
84.9%

11.7
10.7
9.1

94.8%
83.0%
79.7%

12.6
8.9
8.2

95.1%
87.4%
79.4%

12.2
10.0
7.7

95.7%
87.5%
87.2%

12.8
10.5
9.4

95.1%
92.5%
89.4%

12.4
11.3
10.5

Env. 3
CR
SFR
LAP

93.6%
73.3%
69.0%

12.0
6.1
5.6

94.2%
71.7%
66.1%

12.0
5.9
5.0

94.5%
75.9%
69.0%

12.0
6.8
5.7

95.2%
77.3%
73.0%

12.3
7.0
6.1

96.1%
82.7%
73.8%

12.4
8.0
6.4

Env. 4
CR
SFR
LAP

86.4%
80.5%
78.6%

9.7
8.5
7.5

91.1%
78.9%
75.9%

10.9
8.0
7.0

92.9%
79.0%
83.2%

11.3
7.8
8.0

90.2%
84.7%
83.3%

10.8
8.8
8.5

93.6%
87.1%
80.2%

11.4
9.5
7.8

Env. 5
CR
SFR
LAP

90.2%
71.6%
51.8%

10.0
4.3
0.8

91.2%
74.7%
57.7%

10.3
4.8
1.6

93.5%
73.3%
53.3%

10.6
4.7
1.0

93.5%
80.4%
59.4%

10.7
6.2
1.9

94.8%
82.2%
61.1%

11.2
6.5
2.2

Env. 6
CR
SFR
LAP

89.9%
64.0%
56.2%

10.2
3.3
2.1

89.3%
63.9%
59.8%

10.1
3.2
2.6

89.9%
63.5%
54.3%

10.2
3.1
2.1

90.2%
66.6%
58.3%

10.3
3.7
2.7

89.7%
70.4%
61.9%

10.2
4.6
3.3

capability of the algorithms. Unfriendly user meant that users
provided less extra information. This paper adopted the default
setting of hyperparameters in DQN provided by PyDial. DQN
used ε-greedy exploration with a linear schedule starting from
ε = 0.3 and then annealed to 0. Regularization parameters
λc = 0.2 and λi = 1.0 were specified. The encoder, curiosity,
information and policy networks were modeled by two to three
fully-connected layers with the setting of activation functions
provided by Pydial. The Adam optimizer [28] with initial
learning rate 0.001 was used. The replay buffer was set to
be 6000. The maximum number of turns in dialogue was 25.
The discount factor was 0.99. Every model was trained over
ten different random seeds. After each 1000 training dialogues,
the models were evaluated over 500 test dialogues. Dialogue
performance was assessed by using the metrics of success
rate and reward for policy model using different explorations.
Success rate was defined as the percentage of dialogues which
were completed successfully. Reward was defined as 20·D−T ,
where D was the success indicator and T was the number of
dialogue turns.

Fig. 4. Predicted state and actual state after training with 9000 dialogues in
Env. 5 of SFR domain. Color bar indicates the values of intrinsic rewards.
Left: CME model. Right: SCME model.
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Fig. 5. Comparison of success rates in Env. 3 of SFR domain.

Fig. 4 compares the latent variables of predicted states
ẑst+1 and actual states zst+1 by using CME and SCME.
t-SNE [29] was applied to show two-dimensional samples.
SCME and SCME-MI denotes the proposed SCME without
and with mutual information included in intrinsic reward for
exploration, respectively, The values of intrinsic rewards in
the prediction are shown. The DQNs with ε-greedy explo-
ration (denoted by DQN) and other explorations based on
VIME, CME, SCME and SCME-MI were implemented for
comparison. We can see that CME does encourage the agent
to explore the unknown environment, but not all the predicted
regions have high intrinsic reward. The proposed SCME also
encourages the agent to explore the unknown regions where
the state distribution sufficiently reflects the environment. The
intrinsic rewards in the predicted states are high. SCME
does maximize the exploration. In addition, Fig. 5 compares
the success rates of different methods in learning procedure.
SCME-MI is more complicated than other methods. SCME-
MI learns slowly in the beginning, but grows quickly by



increasing number of training dialogues. SCME-MI still grows
up after 10000 training dialogues, but other methods converge
gradually. SCME-MI performs better than the other methods.
SCMEs obtains higher success rates than VIME and CME.

Table I summarizes the rewards and success rates with
10000 training dialogues. In general, the average performances
of all methods are not improved significantly in CR domain
which is an easy domain in PyDial where the sophisticated
exploration is not required. In the SFR and LAP domains,
SCMEs perform better than the others because the exploration
is improved in complicated environments with sparse reward.
In particular, SFR domain is a high-dimensional state task
where SCMEs work quite well. This is because SCMEs
built the latent dynamic space in deep RL which can cap-
ture informative features about high dimension states. More
importantly, SCME with mutual information works better
than the method without mutual information. This implies
that mutual information can help the agent to explore the
informative states. We can see that SCME-MI has considerable
improvement in environment 5 where an unfriendly user
setting was considered. SCME-MI provides large curiosity for
maximizing the exploration for unseen states in future. The
proposed SCME can handle the heterogeneous environment
with unfriendly user problem.

Fig. 6. Performance evaluation for different methods under the dense reward
setting.

B. Experiments on OpenAI Gym

Super Mario Bros is a game playing task in OpenAI Gym
[30]. Action space consisted of 14 discrete actions ranging
across 7 actions including left, right, up, down, run, jump
and no action. Different exploration methods were evaluated
under the first level within the first world in the environment
of Super Mario Bros. The episodes were terminated when the
agent died, finished the game or ran out of time. The scenarios
of dense reward and sparse reward were implemented and
compared. In dense reward setting, the agent received reward
at each time step. In sparse reward setting, the agent only
received positive reward when experiencing each 5% of the
game or reaching the goal, and received negative reward when

Fig. 7. Performance evaluation for different methods under the sparse reward
setting.

the agent died or ran out of time. A3C algorithm was carried
out and the explorations based on CME, SCME and SCME-MI
were compared. The default setting in CME [17] was adopted.
The settings of SCME and SCME-MI in OpenAI Gym were
the same as those in PyDial task. System performance is
evaluated by the metric of the distance that agent covered in
the game. Under the dense reward setting, Figure 6 shows
that different methods obtain comparable performance. This
implies that the explorations based on CME and SCME are
not so required for deep RL in dense reward setting. On the
other hand, under the sparse reward setting, Figure 7 illustrates
that the explorations based on CME and SCME can help A3C
learning. SCME and SCME-MI performs better than CME.
The baseline A3C agent gets worse in 200 episodes under
dense reward setting and 500 episodes under sparse reward
setting. The exploration based on SCME avoids getting stuck.

V. CONCLUSIONS

This paper presented the stochastic curiosity maximizing ex-
ploration which is a general solution to model-based reinforce-
ment learning. The proposed approach dealt with the sparse
reward task and maximized the exploration via information-
theoretic learning. The variational inference was introduced
to learn the latent dynamics for environment where high-
dimensional state space could be compactly represented. The
curiosity network was trained to predict the latent future with
diversity. The information network was learned to measure
the mutual information as a regularized exploration for future.
By using this embedding information as intrinsic reward, the
agent learned by itself and explored for useful future. Experi-
ments on dialogue system demonstrate the effectiveness of the
proposed method in different environments.The reward was
increased when the variational inference was run for curiosity
maximizing exploration. The results on OpenAI Gym showed
the benefit of the proposed exploration in sparse reward
setting. This study develops a new exploration scheme which
is general and could be extended to different reinforcement
learning algorithms and tasks for different applications.
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