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Abstract—Adam-type optimizers, as a class of adaptive mo-
ment estimation methods with the exponential moving average
scheme, have been successfully used in many applications of deep
learning. Such methods are appealing due to the capability on
large-scale sparse datasets with high computational efficiency. In
this paper, we present a new framework for Adam-type methods
with the trend information when updating the parameters with
the adaptive step size and gradients. The additional terms in
the algorithm promise an efficient movement on the complex
cost surface, and thus the loss would converge more rapidly. We
show empirically the importance of adding the trend component,
where our framework outperforms the conventional Adam and
AMSGrad methods constantly on the classical models with
several real-world datasets.

Index Terms—Stochastic Gradient Descent, ADAM, Deep
Learning, Optimization

I. INTRODUCTION

Employing first order optimization methods, such as
Stochastic Gradient Descent (SGD), is the key of solving
large-scale problems. The classic gradient descent algorithm
is widely used to update the model parameters, denoted by x

xt+1 = xt − η∇f(xt), (1)

where the gradient is denoted by ∇f(xt) and the step size by
η. While the method has shown its efficiency for many con-
temporary tasks, the adaptive variants of SGD outperform the
vanilla SGD methods on their rapid training time. Specifically,
the step size η is substituted by an adaptive step size η/

√
vt,

and vt is generated from the squared gradient [∇f(xt)]
2 where

the operation is element-wise.
Several variants of the popular adaptive optimizers can be

summarized into such common format. These optimizers share
gradients calculation and parameters updating functions, but
specify different moving average schemes for calculating the
parameter-wise adaptive learning rate η/

√
vt. For example,

AdaGrad [1] takes the arithmetic average of historical squared
gradients [∇f(xt)]

2. Compared with the conventional momen-
tum method, it adapts the learning rate to each parameter
to suit the sparse data structure, and thus gains a rapid
convergence speed [2]. RMSProp [3] was proposed to reduce
the aggressiveness of the decay rate in AdaGrad . The method
modifies vt to the exponentially decayed squared gradients.

Similar implementations could also be found in ADADELTA
[4]. Instead of the squared gradients, the method applies
squared parameter updates to define the adaptive learning rate.
As a result, each update guarantees the same hypothetical units
as the parameter. Later, Adam [5] modifies RMSProp with the
idea from momentum methods [6]. Except for the second mo-
ment moving average, the new rule also replaces the gradient
∇f(xt) at the end of (1) with the first-moment estimation.
The method has practically shown its superiority regarding
the converge speed and memory requirement. AMSGrad in
[7] applies the maximum of past second-moment estimation
to prevent converging to a suboptimal solutions where Adam
could potentially trapped in. While the aforementioned meth-
ods are the most famous frameworks, many variants are also
proposed in the last few years [8]–[10]. In general, we call
such adaptive methods with shared structures as Adam-type
optimizers.

So far, the adaptive methods with exponential moving av-
erage gradients have gained great attention with huge success
in many deep learning tasks. However, it remains unsolved
whether the simple exponential smoothing results or the level
information is sufficient in capturing the landscape of the cost
surface. When clear upward or downward pattern could be
recognized within the moving routine, it is suggested to add
a trend term on top of the level-only information.

In this paper, we propose the notion of trend corrected
exponential smoothing to modify the conventional application
of exponential moving average in optimizers. We name the
Trend-corrected variant of Adam as AdamT and the proposed
method converges consistently as Adam at O(

√
T ). To the

best of our knowledge, this research work is the first to
apply the trend-corrected features on gradients scaling and
parameters updating in the literature. We testify our framework
on the vanilla Adam method for rule implementation and
performance comparison. In addition, we provide supplemen-
tary evaluations on modified AMSGrad to avoid the potential
suboptimal problems suffered by Adam. By using the same
naming convention, we call the trend-corrected AMSGrad as
AMSGradT. The empirical results on some typical machine
learning problems demonstrate the convergence and general-
ization ability of AdamT and AMSGradT in both convex and
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non-convex settings. It shall be emphasized that our framework
is universally implementable for all adaptive update methods
that involve the exponential moving average term, including
but not restricted to ADADELTA, RMSProp, AdaMAX and
other well-recognized methods.

For the remainder of the paper, we present in Section II
the fundamental idea of Adam, AMSGrad and Holt’s linear
methods. In Sections III and IV, we detail the update rules of
our proposed methods and experimental analysis respectively.
In addition, Section V reviews recent developments of Adam-
type optimizers. While many of them focus more on non-
convex optimizations, there is a potential to incorporate our
methods with such frameworks and this extension is expected
for future works.

II. PRELIMINARY

A. Adaptive Methods with Exponential Moving Averages

For adaptive gradient descent methods, the update rule can
be written as

xt+1 = xt −
η√
v̂t + ε

m̂t

where mt is the gradient updates, and conventionally it is
defined to be the last gradient value ∇f(xt). To prevent zero
division, a smoothing term ε is included in the denominator.

We initially focus our analysis and modifications on Adam
[5], one of the most popular optimizers in the last few years.
The adaptive step size involves the squared gradients

vt = αvt−1 + (1− α)∇f(xt) ◦ ∇f(xt) (2)

where the operation “◦” denotes an element-wise multiplica-
tion. In terms of the gradient mt, Adam takes the exponentially
weighted average of all previous gradients instead of solely
relying on the last gradient value ∇f(xt)

mt = β1mt−1 + (1− β1)∇f(xt). (3)

While the two moment estimates from (2) & (3) could
potentially counteract towards zero, the series m̂t and v̂t are
considered for bias-correction. Formally, the rules are defined
as:

m̂t =
mt

1− βt
1

; v̂t =
vt

1− βt
2

.

To allow rare mini-batches provide informative gradients
for a promising optimal solution, AMSGrad [7] includes long-
term memory in squared gradients. Instead of using the latest
vt, AMSGrad employs the following update rule for the second
moment estimate

vmax
t = max(vmax

t−1, vt),

and then use vmax
t to make the learning rate adaptive. As

a result, a non-increasing step size is utilized during the
updating process, which avoids the problems suffered from
the conventional adaptive learning methods, including Adam.

B. Trend Corrected Exponential Smoothing

The idea of extracting a smoothed new point from all the
previous information is called the exponential weighted mov-
ing average. The method was extended in [11] by including
the trend behaviours within the series, namely trend-corrected
exponential smoothing or Holt’s linear method. Consider a
time series {yt} for t = 1, 2, . . . , T , our target is to find
the smoothing results ŷt+1|t. Holt’s linear method formulates
the conditional forecasting by summing up two exponential
smoothing equations

ŷt+1|t = `t + bt

`t = β(`t−1 + bt−1) + (1− β)yt

bt = γbt−1 + (1− γ)(`t − `t−1).

For a new estimation, we first update the level term `t
with the weighted average of the last observation yt and its
estimation ŷt|t−1. The trend term bt is updated afterwards as
the weighted average of the estimated trend `t − `t−1 and its
previous estimation bt−1. The smoothing parameters for the
level and the trend are denoted as β and γ respectively. Both
values could be selected between 0 and 1.

Including a damping factor φ is also suggested in [12],
so that the Holt’s linear method with damping factor has the
following form

ŷt+1|t = `t + φbt

`t = β(`t−1 + φbt−1) + (1− β)yt

bt = γφbt−1 + (1− γ)(`t − `t−1).

The damped method will be identical to Holt’s linear
method if φ = 1, and will be the same as simple exponential
moving average method if we set φ = 0. When φ is restricted
to be positive, the damping factor could be used to control the
significance of the trend component.

The damped trend methods are considerably popular for
forecasting tasks [13]. Such methods inherent both level and
trend information from historical series, while staying flexible
enough to adjust the influence of the trend term via φ. On
top of that, involving the damped factor could to some extend
reduce the volatility of the smoothed line.

III. METHODOLOGY

We introduce the trend-corrected variants of two adam-
type stochastic optimization methods, namely AdamT and
AMSGradT. The proposed methods are based on [5] and [7]
with added Holt’s linear trend information for both of the first
moment estimate and the second raw moment estimate. Specif-
ically, we use trend-corrected exponential weighted moving
averages in the final parameter update step instead of the level-
only estimates used in Adam and AMSGrad.

A. Algorithm for AdamT

Consider the gradient of a stochastic objective function
f(x) evaluated at T iterations as a time series {∇f(xt)} for
t = 1, 2, . . . , T . According to the Holt’s linear trend method
illustrated in Section II-B, we write two series {`mt } and {bmt }



as the exponential weighted moving averages which estimate
the level and trend information of the first moment ∇f(xt):

`mt = β1mt−1 + (1− β1)∇f(xt) (4)
bmt = γ1φ1b

m
t−1 + (1− γ1)(`mt − `mt−1) (5)

mt = `mt + φ1b
m
t (6)

where β1, γ1 and φ1 have the same functionality as explained
in Section II-B and these are regarded as hyperparameters in
our algorithm. Equation (6) combines the level and the trend
information of first moment, which will be used for calculating
the final update rule and the trend-corrected level estimates.
The procedures for the second raw moment ∇f(xt) ◦∇f(xt)
is analogous:

`vt = β2vt−1 + (1− β2)∇f(xt) ◦ ∇f(xt) (7)
bvt = γ2φ2b

v
t−1 + (1− γ2)(`vt − `vt−1) (8)

vt = `vt + φ2b
v
t (9)

The hyperparameters β2, γ2 and φ2 here share the same corre-
sponding meanings as before. The moving averages {`vt } and
{bvt } estimate the level and trend of the second raw moment
respectively. The term vt combines these two information,
which will be used in the calculations of final update rule and
trend-corrected level estimates of the second raw moment.

In our algorithm, we set the initial values of the series
{`mt }, {`vt }, {bmt } and {bvt } to be zero vectors, so that `m0 =
`v0 = bm0 = bv0 = 0. The series {mt} and {vt}, as a result,
are also initialized as zero vectors. As observed in [5], the
exponential weighted moving averages could bias towards
zero, especially during the early training stage. We perform the
bias correction for the two level estimates {`mt } and {`vt } by
following [5]. For the two trend estimates {bmt } and {bvt }, we
correct the bias in a different way by taking into account the
effect of damping parameters (φ1, φ2). Thus, the bias-corrected
version of the series {mt} and {vt} can be written as:

m̂t =
`mt

1− βt
1

+
(1− γ1φ1)bmt

(1− γ1)(1− (γ1φ1)t)
(10)

v̂t =
`vt

1− βt
2

+
(1− γ2φ2)bvt

(1− γ2)(1− (γ2φ2)t)
. (11)

The justification for the two bias-corrected trend estimates
{bmt } and {bvt } is provided below, where we have to take into
account the effect of the corresponding damping factors. Here,
we give the justification for the trend estimate {bmt }, and the
procedures for {bvt } is analogous. Note that we can write the
trend estimate bmt into the following compact summation form:

bmt = γ1φ1b
m
t−1 + (1− γ1)(`mt − `mt−1)

= (1− γ1)

t∑
i=1

(γ1φ1)t−i(`mi − `mi−1).

To find how the expectation of the trend estimates bmt relates
to the expectation of the difference between the level estimates

at successive timesteps (`mt − `mt−1), we take the expectation
for both sides of the above equation:

E[bmt ] = E[(1− γ1)

t∑
i=1

(γ1φ1)t−i(`mi − `mi−1)]

= (1− γ1)

t∑
i=1

(γ1φ1)t−iE[(`mi − `mi−1)]

= E[(`mt − `mt−1)](1− γ1)

t∑
i=1

(γ1φ1)t−i + ζ,

where ζ can be considered as a small constant, since the factor
(γ1φ1)t−i will be tiny if the associated expectation E[(`mi −
`mi−1)] is too far away in the past in the case that E[(`mi −`mi−1)]
is non-stationary. If E[(`mi −`mi−1)] is stationary, the constant ζ
will be zero. To further simplify the above equation, we apply
the formula for the sum of geometric sequence:

E[bmt ] = E[(`mt − `mt−1)](1− γ1)

(
1− (γ1φ1)t

1− γ1φ1

)
+ ζ.

This suggests that we can use the term (1 − γ1)[1 −
(γ1φ1)t]/[1− γ1φ1] to correct the bias and close the discrep-
ancy between the above two expectations at the presence of
the damping factor φ1.

The final adaptive update rule is similar to Adam with
the bias-corrected first moment estimate and the second raw
moment estimate:

xt+1 = xt −
η√
|v̂t|+ ε

m̂t (12)

where ε is a positive tiny number added in the denominator
to avoid zero-division case. Please note that the series {m̂t}
and {v̂t} in AdamT are different from that of Adam. The
two series are trend-corrected (also bias-corrected) estimates
of both moments. Also, we use the absolute value of the series
{v̂t} under the square root in the denominator due to the
possible negative values from the series {v̂t}.

The direction of the effective step ∆t = η · m̂t/
√
|v̂t| (with

ε = 0) in the parameter space depends on the joint effect
of the first moment level and trend estimates. In the update
rule (12), we only care about the magnitude of v̂t by taking
the absolute value and thus the ratio m̂t/

√
|v̂t| can be seen

as a signal-to-noise ratio. Note that the effective step ∆t in
our algorithm is also invariant to the scale of the gradients.
Specifically, re-scaling the gradients ∇f(xt) with a factor c
will scale `mt and bmt by a factor c, and will scale `vt and bvt
by a factor c2. This results in scaling m̂t and v̂t by a factor
c and c2 respectively, and finally cancel out in the parameter
update rule (c · m̂t)/(

√
|c2 · v̂t|) = m̂t/

√
|v̂t|.

Note that our proposed method AdamT has two extra
computational steps, that is (5) & (6). However, the com-
putational complexity of these two steps is almost linear
in time. Therefore, we can conclude that AdamT yields a
superior performance compared with Adam (the results will
be shown in the experiment section) with a minimal additional
computational cost.



In our algorithm, we set the hyperparameters β1, γ1, β2, γ2
according to the suggestions in [5]. The smoothing parameters
for the first moment estimates are set to 0.9, that is β1 =
γ1 = 0.9, while the smoothing parameters for the second raw
moment estimates are set to 0.999, that is β2 = γ2 = 0.999.
We empirically find that the good default values of the two
damping parameters can be set to φ1 = φ2 = 0.5. The pseudo-
code of our AdamT is provided in Algorithm 1.

Algorithm 1 The Adam optimizer modified with Holt’s Linear
Trend method. Empirically suggested default values for the
hyperparameters are β1 = γ1 = 0.9, β2 = γ2 = 0.999, φ1 =
φ2 = 0.5, η = 0.0001. All of the operations on vectors are
element-wise.
Input: Learning rate η; Smoothing factors β1, γ1, β2, γ2;

Damping factors φ1, φ2; Noisy objective function f(x)
with parameters x

Output: Optimal model parameters x∗

1: Initialization
x1: Initial parameter values
`m0 ← 0: Initial first moment level estimate
`v0 ← 0: Initial second raw moment level estimate
bm0 ← 0: Initial first moment trend estimate
bv0 ← 0: Initial second raw moment trend estimate

2: for t = 1 to T do
3: `mt ← β1mt−1 + (1− β1)∇f(xt)
4: bmt ← γ1φ1b

m
t−1 + (1− γ1)(`mt − `mt−1)

5: `vt ← β2vt−1 + (1− β2)∇f(xt) ◦ ∇f(xt)
6: bvt ← γ2φ2b

v
t−1 + (1− γ2)(`vt − `vt−1)

7: m̂t ← `mt /(1 − βt
1) + [(1 − γ1φ1)bmt ]/[(1 − γ1)(1 −

(γ1φ1)t)]
8: v̂t ← `vt /(1−βt

2)+[(1−γ2φ2)bvt ]/[(1−γ2)(1−(γ2φ2)t)]
9: xt+1 ← xt − ηm̂t/(

√
|v̂t|+ ε)

10: end for
11: return x∗

B. Algorithm for AMSGradT

We introduce here the variant AMSGradT to overcome the
non-convergence and suboptimal problems of the proposed
AdamT by using the same technique illustrated in [7]. These
issues of AdamT are inherited from the base approach Adam
[5]. Essentially, we follow the same procedures in (4)-(6) and
(10) for the first moment estimation with bias-correction. For
the second raw moment estimate (7)-(9), we add one more
step after (9):

vmax
t = max(vmax

t−1 , vt),

where vt is the second raw moment estimation from (9) before
bias correction. We set the initial value of the series {vmax

t } to
be vmax

0 = 0. As a result, the new bias-correction step which
is used to replace (11) can be written as

v̂max
t =

(`vt )max

1− βt
2

+
(1− γ2φ2)(bvt )max

(1− γ2)(1− (γ2φ2)t)
,

where (`vt )max and (bvt )max are the corresponding level and
trend information that used to calculate vmax

t . Finally, we
replace v̂t in the final update rule (12) with the bias-corrected
estimates v̂max

t .

IV. EXPERIMENTS

We evaluate the two proposed algorithms AdamT and
AMSGradT on both convex and non-convex real-world op-
timization problems with several popular types of machine
learning models. The models we considered in the experiments
include logistic regression which has a well-known convex
loss surface, and different neural network models, including
feedforward neural networks, convolutional neural networks
and variational autoencoder. Neural Networks with non-linear
activation function typically have an inherent non-convex loss
surface which is more challenging for an optimization method.

We compare our methods with the baseline approaches
Adam [5] and AMSGrad [7], and then demonstrate the ef-
fectiveness of the trend information of the gradients infused
in our proposed algorithms. The experiment results show that
our methods AdamT and AMSGradT converge more quickly
and reach a better minimum point than Adam and AMSGrad
respectively. The observation evidences that the added trend
information effectively helps AdamT and AMSGradT to better
capture the landscape of loss surface.

In each of the following experiments, we use the same
set of initial values for the models, so that the initial model
losses (the loss value at epoch = 0) are identical for all
the optimization methods. In terms of the hyperparameters,
all the smoothing parameters (β1, β2 in Adam & AMSGrad
and β1, β2, γ1, γ2 in AdamT & AMSGradT) are set at their
corresponding default values which are provided in Algo-
rithm 1. The damping factors (φ1, φ2) are searched within
the range [0.1, 1.0) and the learning rate η is also tuned
through a grid search {1e − 4, 5e − 4, 1e − 3, 5e − 3} to
produce the best results for all of the optimizers. All the
experiments and optimizers are written in PyTorch and the
implementations of our proposed optimizers can be found at
https://github.com/xuebin-zh/AdamT.

For the sake of saving space, we only visualize the con-
vergence of Adam and AdamT in the paper for comparisons.
The relative convergence performance of AMSGrad and AMS-
GradT is almost the same in the corresponding experiments.

A. Logistic Regression for Fashion-MNIST

We first evaluate our methods on the logistic regression (LR)
for multi-class classification problem with Fashion-MNIST
dataset [14] which is a MNIST-like dataset of fashion products.
The dataset has 60, 000 training samples and 10, 000 testing
samples. Each of them has 28 × 28 pixels. Each of the
samples is classified into one of the 10 fashion products. The
cross-entropy loss function has a well-behaved convex surface.
The learning rate η is set to be constant during the training
procedure. We use minibatch training with size set to 128.

The training results are reported in Fig. 1. Since the
superiority of our method over Adam is relatively small in
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Fig. 1: Training loss difference of the logistic regression on
Fashion-MNIST dataset for classification task.

this experiment, the plot of loss value against epoch cannot
visualize the difference. Instead, we plot the loss difference of
the two optimizers, which is (LossAdam − LossAdamT) against
training epoch. The difference above zero reflect the advantage
of our AdamT. Fig. 1 indicates that AdamT converges faster
at the early training stage and constantly outperforms Adam
during the rest of the training phase, though the advantage
is relatively small in this experiment. The loss surface of
logistic regression is convex and well-behaved so that the
trend information of AdamT cannot further provide much
useful information for optimization, which results in a small
advantage in this experiment.

B. Feedforward Neural Networks for SVHN

To investigate the performance on non-convex objective
functions, we conduct the experiment with feedforward neural
networks on The Street View House Numbers (SVHN) dataset
[15] for a digit classification problem. We pre-process this
RGB image dataset into grayscale for dimension reduction
by taking the average across the channels for each pixel
in the image. The samples are 32 × 32 grayscale images.
The neural network used in this experiment has two fully-
connected hidden layers, each of which has 1, 400 hidden units
and ReLU activation function is used for the two hidden layers.
The softmax cross-entropy loss function is used for training.

To evaluate the performance of the optimizers in noisy
settings, we apply a stochastic regularization method in the
model for a separate experiment. Specifically, we include two
dropout layers [16], where one is applied between the two
hidden layers and the other one is used before the output
layer. The dropout probability is set to 0.5 for both of the two
dropout layers. In the experiments, we use a constant learning
rate η and minibatch training with size set to 128.

We examine the convergence with and without dropout
layers for the two optimizers. According to Fig. 2, we find that
AdamT outperforms Adam obviously. In terms of the training
process, AdamT yields a faster convergence and reaches a

better position than Adam for the models, both with and
without dropout layers. The superior performance of AdamT is
also shown in the test phase, which demonstrates that AdamT
also has a better generalization ability than Adam. For the
model without dropout, the test results show that the model is
prone to over-fitting and our method performs on a par with
Adam. Comparing to logistic regression, the loss surface in
this experiment becomes complex and non-convex. The trend
estimates of the gradients from AdamT can provide more
meaningful information of the landscape of the loss surface,
and it encourages a better performance on the AdamT.

C. Convolutional Neural Networks for CIFAR-10

Convolutional neural network (CNN) is the main workhorse
for Computer Vision tasks. We train a CNN model on standard
CIFAR-10 dataset for a multi-class classification task. The
dataset contains 50, 000 training samples and 10, 000 test
samples, and each sample is an RGB 32× 32 image. We pre-
process the dataset by normalizing the pixel values to the range
[−1, 1] for a more robust training. The CNN model employed
in this experiment is similar to the model used in [7], which
has the following architecture. There are 2 stages of alternating
convolution and max pooling layers. Each convolution layer
has 64 channels and kernel size 5×5 with stride 1. Each max
pooling layer is applied with a kernel size of 2×2. After that,
there is a fully-connected layer with 600 hidden units and a
dropout probability 0.5 followed by the output layer with 10
units. We use ReLU for the activation function and softmax
cross-entropy for the loss function. The model is trained with
a tuned constant learning rate and minibatch size 128 same as
the previous experiments.

We evaluate the test loss after each epoch during the training
procedure and cease the training once the test loss of the model
starts to increase. The training curves are reported in Fig. 3.
We can observe that the proposed AdamT clearly excels Adam
on the training loss, and this superiority translates into an
advantage of AdamT during the early stage of the test loss.

D. Deep Generative Models For MNIST

Variational Autoencoder (VAE) [17], [18] is one of the
most popular deep generative models for density estimation
and image generation. In this experiment, we train a VAE
model on the standard MNIST dataset which contains 60, 000
training samples and 10, 000 test samples. Each sample is
one 28 × 28 black-and-white image of the handwritten digit.
The VAE model used in this experiment exactly matches the
architecture presented in [17]: Gaussian encoder and Bernoulli
decoder, both of which are implemented by feedforward neural
networks with single hidden layer and there are 500 hidden
units in each hidden layer. We employ the hyperbolic tangent
activation function for the model and set the dimensionality
of the latent space as 20. We use the constant learning rate
and set the minibatch size to 128.

We examine the Evidence Lower Bound (ELBO) of the
training and test phases for the two optimizers. See Fig. 4 for
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Fig. 2: Training loss (left) and test loss (right) of the feedforward neural network on SVHN dataset for a classification problem.
The model architecture is fc1400-fc1400.
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Fig. 3: Training loss (left) and test loss (right) of the convolutional neural network on CIFAR-10 dataset for a classification
task. The model architecture is c64-c64-fc600.
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Fig. 4: Training difference of negative ELBO (left) and test difference of negative ELBO (right) of the variational autoencoder
on MNIST for density estimation.



TABLE I: The final training loss and test loss of each experiment. The reported numbers are the averages over 10 repeated
experiments with corresponding standard deviations.

Training Loss Test Loss
Adam Adam+Trend Adam Adam+Trend

LR 0.3645± 0.0005 0.3634± 0.0003 0.4403± 0.0028 0.4390± 0.0025
FNN* 0.1468± 0.0036 0.1386± 0.0018 0.7492± 0.0288 0.7639± 0.0140
FNN 0.5390± 0.0046 0.5173± 0.0045 0.5478± 0.0066 0.5376± 0.0073
CNN 0.2661± 0.0039 0.2488± 0.0034 0.8201± 0.0111 0.8228± 0.0182
VAE 244.1535± 0.1202 244.0036± 0.1398 245.9947± 0.1996 245.8023± 0.1600

AMSGrad AMSGrad+Trend AMSGrad AMSGrad+Trend

LR 0.3686± 0.0005 0.3676± 0.0003 0.4390± 0.0028 0.4374± 0.0020
FNN* 0.1622± 0.0029 0.1532± 0.0022 0.6982± 0.0186 0.7060± 0.0142
FNN 0.5419± 0.0047 0.5261± 0.0052 0.5475± 0.0040 0.5422± 0.0037
CNN 0.3055± 0.0108 0.2968± 0.0090 0.7974± 0.0149 0.7804± 0.0118
VAE 246.4323± 0.1369 246.3635± 0.1982 248.1823± 0.1715 248.1336± 0.2331

TABLE II: The final training and test classification accuracy of each experiment. The reported numbers are the averages over
10 repeated experiments with corresponding standard deviations.

Training Accuracy Test Accuracy
Adam Adam+Trend Adam Adam+Trend

LR 0.8732± 0.0016 0.8740± 0.0010 0.8063± 0.0438 0.8188± 0.0337
FNN* 0.9599± 0.0058 0.9625± 0.0037 0.8792± 0.0224 0.8771± 0.0237
FNN 0.8881± 0.0027 0.8933± 0.0033 0.8542± 0.0349 0.8646± 0.0104
CNN 0.9674± 0.0001 0.9703± 0.0011 0.6563± 0.0313 0.6875± 0.0625
VAE - - - -

AMSGrad AMSGrad+Trend AMSGrad AMSGrad+Trend

LR 0.8722± 0.0015 0.8732± 0.0010 0.8188± 0.0337 0.8250± 0.0250
FNN* 0.9551± 0.0049 0.9600± 0.0032 0.8958± 0.0264 0.9000± 0.0292
FNN 0.8834± 0.0018 0.8864± 0.0021 0.8458± 0.0250 0.8563± 0.0197
CNN 0.9529± 0.0045 0.9563± 0.0036 0.6688± 0.0563 0.6875± 0.0484
VAE - - - -

the convergence results. Due to the scale issue, we plot the dif-
ference between the ELBOs produced by the two optimizers.
Similar to the first experiment, we plot the difference value
(ELBOAdam − ELBOAdamT) against the epoch for training
and testing. We observe that our AdamT has a much faster
convergence at the early stage of training than Adam and
constantly excels Adam during the rest of the training phase.
The superior performance of AdamT in this experiment also
translates into a clear advantage in the test phase.

E. Quantitative Evaluations

We compare our proposed algorithms AdamT and AMS-
GradT with the corresponding baseline approaches Adam and
AMSGrad respectively based on the final training loss, test
loss, classification performance (except for the VAE model) in
each experiment. The results recorded in Table I and Table II
are the average values along with the standard deviations cal-
culated over 10 repeated experiments with random initializa-
tions. FNN∗ denotes the feedforward neural networks without
dropout layers while FNN represents the same model equipped
with dropout layers. The results show that our proposed two
trend-corrected variants have a superior performance over their
corresponding baseline methods in most of the conducted
experiments under different evaluation metrics, except for the
models (FNN∗ and CNN) which are prone to over-fitting.

From the documented experiment results, we conclude that the
additional trend estimates can provide meaningful information
of the landscape of the loss surface and thus yield a better
performance for the trend-corrected schemes.

V. RELATED WORKS

We consider the class of adaptive moment estimation meth-
ods with exponential moving average scheme as Adam-type
learning algorithms. The fundamental idea was proposed in
[5] and quickly extended to many variants. Some examples
include AdaMax [5], Nadam [8] and AdamW [9].

Despite the efficiency in practice, the problematic short-
term memory of the gradients prevent the conventional Adam-
type methods from a promising global convergences [7]. For
the convex settings, they proposed AMSGrad that promises a
global optimization with a comparable performance. Except
for some other recent studies for convex optimization [19]–
[21], several works developed optimization methods for non-
convex problems. Padam [22], [23] introduces a partial adap-
tive parameter to interpolate between SGD with momentum
and Adam, so that adjacent learning rates could decrease
smoothly. AdaUSM [24] appends the idea of unified mo-
mentum for non-decreasing sequence of weights. AdaFom
[25] obtains first-order stationary by taking simple average on
the second moment estimation. More conditions for pursuing



global convergence were summarized in [26], basing on the
currently successful variants.

VI. DISCUSSION AND CONCLUSION

In this work, we propose a new scheme to calculate the
adaptive step size with trend-corrected exponential smoothing.
The effectiveness of incorporating the trend information is
investigated on the plain Adam method, which is the fun-
damental form of all Adam-type methods proposed in the
literature as well as one of the most popular and widely used
optimizers in practice with many irreplaceable advantages. On
top of that, we also testify the contribution of the modified
component on AMSGrad. Empirical results in Section IV
demonstrate a performance gain on both optimizers in terms
of convergence speed and robustness.

We leave some potentials for future developments. First,
although we focused primarily on Adam, we believe that
similar ideas could also be extended to other popular adaptive
gradient methods for theoretical and experimental analysis.
Also, despite the computational feasibility, the initial imple-
mentation on Adam inherits its non-converge flaw. While
this work focus on investigating the effectiveness of adding
additional trend scheme instead of fixing the inherent issues,
we try the modification with AMSGrad, as one of the solu-
tions, to demonstrate the potential to extend our framework
to optimizers that promise convergence on convex settings.
For non-convex scenarios, some potential works in the recent
literature are discussed in Section V.
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