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Abstract—Variational autoencoder (VAE) is a popular latent
variable model for data generation. However, in natural language
applications, VAE suffers from the posterior collapse in optimiza-
tion procedure where the model posterior likely collapses to a
standard Gaussian prior which disregards latent semantics from
sequence data. The recurrent decoder accordingly generates du-
plicate or noninformative sequence data. To tackle this issue, this
paper adopts the Gaussian mixture prior for latent variable, and
simultaneously fulfills the amortized regularization in encoder and
skip connection in decoder. The noise robust prior, learned from
the amortized encoder, becomes semantically meaningful. The
prediction of sequence samples, due to skip connection, becomes
contextually precise at each time. The amortized mixture prior
(AMP) is then formulated in construction of variational recurrent
autoencoder (VRAE) for sequence generation. Experiments on
different tasks show that AMP-VRAE can avoid the posterior
collapse, learn the meaningful latent features and improve the
inference and generation for semantic representation.

Index Terms—Sequence generation, recurrent neural network,
variational autoencoder, language model

I. INTRODUCTION

Generative models have been emerging in the era of ma-
chine learning and deep learning in recent years where the
applications of computer vision [1], [2] and natural language
processing [3]–[9] have been explored. Variational autoen-
coder (VAE) [10]–[13], generative adversarial network [14],
normalizing flow [15]–[17] and autoregressive neural network
[18] have been extensively proposed with a variety of applica-
tions [19]–[21]. Among these models, VAE has the advantage
of utilizing latent variables in model construction. By applying
the variational inference in deep latent variable model, VAE
is trained to estimate the distribution of latent variables [22]
or the underlying structure of disentangled features [23] from
input observations. VAE consists of an encoder as inference
model and a decoder as generative model. The encoder obtains
latent representation corresponding to input data while the de-
coder generates the synthesized data given by latent samples.
Encoder and decoder are jointly trained by maximizing the
evidence lower bound (ELBO) of log marginal likelihood of
training data.

In spite of a great success, VAE still faces different chal-
lenges when generating sequence data [24], [25]. Previous
studies [26]–[29] showed that vanilla VAE could not generate
meaningful sentences. The distribution of latent variable is
reduced to a standard Gaussian. The generated samples lack

diversity. This phenomenon is undesirable since the varia-
tional posterior does not depend on input data. The issue
of posterior collapse happens because the Kullback-Leibler
(KL) divergence between variational posterior and standard
Gaussian prior in ELBO approaches to zero. The variational
posterior barely learns any information from input data. This
causes meaningless latent representation. Sampling from this
posterior has no difference from sampling by a standard Gaus-
sian [30]. VAE is then reduced as an autoregressive generative
model where the underlying structure of data was disregarded.
To tackle this problem, the von Mises-Fisher distribution
was used to replace Gaussian distribution in latent variable
representation [31]. In [27], the convolutional neural network
was used as hierarchical decoder which coped with this issue
by restricting the receptive field in temporal convolutional
network.

This paper presents a new solution to deal with the dilemma
in variational sequential learning due to minimization of KL
term in variational optimization. Motivated by [32], [33], we
learn an informative prior by using Gaussian mixture model
which encourages a flexible construction of latent space from
training data. In the implementation, the encoder and decoder
are further strengthened by performing the amortized regular-
ization and skip connection, respectively. Amortized regular-
ization leads to a smooth encoder, especially for sequence data.
This smooth encoder compresses the neighboring sequences
from observation space into nearby locations in latent space.
Owing to the preservation of semantic information, the latent
code is embedded with semantic meaning of sequence data.
In addition, the skip connection from latent code to hidden
state in recurrent network is performed at each time so as to
enrich latent information for prediction of output sequence.
Information loss is reduced during propagation of recurrent
steps in decoding which leads to a desirable latent space. A set
of experiments are evaluated to illustrate the proposed method.

II. VARIATIONAL NEURAL MODELS

Variational neural models based on variational autoencoder
(VAE) and variational recurrent autoencoder (VRAE) are first
introduced. Basically, VAE is a neural machine consisting
of an encoder and a decoder where the encoder acts as
an inference model for latent distribution and the decoder
serves as a generative model for synthesized data from latent
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distribution. VAE is learned from a set of training signals x by
maximizing over a model with decoder parameter θ and latent
variable z. In learning procedure, VAE introduces a variational
distribution qφ(z|x) with encoder parameter φ to approximate
true posterior p(z|x). The evidence lower bound (ELBO) of
log marginal likelihood is then formulated for maximization
as [34], [35]

log p(x) = log

∫
pθ(x|z)p(z)dz

≥ Eqφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x)‖p(z))
(1)

where p(z) ∼ N (0, I) is a standard Gaussian, and the first
and second terms in RHS denote the reconstruction and regu-
larization losses, respectively. The so-called posterior collapse
happens when the regularization loss goes to zero. In [16],
[20], [36], the normalizing flow was proposed to obtain flexible
variational distribution. Normalizing flow utilized invertible
transformation to assure richness in latent distribution.
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Fig. 1: Illustration for variational recurrent autoencoder.

In [26], [37], variational recurrent autoencoder (VRAE)
was proposed for sequence generation where two individual
recurrent neural networks (RNNs) [38] were employed in
encoder and decoder. VRAE was developed for modeling of
music signals and text data. In sequential learning procedure,
the encoder RNN recursively characterizes time samples x =
{xt}Tt=1 and finally infers latent distribution of z using the
hidden state at last time hT . Meanwhile, the decoder RNN
reconstructs the input sequence x recursively from the initial
hidden state s0 and the first input <BOS>. The initial hidden
state s0 is a mapping or embedding of latent code z sampled
from latent distribution, and the first input usually sets as
begin of sentence <BOS>. Figure 1 illustrates the recursive
nature of VRAE. In practice, the teacher forcing is imposed
on decoder to prevent wrong predictions recursively affecting
later predictions during training procedure.

III. AMORTIZED MIXTURE PRIOR VRAE

To deal with the difficulties in sequential learning procedure,
we propose the amortized mixture prior (AMP) for VRAE and
apply AMP-VRAE for sentence generation which tackles the
issue of posterior collapse from three perspectives which range
from encoder to decoder and latent distribution.

A. Amortized regularization on encoder

Traditionally, variational inference optimizes p(x) by using
individual seen samples x = {xt}. This is usually impractical
when a large dataset x is adopted. Amortized variational
inference replaces the per-sample optimization over p(x) by

means of an inference model qφ(z|x) driven by encoder
parameter φ [39]. In general, VAE relies on the amortized
inference which accelerates the computation by amortizing
the computation of optimization on each sample. An inference
model is then optimized by using all data samples. In addition
to this acceleration, the amortized variational inference was
treated as a regularization for maximum likelihood estimation
[21]. An alternative learning objective to ELBO was derived
as

max
θ

{
Ep̂(x) [log pθ(x)]

−min
φ

Ep̂(x)DKL (qφ(z|x)‖pθ(z|x))
} (2)

where a uniform distribution p̂(x) over a dataset x is used.
The choice of variational distribution parameter φ or amo-
tized inference model qφ(z|x), via KL minimization, actually
regularizes the optimization of marginal likelihood pθ(x). By
injecting the noise ε ∼ N (0, σI), i.e. using qφ(z|x + ε)
in Eq. (2), the denoising VAE is constructed to regular-
ize the mapping or control the smoothness of an inference
model. Smoothness indicates that neighboring data samples
are mapped to similar locations in latent space. This property
is incorporated in VRAE so that the sequence embedding can
preserve semantic information, or equivalently the words with
similar meanings are embedded with similar mappings.

B. Mixture prior for latent distribution

Using VAE, the prior distribution p(z) is often assumed to
be standard Gaussian. Such a naive assumption typically leads
to over regularization or posterior collapse in the estimated
variational distribution qφ(z|x), as reflected by KL term in
Eq. (1). Inspired by [33], we estimate the variational prior for
VRAE by using Nv validation sequences or sentences x =
{xn}

pλ(z) =
1

Nv

Nv∑
n=1

qφ(z|xn) (3)

which is seen as a sentence-level mixture prior of latent vari-
able z. The restriction of simple prior is then relaxed. ELBO
is maximized to find pλ(z). However, this prior becomes
infeasible if Nv is large. In [33], pseudo inputs were intro-
duced as additional parameters to learn the amortized prior.
Nevertheless, pseudo inputs could not be used in sequential
learning since the length of each sequence was not fixed. In the
experiments, we estimate the amortized mixture prior by using
validation sentences, which is efficient and memory saving.
This prior is learned along with the variational posterior with
a shared φ. The estimated prior leads to a multimodal and
flexible latent space. This prior effectively prevents posterior
collapse by learning semantic information in sequence data.

C. Skip connection on decoder

Skip connection has been widely used in deep learning,
such as residual network [40] or highway network [41]. In
[42], the scheme of skip connection was incorporated into
VAE where the mutual information between observations x
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Fig. 2: Information paths for VRAE with skip connection.

z

x1 + ² x2 + ² x2

x2

x1

x1 < EOS >

< BOS >

Fig. 3: Amortized mixture prior and skip connection in vari-
ational recurrent autoencoder.

and latent codes z was enhanced. Here, we address different
perspective. As we know, RNN decoder predicts next sample
xt given by the previous inputs x<t. Information of data
flows from encoder to decoder only through the initial hidden
state s0. However, in training stage of VRAE, the usage of
teacher forcing provides another source of information. Such
a source information reduces the dependence on the latent
space, and accordingly causes the issue of posterior collapse.
With the skip connection, the latent code z is reinforced to join
every prediction at different time steps. The information flow
from encoder to the prediction is shortened. Figure 2 depicts
how skip connection changes the generation process. By
considering these three perspectives, AMP-VRAE is proposed
and illustrated by an overall architecture as shown in Figure 3.
The learning criterion of AMP-VRAE is therefore formulated
by

Eqφ(z|x)[log pθ(x|z)]

−DKL

(
qφ(z|x+ ε)

∥∥∥∥ 1

Nv

Nv∑
n=1

qφ (z|xn)

)
(4)

where the noise term ε is merged and the variational mixture
prior is adopted in model training with skip connection.

IV. EXPERIMENTS

In the experiments, different methods were evaluated by
using three datasets: Penn TreeBank (PTB) [43], Yelp 2013
(Yelp) [31] and IMDB [44]. To conduct comparative study,
we implemented the recently proposed methods including
the amortized inference regularized (AIR) VRAE [21], the
variational-mixture-of-posterior prior (VAMP) VRAE [33],
and the normalizing flow (Flow) VRAE [20], [36]. There
are four metrics in language modeling tasks [45]–[49] where
negative log-likelihood (NLL) and perplexity (PPL) shows
the ability of word generation and prediction, KL term value
reflects if the model prevents the posterior collapse, and the

number of active units (AU) investigates how well the infer-
ence model is active to work. While we have 32 dimensions
in latent space, the models exploiting larger dimensions are
considered to work better in inference procedure. An active
dimension is defined to achieve its variance to be greater than
0.01.

A. Language modeling on Penn TreeBank

PTB is a benchmark dataset for evaluation of language
model. In PTB, the average length of a sentence is 21.07
words. Vocabulary size is set to 8K. The proposed AMP-
VRAE is compared with different models. Table I reports
the results using different methods. In this comparison, AIR-
VRAE employs the amortized regularization with noise ε ∼
N (0, 0.5I). VAMP-VRAE utilizes the variational-mixture-of-
posterior as prior estimated by validation data. Flow-VRAE
uses the inverse autoregressive flow to transform the posterior.
The flow comprises of ten convex combination of linear
inverse autoregressive flows. Overall, AMP-VRAE obtains the
best performance for generation, as it achieves the lowest NLL
and PPL. It successfully prevents posterior collapse and has
the most effective result with the largest KL value. For a 32
dimensional latent space, VAMP-VRAE fully exploits all the
dimensions. Flow-VRAE utilizes 27 of them. AMP-VRAE
reports similar AU, which is much larger than AU of baseline.

TABLE I: Evaluation of different methods using PTB.

Model NLL KL PPL AU

VRAE 98.66 3.57 111.91 4
AIR-VRAE 98.30 4.10 109.96 7
VAMP-VRAE 98.83 4.17 112.79 32
Flow-VRAE 100.81 1.13 123.99 27
AMP-VRAE 97.69 6.58 106.81 25

TABLE II: Evaluation of different methods using Yelp.

Model NLL KL PPL AU

VRAE 194.76 0.96 60.40 2
AIR-VRAE 193.12 2.18 58.36 4
VAMP-VRAE 194.63 1.97 60.24 26
Flow-VRAE 194.79 0.49 60.45 19
AMP-VRAE 191.80 5.18 56.76 21

B. Language modeling on Yelp 2013

Yelp is a restaurant review dataset collected from Yelp
Dataset Challenge in year 2013. There are 47.55 words in
an averaged length sentence. Vocabulary size is 12K. Results
are shown in Table II. AMP-VRAE achieves the lowest value
on NLL and PPL, as well as highest value in KL divergence. It
has 21 active units in 32 dimensions, just below 26 of VAMP-
VRAE. AMP-VRAE improves VRAE and outperforms the
other models in generation performance. It has competitive
results in inference metric. We compare the latent space of
VRAE and AMP-VRAE in Figure 4. We reduce the dimension
to two with t-SNE [50] and show the global structure. VRAE
has a latent space in the shape of a circle, which indicates
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Fig. 4: Latent distributions of (a) VRAE and (b) AMP-VRAE
by using Yelp 2013 dataset.

Gaussian distribution with diagonal covariances. AMP-VRAE,
on the other hand, reports multi-modal mixture distribution,
which leads to rich representation in the latent space.

TABLE III: Evaluation of different methods using IMDB.

Model NLL KL PPL AU Accu

VRAE 387.67 1.56 141.58 2 68.04
AIR-VRAE 386.37 2.06 139.24 3 69.94
VAMP-VRAE 386.69 0.89 139.82 4 68.76
Flow-VRAE 387.86 0.85 141.92 27 67.94
AMP-VRAE 386.92 2.32 140.23 5 71.30

C. Sentiment classification on IMDB

IMDB is the movie review dataset collected from the
Internet Movie Database website. IMDB contains 50K labeled
data with even number of positive and negative reviews. The
average length in a sentence is 78.17 words. Vocabulary size is
20K. Evaluation on sentiment classification is performed. An
additional classifier is connected to the latent space. It predicts
if the review is positive or negative. The classifier is jointly
trained with VRAE. The accuracy is reported. Table III shows
that AMP-VRAE achieves the best in most metrics. Although
active units are less than those in Flow-VRAE, the accuracy
is improved. We show the latent space of VRAE and AMP-
VRAE in Figure 5. Orange indicates positive reviews while

(a) VRAE

(b) AMP-VRAE

Fig. 5: Latent distributions of (a) VRAE and (b) AMP-VRAE
by using IMDB dataset.

blue indicates negative reviews. AMP-VRAE can separate
most reviews in different classes. However, VRAE has large
spaces that two classes are overlapped.

V. CONCLUSIONS

We have presented the amortized mixture prior variational
recurrent autoencoder for stochastic and sequential learning,
and applied it in language modeling and sentiment analysis
and classification. A number of strategies were proposed to
improve neural sequential learning based on VRAE where
different treatments in encoder, decoder and latent space were
performed. First, the amortized regularization was adopted to
encourage smoothing for encoder where the semantic informa-
tion of an input sentence was sufficiently learned. Second, the
incorporation of mixture prior in VRAE led to the richness in
the estimated latent distributions. Third, the skip connection
reinforced the latent code to join each prediction in the
decoder at each time step for individual words. Experimental
results on language modeling and sentiment classification over
three tasks showed that the proposed method alleviated the
issue of posterior collapse and improved the performance of
VRAE in terms of inference and generation. In general, the
proposed variational recurrent autoencoder is developed as
a tool for semantic analysis and representation which can



be extended to other natural language tasks or applications
including document summarization and text classification.
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