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Abstract—A substantial aspect of general intelligence is the
ability to summarize basic building blocks from various high-
level concepts. Artificial vision systems with such hierarchical
property can not only perform accurate reasoning for complex
observations, but also learn useful low-level knowledge shared
across scenes. To achieve this goal, we propose a discrete memory
addressing VAE model (DM-VAE) for explicitly memorizing and
reasoning about shared primitives in images. A time-persistence
memory module is used to store the learned abstract knowledge
and to interact with the generative model. The model decides
what to pay attention to at each step, and constructs the primitive
library automatically as the learning progresses in a fully unsu-
pervised setting. While performing inference, the model attempts
to interpret a new observation as a combination of previously
learned elements. We further derive a proper variational lower
bound which can be optimized efficiently. We conduct visual
comprehension experiments on images and demonstrate that our
model is able to search, identify, and memorize semantically
meaningful primitive concepts.

Index Terms—deep generative model, hierarchical Bayesian
model, concept learning, deep model with memory

I. INTRODUCTION

Human can effortlessly discover and utilize low-level con-
cepts which are shared among higher hierarchies. Especially in
visual perception, we can quickly decompose an observation
with simpler building blocks we have been familiar with,
identify their properties, and can then focus on learning and
memorizing the remaining novel part. We summarize these
fundamental concepts from everyday experience in an unsuper-
vised fashion and build complex concepts hierarchically upon
simpler ones. This is considered as a fundamental cognitive
ability that allows us to understand and interact with the
world efficiently and robustly [1]. Some researchers suppose
this ability is at the core of fields where people still easily
beat machines like continual learning or few-shot learning [2].
Artificial systems with this ability are expected to solve tasks
which need in-depth vision comprehension, including scene
decomposition, multi-agent control, etc.

Despite remarkable progress in deep generative models
[3]–[5], this kind of human conceptual behavior has usually
eluded their representation power. Compared to the hierar-
chical generative process of human, most of these models
attempt to map directly from a random noise vector z into an
image x with a neural network p(x|z). This non-hierarchical
generative process prevents the discovery of useful hidden
structures in original observations such as shared primitives
or spatial relations. On the other hand, even if the model
may have learned some structures implicitly, these knowledge
are all stored as parameters of neural networks, which has
little semantic meaning and is hard to deal with. The central
challenge to design a hierarchical generative model has three
aspects: 1) primitive: in what form the learned concepts is
to store in the model; 2) variability: how to describe the
uncertainty which naturally occurs in primitive realization;
3) inference: how to efficiently parse a new observation with
learned concepts in a (probably huge) compositional space.

To design such a generative model with hierarchical struc-
ture, some methods have been proposed. Compositional gram-
mar models [2], [6] use a separated procedure to construct
a fixed primitive library first, and then apply a probabilistic
generative process to depict the variability of primitive realiza-
tion and combination. However, since these models typically
learn representation directly on the raw image space, plenty
of domain-specific assumptions and special handcrafted care
are often needed. Inference in these models (e.g., via MCMC
sampling) can be extremely slow since the original primitive
combination space is huge. On the other hand, hierarchical
generative methods have largely been incompatible with deep
learning. Instance segmentation models like mask-RCNN [7]
are relevant to decomposing a scene into basic elements, yet
these methods are not generative and need heavily annotated
data. Sequential generative models including AIR [8] and
MONet [9] use a sequential variational auto-encoder that
attempts to generate one object from a latent code per time-
step. Despite the success, these methods do not model the
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hierarchy explicitly. Low-level time invariant knowledge is
not preserved well, and information of different level can
be tangled in the latent space. Hence, there is no straight
forward way for the model to summarize and reuse those basic
elements.

In this paper, a novel hierarchical generative model (DM-
VAE) is proposed, which attempts to bridge the gap be-
tween traditional hierarchical models and deep methods.
Equipped with a discrete addressing memory buffer, DM-
VAE can actively allocate memory space for shared low-
level knowledge. DM-VAE is capable of distinguishing the
universal information (i.e., types of shared primitives) from
the individual information (i.e., randomness that occurs when
rendering a primitive). DM-VAE reads/writes universal in-
formation from/into the time-persistence memory buffer to
lay stress on the invariability. As for individual information,
DM-VAE models their randomness with random variables.
The model comprises three major modules: (1) a memory
buffer which serves as the primitive library to store learned
deep features, (2) a generator interacting with the memory
buffer while producing realized primitives, and (3) a spatial
attention model implemented as a recurrent neural network
to attend to regions of interest at every time step. These three
modules are combined in a fully-differentiable manner, and the
model in its mathematical form is a variant of the sequential
variational auto-encoder. The complete learning and inference
procedure is fast, amortized, and unsupervised via maximizing
evidence lower bound (ELBO). It is worth pointing out that
the primitive library in our model is jointly learned as the
training progresses, unlike the fully pre-defined way. In our
experiments, we show that our model can obtain semantically
interpretable primitives and relations parsed from the original
data, while achieving similar or better representational power
with the state-of-the-art generative models which focus on
object-wise inference, such as the Attend-Infer-Repeat (AIR)
framework [8].

The main contributions of the paper are as follows. First,
we formulate a hierarchical deep generative model and show
how the deep model can interact with the lower-level primitive
library appropriately. The second contribution is that we design
an efficient variational inference procedure which can make
the whole system trained end-to-end without supervision.
Finally, we demonstrate empirically how our model allows for
constructing the library automatically, and for decomposing
images into their underlying structure.

II. RELATED WORK

The concept of understanding the latent structure of an
image has a long history. The inverse graphics line of work
consists of a function to go from compact descriptions of
scenes called the graphics code to images. This graphics
code is essential for image comprehension since it mostly
captures variables in the real image generating process. Works
of inverse graphics such as [10]–[12] follow the framework
of defining a probabilistic or deterministic model with latent
random variables or parameters, then using an inference or

optimization algorithm to find the most appropriate set of
latent parameters given the observations. Methods in this line
are not necessarily generative and often need assumptions
which tend to be too strong for the model to be broadly useful.

Compositional grammar models like and-or graph (AOG)
and Bayesian program learning (BPL) [2], [6], [13] typically
define a primitive set and a probabilistic generative language
for generating the observation. They then search the program
space and find a suitable generative program for the observed
image. Despite the success in specific scenarios such as few-
shot learning, these models do not leverage the expressive
power of deep neural networks, so they often need plenty of
special hand-crafted care. The inference algorithms for these
methods are also especially hard to design and slow in practice.

Recently, deep generative models [3]–[5] have proven suc-
cessful in generating realistic data from a latent code. These
models draw support from the powerful neural networks to
parameterize distributions defined in a generative process and
thus they can provide powerful representation ability. By
plugging in a structured prior, models such as [8], [9], [14],
[15] use deep generative models to either infer the underlying
structure, or generate images. These models typically follow
the encoder-decoder framework generalized from variational
auto-encoders. After a proper joint distribution is defined,
the training and inference procedures can be left to the
optimization of the variational lower bound. Therefore, these
methods do not need extensive effort to design a bottom-
up inference procedure as traditional compositional models.
Though inspiring, the hierarchical nature that occurs in most
concepts is not modeled in these methods explicitly. We make
a step further to show how the generative model can interact
with preserved low-level primitives.

Instead of inducing a structured generative process in deep
generative models to get a structured representation, there is
also a series of works named disentanglement. These methods
attempt to endow different dimensions of latent variables
with different semantic meanings, both supervised by attribute
label or unsupervised. Kulkarni et al [16] propose a training
procedure that produces a representation in the auto-encoder,
in which lighting and pose variables are disentangled. Higgins
et al [17] propose a modification of the variational lower-
bound in encouraging disentangled representations. Chen et
al [18] use the mutual information criterion for controlling
the information flow from observed data to the with-semantic
part of the latent variable. These works are more focus on
the interpretability of the latent code, not on designing an
interpretable architecture itself.

The use of a memory block in deep neural networks also
gains much popularity recently. In this family of models
including [19], [20], a memory buffer is allowed to read
and write and is persistent in time. This memory buffer is
often used to preserve valuable information which has some
invariability with regard to proceeding operation steps. There
are typically two kinds of read/write mechanism, soft v.s. hard
read/write. The soft operation draws a proper distribution from
all the memory buffers and outputs some kind of average



Fig. 1. The generative process of DM-VAE. First sampling the memory
address j = ztypei and retrieving the content mj . Then the noise vector εi is
fed into the conditioned generator to produce xi. Several primitive realizations
are transformed into correct global scale and locations by transformation
variables s. The universal information is written in M as the learning
progresses.

embeddings of these slots. This is much more similar to
the attention technique as used in [21]. The hard address-
ing mechanic follows some kind of discrete distribution and
outputs one slot content at a time. Despite the extensive use
in sequence learning and reinforcement learning, only little
works including variational memory addressing [22] attempt
to explore connections between the deep generative model and
the memory network.

III. METHOD

We now describe the proposed DM-VAE model, illustrated
in Figure 1. First, we shall introduce some notations, and
then we will describe the full generative process in details
in the next two subsections. We treat an observation x as a
combination of basic components {xi}. M = {mi}i=1,··· ,n
denotes the memory buffer, where each mi ∈ Rd is a memory
slot that stores general features of a primitive. A generator G
conditioned on M takes noisy vector εi as input. When G is
conditioned on a specific slot mj , it is expected to produce the
jth type of primitive, so we call this a conditioned generator
gmj . G can be implemented as a bank of generators or simply
a generator with different mjs as a part of its input, which
is our choice in practice. Each conditioned generator can be
formulated as gmj (εi), and outputs a realized primitive xi.
The index j is chosen by the corresponding discrete random
variable ztypei , which serves as the memory address. Finally,
spatial layout random variables S = {si} is used to model the
spatial relation among these primitives.

A. Generative Model for Primitives

At each time step i, the primitive generative process (see
Fig.1) proceeds by first sampling the discrete memory address
ztypei from the discrete prior p(ztype), retrieving the content

mj = mztypei
and using this universal information to guide the

conditioned generator gmj of G. Then we sample a continuous
noise vector εi from the prior distribution p(ε|mj), and feed
the noise vector into the conditioned generator to produce
gmj (εi) ∼ p(.|ε,mztype), i.e. the realized primitive xi.

The intuition behind the design is that for a particular pattern
that appears multiple times, we wish the model to memorize it
explicitly, and recognize it as a learned type the next time when
the model sees it. Therefore, unlike most previous methods
which directly feed the generator a noise vector, we guide
the generator with a huge amount of information from the
memory buffer, which should act as a “template” of the desired
output. To explain the remaining “distortion” of an observation
given a correct type, the noise generative model p(ε|mztype) is
learned. Note that the distribution is conditioned on the type,
so for each type, the noise distribution is different. This is
reasonable because the distortion for different templates may
not act as the same. In practice, both the generators gmj and
the prior of the noise vector p(ε|mztype) are parameterized
by deep neural networks to capture the complex dependencies
within them.

The distribution for the primitive xi has the form

p(xi|M) =
∑
ztypei

∫
εi

p(ztypei )p(εi|mztypei
)p(xi|εi,mztypei

)dεi.

(1)

B. Image Generation Process

After sampling n primitives, the whole image x is generated
by sampling global locations for xis, distorting by scale, and
adding them up. The image can be generated by:

x =

n∑
i=1

Tsi(xi), (2)

where Tsi is a spatial transformation for primitive xi, pa-
rameterized by the transformation random variable si. For
example, in the common 2D attention model which only
allow degrees of freedom on location and scale, s is a four-
dimensional vector that uses 2 dimension to describe the x and
y coordinates, and another 2 dimension to model its scale. We
use the differentiable spatial transformer architecture [23] to
achieve the transformation Ts.

The distribution for image x is

p(x|M) =

N∑
n=1

pN (n)

n∏
i=1

∫
si

p(xi|M)p(si|M)dsi, (3)

where pN (n) is a prior for the number of primitives n in the
image with maximum value N, p(xi|M) is defined in Eqn.1,
and p(si|M) is a suitable prior (e.g., a Gaussian distribution)
for transformation parameters. In practice, we adopt the similar
trick as AIR did to parameterize n as a variable length binary
latent vector zpres that, for a given value n, zpres is a vector
formed of n ones followed by one zero. As we will see in the
following section, this will simplify the inference procedure.



IV. TRAINING AND INFERENCE

Inference for most models in the form of Eqns.1 and 3
is intractable due to the intractable integral or sum operation.
Such models usually use an approximation inference technique
called variational inference. In the most general setting where
x denotes the observed data and z denotes the latent random
variable, this kind of algorithms approximate the true posterior
pθ(z|x) with a parameterized qφ(z) distribution, which is often
implemented as a deep network. The whole system is then
trained by maximizing the evidence lower bound (ELBO),
and a good inference approximator qφ(z) is obtained in the
meanwhile.

However, the specific form of our model remains challeng-
ing even in the variational inference framework. The main
challenges are: 1)Discreteness. The discrete nature of the hard
read/write mechanism of M (performed by the type variable
ztype) makes the original problem a combinatorial optimiza-
tion one which is typically hard to optimize. 2)Coupling. The
variable ε, the memory slot chosen by ztype, and parameters of
the generator g(.) are coupled together to produce a primitive
in the image space, so it is difficult to credit only the universal
information to ztype while keeping the individual information
to ε. 3)Trans-dimensionality: The number of primitives of a
scene is a random variable itself. There is a trade-off that, the
model must choose whether to cut up the image into smaller
pieces to get a better explanation, or to take some parts as a
whole for the overall model simplicity. We now describe the
proposed variational inference procedure.

A. The ELBO Objective with Memory

We can write the evidence lower bound for Eqn.3:

log p(x) ≥ Eqφ [log pθ(x, ztype, zpres, ε, s)
− log qφ(z

type, zpres, ε, s|x)]. (4)

Here we have omitted the condition of M in each term for
clearness. The variational posterior is factorized as:

qφ(z
type,zpres, ε, s|x) = qφ(z

pres
n+1 = 0|z1:n, x) ∗

n∏
i=1

Qi (5)

Qi =qφ(z
pres
i = 1|x, z1:i−1)∗

qφ(si, εi, z
type
i |zpresi = 1, x, z1:i−1). (6)

Let z1:n denote the set of all latent random variables
{zpresi , ztypei , εi, si} from step 1 to n, and zi denote the set
of variables at step i. Note that we have omitted the edge
case of zpres1 = 0, which means a blank image, in the
above equations for clearness. We shall now have a detailed
discussion about the variational posterior Eqn.5. First of all,
to full-fill the need of the variation of the primitive number
caused by zpres, we implement the inference network q(.)
as a recurrent neural network, where zpresi = 0 is used
as a terminate flag (corresponding to the first term in the
RHS of Eqn.5). If not terminated, the RNN’s output at step
i is used to compute the second term in the RHS of Eqn.6.

The second thing to notice is the factorization of the term
q(si, εi, z

type
i |zpresi = 1, x, z1:i−1). Under the law of condi-

tional probability, the three random variables of this term can
be factorized in random order. However, reasonable order of
these variables should follow the intuition that we first locate
an object, then classify its general attribute and finally consider
its specialty, i.e.

qφ(si, εi, z
type
i |zpresi , x, z1:i−1) = qφ(si|zpresi , x, z1:i−1)

qφ(z
type
i |zpresi , x, z1:i−1, si)qφ(εi|zpresi , x, z1:i−1, si, z

type
i )

(7)

We parameterize the first distribution in the RHS of the
above equation, i.e. variational distribution of transformation
variables s, simply as a Gaussian with its mean and variance
computed by the RNN. The second term of ztype and the
third term of ε needs to pay more attention. Remember
that the discrete variable ztype serves as the address of the
memory buffer, we follow the design pattern also used by [22]
and [24] which computes the similarity between embeddings
of inputs and each memory block, and then outputs the
parameters controlling the discrete posterior distribution. To
be more clear, the distribution q(ztypei |zpresi , x, z1:i−1, si) ∝
fsim(mztypei

, xcropi ), where xcropi is ith patch cropped from
x using si produced by the first term. The similarity func-
tion is implemented using a small MLP. The third term
q(εi|zpresi , x, z1:i−1, si, z

type
i ) is parameterized as a Gaussian

distribution whose mean and covariance matrix is computed
by a MLP using both the input patch xcropi and the selected
memory slot mztypei

as input.
The whole inference procedure is illustrated in Fig.2. Fig.2

Left explains the computation graph of the inference proce-
dure. First the model decides whether there is a part remains
to be explained, attends to the region of interest si, crops a
part xcropi and tries to memorize its template index ztypei . Then
it explains the remaining error of xcropi through noise εi. Fig.2
Right shows the graphical model coinciding with Eqn.1 and
Eqn.5.

B. Constrained Information Flow
Although the generative process designed above makes the

memory slot mi a template for all distorted primitives of a
same semantic type, there is no explicit guarantee that the
model properly assigns one object embedding accurately into
one slot. In our earlier experiments, we find that the model
may induce a flat distribution q(mztype) over memory slots
while still gets a good reconstruction.

In fact, if ztypes actually induce a partition of the whole
semantic space, the variable ε should “span” each sub-space.
Let x = F (ztype, ε) denote a primitive realization in the
image space, the model is expected to infer ztype solely
after seeing x. This can be full-filled by maximizing the
mutual information between x and ztype. Making use of
the variational information maximization technique [25], we
constrain the information flow towards ztype with the follow
objective:

I(X,Ztype) ≥ Ex∼gztype [log q(z
type
i |x)], (8)



Fig. 2. Left:The inference process. We implement the inference network q(.)
as an RNN which outputs the inferred latent variables one at a time. At each
time step we first locate an object, then infer its general attribute and finally
consider its specialty. Right: The graphical model. Black lines correspond to
the generation, while red lines the inference.

where capital letters denote random variables and samples
are denoted using the lowercase. Also note that the x in
the above equation represents an image patch selected by
the model rather than the whole image. A good news is
that the variational posterior q(.|x) in Eqn.8 can be obtained
immediately using the posterior of ztype in Eqn.7, except that
the input x is now the synthetic data from generator bank
rather than the true input data. We add this objective in the
lower bound and update all gi ∈ G in each training step instead
of sampling them. That means we sample images from every
gztypei

, feed the synthetic data back to the variational network
q(ztypei |.), and try to recover ztypei . In experiments, we find
this objective helps make a clearer separation of the semantic
space.

C. Gradients for Training

The vanilla VAE uses the reparameterization trick to deal
with the stochastic node arises from the probabilistic model
in the computation graph. It is not our case because the
discrete variables in the model fail to have a differentiable
reparametrization. Maddison et al [26] propose a method that
uses softmax instead of argmax operation in a function of
Gumbel noise samples, which is the reparameterization term
of discrete distribution. So the Gumbel-Softmax trick can be
seen as a generalized form of reparametrization trick with
discrete random variables. Here we show briefly how to use
reparameterization trick for efficiently training and propagate
gradients.

We essentially optimize the lower bound of the data log-
likelihood as well as the mutual information:

∇θ,φL = ∇θ,φEqφ(.|x)[log pθ(x, z
type, zpres, ε, s)

− log qφ(z
type, zpres, ε, s|x)]

+ γ∇θ,φExsyn∼gztype [log qφ(z
type
i |xsyn)], (9)

where θ denotes all the parameters in the generative process,
and φ the inference process. γ is a hyper-parameter.

Now we check the random variables on which the inner
term takes expectation. For continues variables ε and s we
use the standard path-wise estimator ε = µε + σεξε and θ =
µθ+σθξθ where ξs are standard Gaussian noises. For discrete
variables ztype and zpres we use the concrete distribution to
reparameterize which means ztype = Softmax((logαtype +
Gtype)/Ttype). Let k denotes the number of memory slots.
α is the parameter of the k dimensional discrete distribution,
P (ztype = k) ∝ αk. Gtype is a k dimensional independent
Gumble noise. Ttype is a hyper-parameter. zpres is treated
similarly. For using the trick, the prior distribution for discrete
variables are replaced by the corresponding Concrete distribu-
tion. For more details please refer to the paper [26] and [27].
Finally, since the synthetic image random variable xsyn is the
output of the deterministic function of random variable ε and
ztype, it can also be reparameterized first by ε and ztype, then
by ξε and Gtype. The training procedure can then be done
using the standard back-propagation after sampling all these
random noises for reparameterization.

V. EXPERIMENTS

A. Experiment Setup

Datasets: We apply the proposed DM-VAE to two datasets,
multi-MNIST digits and CASIA offline handwritten characters
[28]. Following the experiment settings in AIR [8], the Multi-
MNIST dataset we use contains 50x50 0,1,or 2 MNIST digits
and each number of digits have 20000 images.

Then, we apply DM-VAE to the more sophisticated dataset
CASIA of handwritten Chinese characters. The full dataset
contains 3000 classes of the most frequently used Chinese
characters, each with 300 samples. A Chinese character is a
recursive structured data composed with lower-level, simpler
stroke primitives called radicals. We select a subset from the
complete dataset of 50 types of characters which share a
more compact basic radical set of about 30 radicals, and each
character has 300 samples.

Model Architecture: Unless otherwise specified, we use
the following architecture and hyper-parameters. We use a 256
dimension LSTM unit as the basic recurrent unit in the varia-
tion network. The similarity function fsim(mi, x

crop) between
a slot mi and the attended input xcrop is the cosine distance
between hm(mi) and hx(xcrop), where the hs are MLPs with
2 hidden layers of size (256, 128). The latent variable ε is a
32 dimension Gaussian variable. All the encoders q(.)s and
decoders p(.)s for latent variables is 2-layer MLPs with 256
and 128 hidden units with ReLU non-linearities. We train the
model by optimizing with Eqn.9, with batch size equals to 64.
Note that we keep the network architecture simple on purpose
to justify the model effectiveness. As for the AIR model to
compare, we do our best to implement it for ensuring the
similar model complexity as ours. The attention RNN of AIR
is also a 256 dimension LSTM network, and the encoder and
decoder networks in most situation are 2-layer MLPs with the
same size as ours.



B. Results on Multi-MNIST Digits

We keep 2000 images as test data. In DM-VAE, the number
of memory slot is set to 15, and memory buffer is initialized
using random noise from a uniform distribution. We train the
model 300 epochs using the Adam optimizer with a learning
rate of 1e-4. Deep generative models with discrete random
variables are known for being difficult to train. Since our
model chooses a discrete addressing mechanism, the tempera-
ture hyper-parameter T for the posterior concrete distribution
of q(ztype), which controls the “sharpness” of the distribution,
is essential for the training stability. We show training curves in
Fig.3 Left under different T s. In a typical learning procedure,
there is first a period when the model memorizes nothing,
and when it only starts to learn where to attend to. The noisy
attention location can provide the memory buffer with nothing
useful at this time, so the training loss maintains high and
steady. After the attention mechanism finishes warming-up
itself, the memory and the attention mechanism can help each
other converge, which results in a fast loss drop in Fig.3 Left.

Fig. 3. Left: Training curves on Multi-MNIST dataset. Right: Count accuracy
on test set.

To show that DM-VAE is able to conduct accurate object
detection and reconstruction, the reconstruction experiment of
test set images is illustrated in Fig.4. For each pair, left is an
image from the test set and right is the reconstruction by our
model. The colored bounding box is painted using the inferred
transformation parameter s, for showing how the model con-
structs the overall image from primitives step by step. It is
worth emphasizing that, besides getting a good reconstruction
of structured images, the latent variables inferred by DM-VAE
including zpres, ztype, and s have obvious semantic meaning.
We already use variable s to full-fill the object detection task
in Fig.4, and this result is comparable to AIR (refer to Fig.3 in
the AIR paper). zpres can be used to infer the number of digits
in test set images. Shown in Fig.3 Right, both models achieve
almost 100% accuracy after convergence. For the quantitative
result of model performance, we report the test set negative
log-likelihood averaged by 10 training processes of each model
in Tbl.I. DAIR is a modified version of AIR which employs
a slightly different recurrent architecture for the inference
network (see [8] for details). To compare the complexity of
models, we also report the number of parameters for each
model in the table. As we can see, the extra space overhead
introduced by the DM-VAE model is reasonable, in particular,

TABLE I
NLLS ON MULTI-MNIST AND ON CASIA OFFLINE CHARACTER DATASET.
NUMBERS IN PARENTHESES INDICATE THE PARAMETER NUMBERS OF THE

MEMORY BUFFER.

Multi-MNIST CASIA-CHAR
AIR 185.1±6.3 1310.6±28.8
DAIR 189.5±3.9 1302.4±19.4
DM-VAE (mem=15) 154.0±12.1 1277.9±26.1
DM-VAE (mem=50) 154.2±11.2 1228.3±33.3

the space occupied by the memory buffer itself is negligible,
meaning that the storage unit is highly scalable.

Fig. 4. Reconstruction of the test image. For each pair, left is an image
from the test set and right is the reconstruction by our model. Top Row:
The full DM-VAE model. Bottom Row: The DM-VAE model trained without
the information loss. The model still learns a good reconstruction with its
memory, but it may get help from different slots.

A central feature of DM-VAE is that the hierarchical design
makes it possible to summarize basic building blocks and
distill the low-level knowledge into the memory buffer. We
illustrate this feature in Fig.5 left by visualizing all the 15 slots
of the model used in this experiment. By saying visualization,
we mean that we sample from each gmi . As we can see,
DM-VAE indeed allocates each slot the latent knowledge
of a “shared template”. Note that we use a slightly larger
number of slots than the actual number of primitive types so
that some slots may contain the same type of primitive or
become useless. We also do the ablation study of removing
the information loss used to constrain information flow during
training. Shown in Fig.4 Bottom Row, though this still provide
a good reconstruction, the latent knowledge stored in memory
slots now seems to be mixed together (see Fig.5 right). There-
fore q(ztype) contains much less information to interpret the
scene in a sense that each slot can provide similar amount of
information. Together with Fig.4, the experiment result shows
how the memory helps the model to understand the raw data
better: since the buffer already provides good templates, the
model only needs a little extra effort to recover the individual
noise information.

In all our experiments, we show that our model is compara-
ble to the similar kind of state-of-the-art generative models in
object detection and reconstruction power. In the meanwhile,
we show that our model can build its primitive library auto-
matically by visualizing the memory buffer. We demonstrate
the effect of the information constrained procedure through
ablation study.



Fig. 5. Visualization of the memory by sampling images from each generator.
Each row corresponds to a memory slot. Left:DM-VAE indeed allocates
each slot the latent knowledge of a type of digit, i.e., a “shared template”.
Right:DM-VAE without the information loss.

C. Results on CASIA Characters

We now apply the model to the more challenging CASIA
offline Chinese handwritten characters dataset. Note that the
diverse writing styles and cursive con-junction of strokes
make the dataset a more difficult one for comprehension tasks
compared to other 2D or 3D synthetic datasets, whose prim-
itives usually lack variety in shape. Parsing from handwritten
Chinese characters into radicals is challenging. Such a task is
often solved under a strong supervision signal as well as a
handcrafted specific structure configuration such as [29]. We
test both DM-VAE and AIR models for the parsing ability.
We will show that, to some extent, DM-VAE can interpret
the whole character in a part-relation form without any hand-
design structure configuration.

We split 10 percent of the overall data as the test set and
trains 3000 epochs. To demonstrate the model versatility, we
keep the overall model architecture unchanged except that we
increase the number of memory slot to 50.

We visualize the first 10 memory slots in Fig.6 at the
training step 20k and 200k. The resulting buffer contains
radical or stroke-like information, which is supposed essential
for generating data by the model. Some rows represent a clear
type of standard radical, and we add the label in Fig.6 for
these rows. Although no supervision is given to the model,
DM-VAE pays more attention to repeatedly occurred patterns
in raw data and allocates empty memory slots to record them.
As the learning progresses, the model is more certain to these
patterns so that more slots become meaningful and clear.

We then let the model parse the test data into primitives
it has already learned. For each image pair in Fig. 7, left is
the original image, and right is the reconstruction using the
parsed information. We have given the correct way of parsing
these characters in the leftmost column, and we also make a
comparison with AIR in Fig.7 Right. The model itself must

Fig. 6. The first 10 memory slots at training step 20k and 200k trained on
character dataset. Each row in one image corresponds to a memory slot.

(a) DM-VAE (b) AIR

Fig. 7. Parsing Chinese characters. (a) DM-VAE can parse the data using
primitives it has learned. (b) AIR is more inclined to recognize the image as
a whole, which is not desirable.

decide how many primitives the data has as well as what type it
is. For the AIR model, without the help of the primitive library,
the model could only simply recognize and reconstruct the
image as a whole and try to refine its reconstruction by adding
more steps. Though by design the AIR model is encouraged
to interpret the observation part-by-part through the sequential
VAE, the attention windows of AIR are not well separated. In
our experiments, training AIR model on the Chinese character
dataset fails to converge from time to time. We suspect this
is because the AIR model compresses too much information
of various kinds of components into the same set of network
parameters. Due to the discrete nature of the memory reader
and the strong guide provided by the buffer, every step in DM-
VAE is more likely to identify a local pattern. We have also
reported the negative log-likelihood on this dataset in Tbl.I.
Our model achieves a better performance in the quantitative
result, which further proves the advantages of our methods.

VI. CONCLUSION

In this paper, we propose a novel hierarchical generative
model of DM-VAE, which bridges the gap between traditional
hierarchical models and deep generative models by combining
a sequential VAE with a memory buffer. Together with the
proposed training method, our model is capable of extracting
the universal low-level knowledge and using the knowledge



to interpret high-level observations in a fully unsupervised
manner. Extensive experiments demonstrate that the resulting
method is able to search, identify, and memorize semantically
meaningful primitive concepts.
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