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Abstract—Learning across domains is challenging especially
when test data in target domain are sparse, heterogeneous and
unlabeled. This challenge is even severe when building a deep
stochastic neural model. This paper presents a stochastic semi-
supervised learning for domain adaptation by using labeled data
from source domain and unlabeled data from target domain.
There are twofold novelties in the proposed method. First, a
graphical model is constructed to identify the random latent
features for classes as well as domains which are learned by
variational inference. Second, we learn the class features which
are discriminative among classes and simultaneously invariant
to both domains. An adversarial neural model is introduced to
pursue domain invariance. The domain features are explicitly
learned to purify the extraction of class features for an improved
classification. The experiments on sentiment classification illus-
trate the merits of the proposed stochastic adversarial domain
adaptation.

Index Terms—Adversarial learning, stochastic modeling, do-
main adaptation, sentiment classification

I. INTRODUCTION

Domain adaptation aims to learn from a source data distribu-
tion to a different but related target data distribution which can
achieve desirable performance in a target regression or clas-
sification task [1]–[7]. This issue is crucial for many natural
language applications containing symbolic words or semantics,
e.g. the spam filtering or the product review classification [8].
Such systems classify the emails or reviews for a target user
or product by using the data distribution which is learned
from those data originated from source user or product. In
particular, we face the problem of transfer learning in presence
of sparse, heterogeneous and unlabeled data in target domain.
This problem is even more challenging when a deep neural
model is constructed. This study presents a symbolic neural
learning for feature-based approach to domain adaptation and
sentiment classification. We learn a deep latent feature model
where the learned features are invariant to domains so that
the classification model trained from the features of source
domain is adapted to target domain.

In the literature, the maximum mean discrepancy (MMD)
[9]–[11] was proposed to measure the difference between
two distributions based on a non-parametric kernel method.
This MMD was minimized to train the latent features which
were invariant to the migration from source domain to tar-
get domain. By incorporating the class labels, the estimated

features are discriminative among classes. In [12], a multi-
view and multi-objective learning were proposed to build
semi-supervised model where feature extraction and pattern
classifier were jointly optimized. In [13], the distribution
matching for domain adaptation was realized through an ad-
versarial neural network [14]–[20] which consisted of a feature
extractor Gf and a pattern classifier Gy . A discriminator D
was introduced to distinguish whether the estimated latents
features belong to source domain or target domain. D, Gf and
Gy were jointly trained to conduct the distribution matching
according to a minimax two-player game theory. In [21], a
variational fair autoencoder was proposed to learn a fair feature
representation where a variational autoencoder (VAE) [22] was
introduced to encourage independence between latent factors
of variations existing in the observations x. MMD measure
was incorporated to optimize the independence. Traditionally,
the latent features zy of class labels y are extracted either by
adversarial net or MMD method. The estimated class features
are mixed with domain information which will deteriorate the
classification performance.

This paper presents a stochastic adversarial classification
network for domain adaptation by using the labeled data in
source domain and the unlabeled data in target domain. A
probabilistic semi-supervised model is proposed to charac-
terize the sophisticated and heterogeneous relations between
observations and latent features where labels y as well as
domains d of observations x are represented. The distributions
of the associated latent features zy and zd are driven by
a stochastic neural network motivated by VAE. Distribution
of these encoded features can be used for data generation.
The variational inference procedure is implemented to con-
struct a latent variable model which faithfully reflects the
stochastic behavior of latent variables for domain adaptation.
A variational lower bound of log likelihood, approximated
by the stochastic gradient variational Bayes (SGVB) [22],
is maximized. In particular, we propose two approaches to
improve the classification performance based on this stochastic
neural model. First, an adversarial neural network is merged
to estimate data distributions which are invariant to different
domains. A discriminator is optimized to maximize the ambi-
guity for classifying the features of source and target domains.
Second, the domain features are explicitly characterized to
increase the evidence of the estimated class features for
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classification system. This method is evaluated by a domain
adaptation task for sentiment classification.

II. DOMAIN ADAPTATION

Assume that training samples are collected in source do-
main and target domain d = {s, t}. Let {Xs, Y s} =
{(xs1,ys1), . . . , (xsn,ysn)} denote n labeled samples in source
domain s. Here, xsi means the ith training vector and ysi
corresponds to its label vector. In addition, we have m
unlabeled samples Xt = {xt1, . . . ,xtm} from target domain t
where the label information Y t is missing. These two domains
are related but not identical. The joint distributions p(Xs, Y s)
and p(Xt, Y t) are different. Domain adaptation is a kind
of transfer learning where marginal distributions p(Xs) and
p(Xt) are different and conditional distributions of finding
labels from data p(Y s|Xs) and p(Y t|Xt) should be identical.

A. Distribution matching

We first survey two related approaches to distribution
matching for domain adaptation which can compensate the
covariate shift between p(Xs) and p(Xt). The first one is
to calculate the MMD measure [9] which is referred as a
divergence between distributions of two data sets {Xs, Xt}
in a reproducing kernel Hilbert space H

MMD(Xs, Xt) =

∥∥∥∥ 1n
n∑
i=1

φ(xsi )−
1

m

m∑
j=1

φ(xtj)

∥∥∥∥
H

(1)

where φ(·) denotes a basis function vector. MMD was es-
timated by using the Gaussian kernel and then minimized to
pursue the distribution matching via re-weighting the instances
in source domain [23]. MMD was also employed in construc-
tion of domain-invariant feature space [24], [25].

training data x

features

domain label d

class label y

feature extractor Gf

domain classi¯er Dd

label predictor Dy

Fig. 1. Adversarial neural network for domain adaptation.

An alternative solution to distribution matching was de-
veloped by using an adversarial neural network (ANN) [13].
There are three components in ANN feedforward architecture;
feature extractor Gf , label predictor Dy and domain classifier
Dd. As illustrated in Figure 1, the features, extracted by
Gf , are forwarded to find class label y of training sample
x using label predictor Dy . Importantly, we estimate the
domain-invariant features to pursue invariant distributions for
source and target domains. A domain classifier Dd is applied
to find domain d of a feature sample. The “confusion” in
domain classification is maximized to assure invariance. The
parameters of ANN are estimated via a minimax learning of

latent features in Gf where the classification errors of labels in
Dy are minimized and simultaneously the classification errors
of domains in Dd are maximized.
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Fig. 2. Graphical models for (a) variational fair autoencoder and (b) the
proposed variational domain and class representation.

B. Variational fair autoencoder

In [21], a variational fair autoencoder (VFA) was proposed
to build a latent variable model for domain adaptation. VFA
aims at learning a “fair” feature representations that are
invariant to noise or sensitive factors which are not related
to label. Figure 2(a) shows the graphical model of VFA
which is seen as a semi-supervised model [26] where label
information y is only available in source domain s. Following
the property of variational autoencoder [22], the latent variable
zy of an input data x in VFA was driven by a posterior
distribution or variational distribution q(zy|y) based on an
autoencoder. αy denotes the parameters of latent variable zy .
Stochastic information of latent variable was characterized.
The intractable problem in variational inference procedure was
tackled by SGVB estimator where the expectation function in
variational lower bound was approximated by sampling latent
variable via a differentiable transformation with a noise vari-
able. This yielded a simple differentiable unbiased estimator of
lower bound. An analytical solution was therefore obtained to
implement VFA through an error backpropagation algorithm.
In general, an observed sample x is generated by the sensitive
variable in applied domain d and the latent feature zy with
variation in class label y represented by αy . In [26], the labels
y of unlabeled data were treated as random. An additional
term of classification error of unlabeled data was incorporated
in deep generative model to ensure that the predictive posterior
q(zy|y) learns from both labeled and unlabeled data. This
enriched the latent feature representation of class label zy .

Nevertheless, the richness of this latent variable model was
constrained because the class feature zy is still contaminated
with noise or domain factors which will deteriorate the clas-
sification performance. For example, in the task of Amazon
review with classes or ratings of positive and negative. We
build a model adapting from source domain “Electronics” to
target domain “Game”. This model may be learned to catch
the features or semantics for words ‘compact’ in “Electronics”
and ‘hooked’ in “Games” and those for many other words
corresponding to two classes. Class feature zy does vary by
domains. Furthermore, the features of domain words, e.g.



camera, phone and TV, in “Electronics” do contain variations.
It is crucial to characterize these variations to elevate the
performance of classification system.

III. STOCHASTIC ADVERSARIAL LEARNING

This paper presents a variational and adversarial learning
for latent feature representation.

A. Model construction

As shown in Figure 2(b), latent features of labels y as well
as domains d are explicitly expressed and learned to build
a domain-invariant feature space for domain adaptation. The
domain variations are separately modeled to prevent leakage
of domain factor zd into the extraction of class feature zy . We
would like to maximally correlate the class feature zy with
class label y and impose zy to be invariant to the change
of domain d. Similarly, the domain feature zd is identified
by maximally correlating with domain label d and making
invariance with class label y. Separating the parameter αd of
domain feature zd from that αy of class feature zy can help
finding a “purified” class feature zy to improve classification.
Without loss of generality, we present a variational domain and
class (VDC) representation for domain adaptation. There are
twofold extensions in this study. First, the variational inference
is implemented to learn the distributions of latent features
which allow data reconstruction for deep generative model.
Second, an adversarial neural network is merged to achieve the
matching of variational distributions of class features between
source and target domains.

Variational autoencoder [22] is introduced to infer the
proposed VDC model. An encoder using variational posterior
qφ(zy, zd,αy,αd,y|x,d) with variational parameter φ and a
decoder using generative likelihood pθ(x, zy, zd,y,d,αy,αd)
with model parameter θ are merged in inference of an
integrated deep neural network. Here, source domain s
and target domain t are denoted by a domain vector d
as [1 0]> and [0 1]>, respectively. Variational posterior
qφ(zy, zd,αy,αd,y|x,d) is used to approximate the true
posterior pθ(zy, zd,αy,αd,y|x,d) in variational inference.
The factorizations of decoder p(x, zy, zd,y,d,αy,αd)
and encoder q(zy, zd,αy,αd,y|x,d) are expressed
by p(x|zy, zd)p(zy|y,αy)p(zd|d,αd)p(y)p(αy)p(αd) and
q(zy|x,d)q(zd|x,d)q(αy|zy,y)q(αd|zd,d)q(y|zy), respectively.
In case that class label y is unknown, p(y) in decoder
and q(y|zy) in encoder are disregarded. The factorized
distributions of real-valued variables and discrete-valued
variables in pθ(·) and qφ(·) are represented by Gaussian
distribution N (·) and category (multinomial) distribution
Cat(·), respectively, given by

pθ(x|zy, zd) = fθ(x|zy, zd), p(y) = Cat(y|π0)

pθ(zy|y,αy) = N (zy|µ = fθ(y,αy),σ = efθ(y,αy))

pθ(zd|d,αd) = N (zd|µ = fθ(d,αd),σ = efθ(d,αd))

p(αy) = N (αy|µ0,σ0), p(αd) = N (αd|µ0,σ0)

(2)

and

qφ(zy|x,d) = N (zy|µ = fφ(x,d),σ = efφ(x,d))

qφ(zd|x,d) = N (zd|µ = f̃φ(x,d),σ = ef̃φ(x,d))

qφ(αy|zy,y) = N (αy|µ = fφ(zy,y),σ = efφ(zy,y))

qφ(αd|zd,d) = N (αd|µ = fφ(zd,d),σ = efφ(zd,d))

qφ(y|zy) = Cat(y|π = fφ(zy))

(3)

where fθ(x|zy, zd) is an appropriate data distribution which is
an Gaussian in this study. Mean µ and variance σ in pθ(·) and
qφ(·) are expressed by functions fθ(·) and fφ(·), respectively,
which are estimated by using different neural networks. Latent
variables in VDC consist of {zy, zd,αy,αd,y} with class zy
and domain features zd.

B. Variational lower bound

In stochastic learning or variational inference of VDC, we
maximize the logarithm of marginal likelihood by using N
i.i.d. training vectors log p(xi, · · · ,xN ) =

∑N
i=1 log p(xi)

where log likelihood log p(xi) is yielded by

KL(qφ(zyi, zdi,αyi,αdi|xi,yi,di))‖
pθ(zyi, zdi,αyi,αdi|xi,yi,di))

+ L(θ,φ;xi,yi,di).
(4)

In right-hand-side (RHS) of Eq. 4, the first term is the
Kullback-Leiblier (KL) divergence between variational pos-
terior qφ(·) and true posterior pθ(·) and the second term
L(θ,φ;xi,yi,di) denotes the variational lower bound of log
likelihood of i-th sample which is obtained by RHS of the
following inequality

log p(xi) ≥ Eqφ(zyi,zdi,αyi,αdi|xi,yi,di)

[− log qφ(zyi, zdi,αyi,αdi|xi,yi,di)
+ log pθ(zyi, zdi,αyi,αdi|xi,yi,di)].

(5)

VDC model is inferred by maximizing this lower bound with
respect to variational parameters φ and model parameters θ.
Lower bound for a sample is accordingly expanded as

L(θ,φ;x,y,d)
= Eqφ(zy|x,d)qφ(zd|x,d)[log pθ(x|zy, zd)]
+ Eqφ(αy|zy,y)qφ(y|zy)

[−KL(qφ(zy|x,d)‖pθ(zy|y,αy))]
+ Eqφ(αd|zd,d)[−KL(qφ(zd|x,d)‖pθ(zd|d,αd))]
+ Eqφ(zy|x,d)qφ(y|zy)[−KL(qφ(αy|zy,y)‖p(αy))]
+ Eqφ(zd|x,d)[−KL(qφ(αd|zd,d)‖p(αd))]
+ Eqφ(zy|x,d)[−KL(qφ(y|zy)‖p(y)].

(6)

Index i is neglected for ease of expression. Notably, this
bound is calculated by using the labeled data from source
domain {xi,yi,di = [1 0]>}ni=1 and the unlabeled data
from target domain {xj ,dj = [0 1]>}mj=1. Lower bound
L(·) is either from source domain Ls(θ,φ;xi,yi,di) or from
target domain Lt(θ,φ;xj ,dj). In addition, we also maximize
an entropy term Eqφ(zyi|xi,di)[− log qφ(yi|zyi)] in objective



function to assure the predictive posterior qφ(y|zy) learned
from both labeled and unlabeled data. The objective function
FVDC(θ,φ;X,Y,d) is constructed by∑n

i=1 Ls(θ,φ;xi,yi,di) +
∑m
j=1 Lt(θ,φ;xj ,dj)

+ λ
∑n
i=1 Eqφ(zyi|xi,di)[− log qφ(yi|zyi)]

(7)

using training data

{X,Y,d} = {Xs, Xt, Y s,d}. (8)

λ is a regularization parameter. Lt(·) is formed by Ls(·) with
the last term in RHS of Eq. (6). A latent domain and class
representation is finally implemented.

C. Adversarial learning

The distribution matching based on adversarial learning
is further incorporated into VDC model to improve domain
adaptation. As a result, the distributions of class features zy
are fitted to both source and target domains. Different from
[13], an adversarial neural network (ANN) is implemented to
evaluate the hybrid feature space {zd, zy} which is constructed
for variational domain and class (VDC) representation. This
evaluation is performed via an adversarial process which
maximizes the ambiguity of latent class features zy between
source domain and target domain. The resulting solution is
hereafter called the Variational and Adversarial learning for
Domains and Classes (VADC). To fulfill VADC framework,
a discriminator based on neural network D = fϕ(zy) is
additionally introduced to judge whether the class feature zy
of an observation xi or xj are extracted from source domain
di = [1 0]> or target domain dj = [0 1]>. Importantly,
we maximize the ambiguity or equivalently “minimize” the
negative cross entropy error function between discriminator
outputs {fϕ(zyi)}n+mi=1 and desirable outputs {di}n+mi=1 over
observations in both domains {xi}n+mi=1 . Discriminator output
is seen as the class posterior fϕ(zyi) = p(d|zyi,ϕ). This
VADC model is inferred through a minimax optimization
where a generative model G with parameters θ and φ based
on VDC and a discriminative model D with parameter ϕ
based on ANN are jointly trained. The optimization problem
is correspondingly formed by

max
φ,θ

min
ϕ
FVADC(θ,φ,ϕ;X,Y,d) (9)

using the objective FVADC(θ,φ,ϕ;X,Y,d) formulated by∑n
i=1 Ls(θ,φ;xi,yi,di) +

∑m
j=1 Lt(θ,φ;xj ,dj)

+ λ1
∑n
i=1 Eqφ(zyi|xi,di)[− log qφ(yi|zyi)]

+ λ2
∑n+m
i=1

∑
c dicfϕ(zyic)

(10)

where di = {dic} and zyi = {zyic} with domain index
c. The last term in Eq. (10) corresponds to the negative
cross entropy error function. Therefore, using this integrated
objective, we can learn a variational and adversarial model
for domain adaptation where the likelihood of generator in
Figure 2(b) and the entropy of posterior predictor qφ(y|zy)
with parameters {θ,φ} are maximized subject to the condition
that the negative cross entropy error function of discriminator

fϕ(zy) with parameter ϕ is minimized. The regularization
parameters λ1 for maximum entropy and λ2 for adversarial
learning are adopted to balance the tradeoff among these three
factors.

D. Implementation issue

In the inference procedure, the expectation terms in ob-
jective function of VDC or VADC and their derivatives are
intractable. To deal with this issue, we apply SGVB estimator
[22] and approximate the expectation through the sampling
of latent variables {zy, zd,αy,αd,y}. A re-parameterization
trick is employed to avoid high variance in sampling proce-
dure. Accordingly, we first re-parameterize a latent variable z
or α using a differentiable transformation given by an auxiliary
noise variable ε or ζ. Transformations of real-valued variables
{zy, zd,αy,αd} and discrete-valued variable y are described
as

zy = µ+ σ � εy where εy ∼ N (0, I)

µ = fφ(x,d), σ = exp(fφ(x,d))
zd = µ+ σ � εd where εd ∼ N (0, I)

µ = f̃φ(x,d), σ = exp(f̃φ(x,d))
αy = µ+ σ � ζy where ζy ∼ N (0, I)

µ = fφ(zy,y), σ = exp(fφ(zy,y))
αd = µ+ σ � ζd where ζd ∼ N (0, I)

µ = fφ(zd,d), σ = exp(fφ(zd,d))
y = g(log(π + c) + ξ)

(11)

where π = fφ(zy), c is fixed and ξ is sampled from a standard
Gumbel distribution. g(·) is a function that assigns 1 to the
entry with the largest value and 0 to the other entries. These
transformations are used to approximate the expectations in
objective function by Monte Carlo estimates. Notably, the
Gaussian parameters {µ,σ} are estimated from the outputs of
neural networks fφ(·) with parameters φ by using the inputs
{x,d} for latent features {zy, zd} and the inputs {zy,y, zd,d}
for latent variables {αy,αd}. SGVB estimator is implemented
by maximizing for generator and minimizing for discriminator
via

θ ← θ + η∇θFVADC(θ,φ,ϕ;X,Y,d)

φ← φ+ η∇φFVADC(θ,φ,ϕ;X,Y,d)

ϕ← ϕ− η∇ϕFVADC(θ,φ,ϕ;X,Y,d)

(12)

where η is learning rate. In the implementation, the discrimi-
nator D = fϕ(zy) is optimized with K updating steps before
one step of updating for optimization of parameters {θ,φ} for
generative model G [14]. This trick tends to maintain the esti-
mated discriminator D near its optimal solution provided that
the generator G changes slowly. In case that the discriminator
D is optimized to completion before updating the generator G
with one step, the over-fitting problem will happen too early
in presence of a limited size of training data. Algorithm 1
shows the stochastic training procedure in VADC where the
discriminator is updated k steps before updating the generator.
k and L are hyperparameters.



Algorithm 1: Stochastic gradient descent training al-
gorithm for VADC
{θ,φ,ϕ} ← initialize parameters
for number of training iterations do

Calculation for discriminator
for k steps do
{xi,yi,di}n

′+m′

i=1 ← sample minibatch of
n′ +m′ datapoints from {X,Y,d}
{ε(l)}Ll=1 ← get L random samples from noise

distribution
{z(l)yi }

n′+m′,L
i=1,l=1 ← get samples of latent variable

fϕ(z
(l)
yi )← get the discriminator output

gϕ ← −∇ϕFVADC(θ,φ,ϕ;X,Y,d)
ϕ← update parameter using gradient gϕ

end
Calculation for generator
{xi,yi,di}n

′+m′

i=1 ← sample minibatch of n′ +m′

datapoints from {X,Y,d}
{ε(l), ζ(l), ξ(l)}Ll=1 ← get L random samples from
noise distribution
{z(l)yi , z

(l)
di ,α

(l)
yi ,α

(l)
di ,y

(l)
i }

n′+m′,L
i=1,l=1 ← get samples

of latent variable
fϕ(z

(l)
yi )← get the discriminator output

{gθ,gφ} ← ∇θ,φFVADC(θ,φ,ϕ;X,Y,d)
{θ,φ} ← update parameters using gradients
{gθ,gφ}

end

IV. EXPERIMENTS

A series of experiments are conducted for domain adapta-
tion which includes a synthetic task and a real-world task for
sentiment classification.

A. Experimental setup

The first task is a binary classification on two-dimensional
twin-moon synthetic data in presence of two classes, upper
moon and lower moon, with source domain marked by solid ◦
and target domain marked by +. Radius of moon is 0.5. There
are two experimental conditions (A and B) in this evaluation.
Figure 3(a) shows the Condition A that the data in target
domain are rotated by an angle which is Gaussian distributed
with mean π/8 and variance π/80. Figure 3(b) illustrates
the Condition B that data in both domains are sampled
from different shifted and overlapped segments. Obviously, the
domain variation and the classification ambiguity in Condition
B are more severe than those in Condition A. We would like
to evaluate different methods based on these two conditions.
For each condition, there were 2K samples in source domain
with class labels and 2K samples in target domains without
class labels. An additional set of 400 samples from individual
domains was collected as test data.

The second task is developed for sentiment classification
by using the multi-domain sentiment dataset [27], [28] which
contains Amazon product reviews on four products including

(a)

(b)

Fig. 3. Twin-moon synthetic data for (a) Condition A and (b) Condition B.
Color refers to class label. The samples marked by solid ◦ are data from
source domain while the samples marked by + are data from target domain.

kitchen appliances, DVDs, books, electronics. Each product
is seen as a domain. The goal is to classify the review into
positive or negative reviews. In training session, there are
1000 positive reviews (higher than 3 stars) and 1000 negative
reviews (lower than 3 stars) on each product or domain.
We train a binary classifier from labeled reviews in source
domain and unlabeled reviews in target domain and use it to
predict whether a test review in target domain is positive or
negative. The dictionary was built by top 2K frequent words.
The tf-idf reweighting method was applied to obtain 2000-
dimensional observation vector x. Test data were composed
of 500 positive reviews and 500 negative reviews. In these
two tasks, 20% of training data were held out for validation
to select regularization parameters {λ, λ1, λ2} and the other
hyperparameters.

In the experiments, the baseline system was built by neural
network (NN) model with topology 2-10-5-2 for 1st task and
2000-500-50-2 for 2nd task by using labeled data from source
domain. Two hidden layers with different number of neurons
were considered. For comparison, the distribution matching



methods using maximum mean discrepancy (MMD) and ad-
versarial neural network (ANN) were implemented over the
features in hidden layers by using data from both domains. The
resulting methods, named by NN-MMD and NN-ANN [13],
were carried out. Moreover, the variational fair autoencoder
(VFA) was carried out for comparative study. In [21], VFA
was proposed as a stand-alone method or a combined method
with MMD (VFA-MMD). Data from both domains were
used. In this study, we exploited a new VFA combined with
ANN (VFA-ANN) which was implemented by introducing a
discriminator to maximize the ambiguity of classifying the
variational features zy between source and target domains. For
comparison, we implemented the proposed VDC and VADC
where the variational domain and class features were learned.
VADC was a realization of VDC-ANN where adversarial
learning was performed in VDC representation. Interestingly,
we could also implement a new realization VDC-MMD by
adding the MMD term in a hybrid objective for VDC learning.
In the experiments, we applied the random kitchen sinks to
approximate MMD [29]. Adam algorithm [30] was used. Size
of minibatch was 100. In implementation of VFA and VDC, all
encoders and decoders were built by neural network with one
hidden layer consisting of 10 neurons. There were nine blocks
of neural networks in VDC which was seen as a deep model. In
the 1st task, individual 10 neurons in hidden layers of encoder
and decoder were specified. Using VFA, dimensions of zy and
αy were 10 and 5, respectively. Using VDC, dimensions of
zy and zd were both 5 and those of αy , αd were both 5. In
the 2nd task, dimensions of zy , zd, αy and αd were all 50.
Individual 200 neurons in hidden layer of encoder and decoder
were used. In both tasks, the activation function was sigmoid,
the step number K = 10 was set, the dimension of MMD
approximator was 500 and the number of sample in Monte
Carlo estimator was one. Different models were trained with
convergence.

TABLE I
CLASSIFICATION ACCURACY (%) FOR ADAPTATION UNDER DIFFERENT

CONDITIONS BY USING TWIN-MOON SYNTHETIC DATA.

Condition A Condition B
NN 84.3 60.4
NN-MMD 90.2 68.7
NN-ANN 90.9 73.5
VFA 87.9 68.5
VFA-MMD 94.5 74.8
VFA-ANN 94.9 77.5
VDC 88.3 74.7
VDC-MMD 95.1 79.0
VDC-ANN (VADC) 96.1 82.5

B. Experimental results

Table I compares the classification accuracies of different
neural models by using twin-moon synthetic data under the
Conditions A and B. In this comparison, we evaluate how
different neural models, namely NN, VFA and the proposed
VDC, perform for domain adaptation without and with dis-
tribution matching based on MMD and ANN. This binary

classification is evaluated by changing the variations of data
and their domains. Basically, the accuracies in Condition A
are higher than those in Condition B because Condition B
are more adverse than Condition A. Semi-supervised learning
using VFA and VDC performs better than supervised learning
using NN owing to twofold reasons. First, compared with
NN, VFA and VDC are learned with additional unlabeled
data from target domain. Second, stochastic learning in VFA
and VDC provides better latent feature representation than
deterministic modeling in NN. In addition, we find that the
distribution matching consistently works for different models
and conditions. ANN obtains improvement compared with
MMD in Condition A. The improvement becomes significant
in Condition B. In Condition A, VDC, VDC-MMD and VDC-
ANN perform better than VFA, VFA-MMD and VFA-ANN,
respectively. In Condition B, VDC related methods are much
better than VFA related methods. This demonstrates that the
latent domain and class representation in VDC does extract
the purified and informative class features for improving the
classification results. Among different methods, the best result
in Condition B is obtained by VDC-ANN or equivalently
VADC.

TABLE II
CLASSIFICATION ACCURACY (%) FOR ADAPTATION IN DIFFERENT

DOMAINS (K: KITCHEN APPLIANCES, D: DVDS, B: BOOKS, E:
ELECTRONICS)

D→B B→D B→E
NN 74.2 77.2 70.3
NN-MMD 76.3 79.4 74.0
NN-ANN 77.1 80.7 74.1
VFA 76.3 77.1 72.5
VFA-MMD 78.2 80.0 75.1
VFA-ANN 78.9 81.1 76.5
VDC 76.9 77.5 72.9
VDC-MMD 79.1 80.9 75.5
VDC-ANN (VADC) 80.5 82.9 77.9

E→K K→D D→K
NN 83.0 68.0 75.6
NN-MMD 84.2 72.8 80.4
NN-ANN 86.0 74.1 82.1
VFA 83.9 71.3 76.9
VFA-MMD 85.9 73.9 81.8
VFA-ANN 86.5 75.3 82.9
VDC 86.7 74.2 79.7
VDC-MMD 88.1 77.0 82.7
VDC-ANN (VADC) 90.1 79.9 84.2

Table II reports the performance of different methods for
sentiment classification where adaptation among various do-
mains is evaluated. Totally six pairs of domains are examined.
The classification results indicate that applying distribution
matching methods, MMD and ANN, consistently improves
system performance. Stochastic learning using additional un-
labeled data works well. In most cases, ANN performs better
than MMD when combining with NN, VFA and VDC. But,
ANN is more computationally demanding than MMD. In
addition, the improvement of VDC methods over VFA meth-
ods is consistent in this comparison even when the domains



of DVDs, Books and Electronics are relatively close and
the reviews in these domains contain similar content. The
improvement becomes significant when the pairs of adaptation
domains, Electronics to Kitchen, Kitchen to DVDs and DVDs
to Kitchen, are investigated. The variations of the domains in
these three pairs are generally larger than those in the other
three pairs. VDC is specialized to deal with the challenge of
variations in different domains for domain adaptation.

V. CONCLUSIONS

We have presented a new latent variable model for domain
adaptation based on variational and adversarial learning. This
model run the stochastic learning for latent domain and class
representation where latent features of domains and classes
were separately characterized. Stochastic modeling of latent
features was performed to reflect the essence of data genera-
tion or reconstruction. The classification system was benefited
by using the enhanced class features. At the same time, the
adversarial learning was performed to extract the class features
which are invariant to different domains. A discriminator
was introduced to maximize the ambiguity of classifying the
estimated class features to source domain and target domain.
An integrated objective learning was implemented in the
experiments on using synthesis data and real-world data. The
proposed method was improved especially for the cases of
adaptation tasks in presence of high variations across domains.
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