
Rolling Bearing Fault Diagnosis under Variable
Working Conditions Based on Joint Distribution

Adaptation and SVM
Ming Li1, Zhao-Hui Sun1, Weihui He1,2, Siqi Qiu1 and Bo Liu1

[1]:Department of Industrial Engineering & Management, Shanghai Jiao Tong University, Shanghai 200240, China.
[2]:Xi’an Satellite Control Center, Xi’an, Shaanxi 710043, China.

nono-MAA@sjtu.edu.cn, zh.sun@sjtu.edu.cn, 18817558023@163.com, siqiqiu1988@163.com, lbws888@sjtu.edu.cn.

Abstract—The traditional fault diagnosis methods for rolling
bearing usually require the test data and training data to follow
the same distribution, which cannot be always meet in real-
world scenarios, since the working condition of rolling bearing is
often variable. Hence, to overcome the low performance of fault
diagnosis traditional methods for different data distributions, a
fault diagnosis approach based on transfer learning is proposed
in this paper. And the main idea of our approach is to combine
joint distribution adaptation and support vector machine to
diagnose bearing faults under variable working conditions. In
this research, kernel-JDA is used to reduce the difference between
distributions of datasets taking both the marginal and conditional
distributions into consideration, while the parameters of kernel-
JDA are optimized to improve the performance. Besides, multi-
features including time domain features and the relative wavelet
packet energy are constructed at first to prepare for fault
diagnosis. After mapping the multi-features through kernel-
JDA, SVM is utilized to diagnose faults of rolling bearing
under different working conditions. In addition, comparison
experiments on vibration signal datasets of rolling bearings are
carried out to verify the effectiveness and applicability of this
approach for both the normal and small sizes of the sample sets.

Index Terms—Fault diagnosis, Transfer learning, Joint distri-
bution adaptation, Wavelet packet, Support vector machine.

I. INTRODUCTION

The rolling bearing is a kind of important transmission
components, which is widely used in wind turbines, heli-
copters, cranes, tanks and other important equipment. Under
the poor working conditions, the rolling bearing is prone to
failure, affecting the function of the whole machine. So, it is
significant to study the bearing fault diagnosis method.

Over the past decades, bearing fault diagnosis based on
the vibration signal is a kind of the most extensively studied
methods. Then, many traditional machine learning algorithms
have been successfully implemented in fault diagnosis, such
as support vector machine (SVM), k-nearest neighbor (KNN),
fuzzy inferences and etc. [1-4]. In addition, deep learning
has also made great achievements in bearing fault diagnosis
[5]. Jing et al. [6] have applied convolutional neural network
(CNN) to directly learn features from vibration data and
intelligently identify gearbox failures. Shao et al. [7] have
proposed a bearing fault diagnosis method based on adaptive
deep belief network (DBN). Yang et al. [8] have verified
the effectiveness of long short-term memory (LSTM) in fault

diagnosis of rotating machinery through a large number of
comparative experiments. However, those studies are mainly
focused on fault diagnosis for certain working conditions,
where the classifier may not be effective in diagnose the
data from other working conditions. Besides, the working
conditions of the rolling bearings often change in actual
projects. Hence, there have been researchers studied on fault
diagnosis for various working conditions in past few years.

For example, Liu et al. [9] have utilized recurrent neural
network (RNN) to diagnose rolling bearing fault under various
conditions based on the features extracted with Hilbert-Huang
transform and singular value decomposition. Fei et al. [10]
has studied fault diagnosis of bearing under varying load
conditions by utilizing adaptive feature selection method.
However, the performance of the classifier in those studies
can be degraded, when the characteristics of the training data
and testing data are inconsistent [11]. To solve this problem,
transfer learning is introduced into fault diagnosis in recent
years.

The aim of transfer learning (TF) is to take advantage of
experience learnt in one task and improve the performance in
a similar but different task [12]. Recently, there are mainly
3 categories of methodologies that are widely studied and
applied for transfer learning: instance based transfer learning,
parameter/model based transfer learning and feature based
transfer learning [11]. The methods of instance based TF
include TrAdaBoost algorithm which increases the proportion
of samples that can improve the accuracy of the target domain
classification[13], the method which estimates distribution by
kernel mean matching (KMM) and make the distribution of
the target domain and source domain data closer through
weight adjustment[14], and etc. Model based TF means
the transfer learning by finding the parameters that can be
shared by the model between the source and target domain.
The representative studies on model based TF include the
TransEMDT method designed by Zhao et al. [15], the methods
introduced by Long et al. [16-18] to enhance the generalization
ability of deep neural networks by introducing probability
distribution and network fine-tuning, and etc. Feature based TF
aims at narrowing the difference of data distribution between
source domain and target domain [19-21]. The widely used
methods include transfer component analysis (TCA) which
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minimizes the difference between marginal distributions, joint
distribution adaptation (JDA) which consider the difference
between marginal distributions and that between conditional
distributions at the same time, and etc [19-22]. Transfer
learning offers a good idea for fault diagnosis under various
situations, getting more universal diagnosis models.

As for the research on fault diagnosis of bearing based
on transfer learning, there are a lot of studies shrinking the
difference between marginal distributions [23-24]. Those stud-
ies have not considered adapting the conditional distributions
explicitly, while there are situations that the difference between
conditional distributions is much higher than that of marginal
distributions, making a great effect on the performance of TF.
Besides, parameter/model based TF has also been utilized for
fault diagnosis. For example, Zhong [25] has utilized fine-
tuning to realize transfer learning of CNN for fault diagnosis.
Li et al. [26] have also demonstrated that CNN transfer
learning could improve the accuracy of target domain fault
diagnosis in different gearboxes and under different working
conditions. Although those methods have worked well, they
can only use a part of the source datasets whose distance
from the target distribution is relatively small, leaving some
source data wasted. Therefore, in order to make the best use
of source data, JDA and SVM are combined to develop an
effective method for rolling bearing fault diagnosis in various
working conditions in this research.

In our study, to prepare for fault diagnosis, multi-features
including time domain features and the relative wavelet packet
energy are constructed, dealing with the non-stationary prop-
erty and abrupt changes of the rolling bearing vibration
signals. Besides, in order to improve the performance of JDA-
SVM transfer learning, radial basis function (RBF) kernel is
adopted in JDA and the parameters of RBF-JDA are optimized
by grid search. Furthermore, the applicability of the proposed
method in the situations with normal target sample size and
small target sample size is validated through the experiments.
The rest of the paper are organized as follows. In Section II,
the principle of classifier based on optimized kernel-JDA-SVM
is described. In Section III, the transfer learning fault diagnosis
method applied for bearing in various working conditions is
introduced. Experiment study and performance analysis using
public datasets are carried out in Section IV. Finally, the
conclusion is drawn in Section V.

II. THE PRINCIPLE OF CLASSIFIER BASED ON
OPTIMIZED JDA-SVM

A. The Principle of JDA

JDA was first proposed by Long [22]. The main idea is
to complete the transfer learning by reducing the distance
of the joint probability distribution of the source and tar-
get domains. The joint probability distribution consists of
two parts, marginal probability distribution and conditional
probability distribution. The marginal probability distribution
represents the overall difference between the target domain and
the source domain, for example, the distance between classes
in the two domains is different. The conditional probability

distribution represents the difference between each class in
the two domains, such as the difference in the distribution of
similar samples in the two domains. JDA considers both the
marginal probability distribution and the conditional probabil-
ity distribution, further reducing the difference between the
data distributions of the two domains.

In this research, the data in source domain is rich and the
corresponding states of bearing are known, while the data
in target domain has no labels or the amount of it is small.
So joint distribution adaptation is utilized to make the great
amount of source data which are collected in a known working
condition more useful to train a effective classifier which
can recognize the faults with target data in another working
condition.

Given the labeled source data{(x1, y1), ..., (xns), yns)} and
unlabeled target data {xns+1, ..., xn}, where n = ns + nt is
the total number of samples, ns is the number of samples
in source domain Ds and nt that in target domain Dt. The
implementation of joint distribution adaptation includes three
steps:

1) STEP1: Marginal Distribution Adaptation (MDA) :
Utilize the maximum mean discrepancy(MMD) to com-

pare the distributions of the source and target data. MMD of
MDA is defined as MMD0, which can be calculated by

MMD0 = || 1
ns

∑ns

i=1
ATxi −

1

nt

∑ns+nt

j=ns+1
ATxj ||2

= tr(ATXM0X
TA)

(1)

where A is the transfer matrix, X = {x1, ..., xn} and M0

is the MMD matrix of MDA whose formula is

(M0)ij =


1
n2
s
, xi, xj ∈ Ds

1
n2
t
, xi, xj ∈ Dt

− 1
nsnt

, otherwise

(2)

The difference between the marginal distributions of the
source data and target data can be narrowed by minimize
MMD in Eq.1.

2) STEP2: Conditional Distribution Adaptation (CDA) :
Considering the conditional distributions can be also differ-

ent between Ds and Dt, conditional distribution adaptation is
necessary for robust distribution adaptation. MMD can also
be used to measure the difference of conditional distribution
by computing the distance of each class. The MMD of CDA
is defined as MMDc, whose formula is

MMDc = ||
1

ns,c

∑
xi∈Ds,c

ATxi −
1

nt,c

∑
xj∈Dt,c

ATxj ||2

= tr(ATXMcX
TA)(c = 1, ..., C)

(3)

where ns,c and nt,c are the numbers of the samples of class
c, Ds,c = {xi|xi ∈ Ds ∩ yi = c} is the sample sets of class
c in the source domain, in which yi is the known label of xi.
Similarly, Dt,c = {xj |xj ∈ Dt ∩ yj = c} is the sample sets
of class c in the target domain, in which however yj is not



given. So, the pseudo label ŷ(xj) of xj which is predicted by
the classifier trained by the labeled source data is utilized to
substitute yj [22]. Thus, Dt,c = {xj |xj ∈ Dt ∩ ŷ(xj) = c}.
Mc is the MMD matrix of CDA for class c, whose formula
is

(Mc)ij =



1
n2
s,c
, xi, xj ∈ Ds,c

1
n2
t,c
, xi, xj ∈ Dt,c

− 1
ns,cnt,c

,

{
xi ∈ Ds,c, xj ∈ Dt,c

xj ∈ Ds,c, xi ∈ Dt,c

0, otherwise

(4)

Then sum up the MMDcs of all classes, getting the object
function for conditional distribution adaption:

C∑
c=1

tr(ATXMcX
TA) (5)

The difference between the conditional distributions of the
source data and target data can be narrowed by minimize Eq.5.

3) STEP3: Joint Distribution Adaptation: Add Eq.1 and
Eq.5 together to get the general optimization goal:

min

C∑
c=0

tr(ATXMcX
TX) + λ||A||2F (6)

where, λ||A||2F is the regulation term and λ is the regulation
coefficient.

Besides, considering the variance of the data after the
transformation should not be changed, a constraint term is
added:

min

C∑
c=0

tr(ATXMcX
TA) + λ||A||2F

s.t.ATXHXTA = I

(7)

where, H = I − 1
n1 is the centering matrix and I is the

n ∗ n unit matrix. Then use eigen decomposition to solve it:

(X

C∑
c=0

McX
T + λI)A = XHXTAφ (8)

where, φ = diag(φ1, ..., φk) ∈ Rk∗k are the k largest
eigenvalues. Thus, the transform matrix A can be get. For
nonlinear problems, long et al. [22] adopt kernel mapping to
JDA:

min

C∑
c=0

tr(ATKMcK
TA) + λ||A||2F

s.t.ATKHKTA = I

(9)

where K = ψ(X)Tψ(X) ∈ Rn∗n is the kernel matrix.

B. The principle of kernal-JDA-SVM

The main idea of JDA-SVM is to use JDA to make the
sample distributions of source and target domains closer, and
then the SVM classifier is trained using the mapped source
samples to obtain better classification results for the target
samples. The algorithm can be described as:

1) STEP1: Only adapt the marginal distributions and then
utilize the mapped source samples to obtain the initial SVM
classifier M (0)

svm. Use this classifier M (0)
svm to obtain the clas-

sification results of the unlabeled target domain samples, and
set them as the initial pseudo labels ŷ(0)(xj).

2) STEP2: Iteration
a) Set Tmax = m for termination criterion, and the initial

iteration T = 1.
b) Calculate the MMD matrix of MDA by Eq.2 and utilize

the pseudo label to calculate the MMD matrices of CDA by
Eq.4.

c) Add the MMD matrix of MDA and those of CDA
together to get

∑C
c=0Mc.

d) Solve the general optimization problem in Eq.9 of kernel-
JDA by

(X

C∑
c=0

McXK
T + λI)A = KHXTAφ (10)

Then get the transform matrix A and the mapped sample
matrix Z = ATK.

e) Utilize the mapped sample sets of source domain Zs to
train an SVM classifier M (T )

svm. In this research, the SVM with
RBF kernel is used and its penalty term and the bandwidth of
RBF are optimized by k-folds cross validation and grid search.

f) Use the classifier to get the predicted labels ŷ(T )(xj) and
the accuracy Acc(T ) with the mapped sample sets Zt of target
domain.

g) Identify whether the iteration T meets the termination
criterion Tm = m. If not, set ŷ(T )(xj) as the new pseudo
label and then return to b). If so, break the loop.

From these steps, the predicted labels would be closer to
the real labels, resulting a more accurate classifier for target
domain.

C. The Optimized kernel-JDA-SVM Based on Grid Search

The general idea is to use grid search to optimize the
regulation coefficient λ in Eq.9 and the parameter of the JDA
kernel. RBF kernel is used as the JDA kernel in this research,
whose formula is

K(x, y) = e−γ||x−y||
2

(11)

where γ is the term that needs to be optimized.
The algorithm can be described as:
1) STEP1: Determine the grid for parameters optimization.

For example, set the grid of log2λ as [−5 : 1 : 5] and the grid
of log2γ as [−5 : 0.5 : 5], where 1 and 0.5 are the intervals
while [−5, 5] is the range.



2) STEP2: Use each group of parameters for kernal-JDA-
SVM training to obtain the target domain data classification
accuracy rate Accλ,γ of the classifier Mλ,γ

svm.
3) STEP3: Search for the maximum Accλ,γ . The corre-

sponding parameters λb, γb of maximum Accλ,γ are the opti-
mized parameters. And the Mλb,γb

svm is the optimized classifier
for target samples.

Thus, the parameters of kernel-JDA-SVM are optimized
automatically, improving the performance of kernel-JDA-SVM
classifier for samples in target domain.

III. DESIGN OF TRANSFER LEARNING BASED
FAULT DIAGNOSIS FOR BEARING IN VARIABLE

WORKING CONDITIONS

The general framework of the transfer learning based fault
diagnosis for bearing in variable working conditions is shown
in Fig.1. It mainly contains two parts, construction of multi-
features and transfer learning of fault classifier based on
optimized kernel-JDA-SVM.

A. Construction of Multi-features

Multi-state vibration signals (including normal and multiple
faults) of rolling bearing with various working conditions are
pre-processed. Features are extracted from the time domain
and wavelet packets to form the multi-features set.

The features extracted from time domain include root mean
square (RMS), crest factor (CF), shape factor (SF), impulse
factor (IF), margin factor (MF), kurtosis factor (KF), and
skewness (SN). Given the vibration signal x(i), then the
formulas of the time domain features can be expressed as those
Table I shows.

TABLE I
THE FORMULAS OF TIME DOMAIN FEATURES

Feature Formula

RMS
√

1
N

∑N
i=1 x

2(i)

CF max|xi|
RMS

SF RMS
1
N

∑N
i=1 |x(i)|

IF max|xi|
1
N

∑N
i=1 |x(i)|

MF max|xi|
( 1
N

∑N
i=1

√
|x(i)|)2

KF
1
N

∑N
i=1(x(i)−µ)

4

S4

SN 1
N

∑N
i=1(x(i)− µ)3

a→. µ = 1
N

∑N
i=1 x(i) is the mean and S =√

1/(N − 1)
∑N

i=1(x(i)− µ)2 is the standard deviation of the

signal.

In addition, wavelet packet analysis is utilized in this
research to divide frequency bands and get the characteristic
energy of the bands, improving the time-frequency resolu-
tion. Wavelet packet decomposition filters the analysis signal
through a series of low-pass and high-pass filters, and decom-
poses the signal into independent frequency band sub-signals
in the form of nodes of a binary tree [27]. After performing
l − layers wavelet packet decomposition on the original
vibration signal, the decomposed signal can be expressed as

x(t) =

2l∑
j=i

∑
k

xjl (k)u
j
l (k, t) (12)

where xjl (k)(k = 1, 2, ..., N) is the wavelet packet coef-
ficient of the node (l, j), ujl (k, t) is the orthogonal wavelet
basis. The energy at the wavelet packet node (l, j) is

Ejl =

N∑
k=1

(xjl (k))
2 (13)

The relative wavelet packet energy is

AEjl =
Ejl∑2l

j=1E
j
l

(14)

Then, 2l relative wavelet packet energy can be obtained,
expressed as AEl = (AE1

l , AE
2
l , ..., AE

2l

l ). AEl can be used
to analyze the energy of each frequency band, which makes
a great difference in analysis of non-stationary, nonlinear
vibration, such as that of rolling bearing. So, select a suitable
number of wavelet packet decomposition layers according to
the natural frequency of the vibration acceleration sensor and
the sampling frequency. In this study, 3 layers of decomposi-
tion are used to extract the features of the 8 components from
the low frequency to the high frequency of the third layer.

Finally, 15 features are constructed from the vibration
signals of bearings recorded as F .

F = (RMS,CF, SF, IF,MF,KF, SN,AE1
3 , AE

2
3 , ..., AE

8
3)
T

(15)
In this study, the labeled vibration signals of different

bearing states in known working conditions are defined as the
data in source domain Ds, and the vibration signals of different
bearing states in other working conditions are defined as the
data in target domain Dt. For ns samples from Ds, the matrix
of the multiple features is

MFs = (F1, ..., Fns) (16)

Similarly, the matrix of the multiple features in Dt is

MFt
= (F1, ..., Fnt

) (17)

In addition, the multiple features in both domains are
normalized to eliminate dimensional effects between features.
The final matrices of the normalized multiple features are



Fig. 1. The framework of fault diagnosis based on the optimized kernel-JDA-SVM for bearing in variable working conditions.

M ′Fs
= (F ′1, ..., F

′
ns
) (18)

M ′Ft
= (F ′1, ..., F

′
nt
) (19)

B. Transfer Learning of Fault Classifier based on Optimized
kernel-JDA-SVM

Take the normalized multiple features obtained from Eq.18
and Eq.19 as the inputs of optimized kernel-JDA-SVM. Then
utilize kernel-JDA to build the joint distribution MMD opti-
mization model, and solve the transform matrix A. Then, use
the mapped sample sets of the normalized multiple features
with labels in source domain as the input to train SVM, while
use grid search and k-folds cross validation to optimize the
cost coefficient and the parameter of Gaussian kernel, getting a
fault classifier. In addition, grid search is also used to optimize
the values of parameters, the regulation coefficient λ and the
RBF parameter γ, of kernel-JDA. Thus, different λs and γs in
a certain range are tried in kernel-JDA-SVM to find the λ and
γ with which the classifier is of the best performance on target
domain. Finally, through the optimized kernel-JDA-SVM, the
classifier with a relative high accuracy of fault diagnosis for
bearings in unknown working conditions can be got.

IV. EXPERIMENT STUDY AND PERFORMANCE
ANALYSIS

A. Datasets Description

In this research, the bearing data sets from Western Reserve
University Bearing Data Center are selected to investigate the
applicability of the presented approach [28]. The data was
acquired from the bearing test system, which is shown in Fig.
2. The vibration signals were collected by a 16 channel DAT
recorder, and the sampling frequencies contained 12 kHz and
48 kHz.

Fig. 2. The bearing test system at Western Reserve University.

The vibration signals of the rolling bearing at the drive end
with 48 kHz sampling frequency are analyzed in this study.



3 different fault diameters and 4 different working conditions
were carried out in the testing. Different test conditions are
given in Table II. In this paper, the fault types contain ball
defects of 3 diameters and inner race defects of 3 diameters.
Thus, adding the normal state of bearing, there are 7 classes
of the bearing status.

TABLE II
THE TEST CONDITIONS

Fault Diameter 0.007” 0.014” 0.021”

Working Conditions

A 0hp, 1797r/min
B 1hp, 1772r/min
C 2hp, 1750r/min
D 3hp, 1730r/min

Comparison experiments are designed based on the sample
sets of 7 types of state and under 4 kinds of working condi-
tions. Fault diagnosis tests based on the optimized kernel-JDA-
SVM and those based on direct SVM, which means training
the SVM classifier with the unmapped target data, are carried
out to demonstrates the validity of the presented approach.
In this research, the data under the working condition C is
used as the source samples, while the data under the working
condition A\D is utilized as the target samples.

B. Preprocessing Results

In this research, 4096 vibration signal points are taken
per sample. For each sample, elimination of mean value
and other preprocessing are carried out before extracting
the multiple features from the vibration signals. After
extracting 15 features from each sample, the features
from the C samples and those from A\D samples are
normalized respectively. Fig.3 shows a part of normalized
features extracted from the samples under the working
condition C. It can be seen that the multi-features F =
(RMS,CF, SF, IF,MF,KF, SN,AE1

3 , AE
2
3 , ..., AE

8
3)
T

can reflect the 7 different states of rolling bearing effectively.

C. Performance Analysis of Optimized kernel-JDA-SVM Fault
Diagnosis for Target Sample Sets with Normal Size

In the experiments, grid search and the 5-folds cross valida-
tion are used to optimized the parameters of SVM classifier.
Other necessary parameters for JDA-SVM transfer learning
are set as follows: 1) The termination criterion for iterations
of JDA T = 15; 2) The dimension of mapped features
dim = 15; 3) The initial grid of optimized kernel-JDA-SVM
{λ|1og2λ = [15 : 0.5 : 7]} and {γ|log2γ = [−5 : 0.5 : 5]}.

Given the learning parameters, the direct SVM classifier,
linear-JDA-SVM classifier and optimized kernel-JDA-SVM
classifier are trained with C samples to identify different faults.
Table II shows the diagnosis results. ’C2B’ is not studied in
this research because the distributions are almost the same
between C and B and the accuracy of using the SVM trained
the original C samples to identify B samples is 94.38 % which
is good enough for fault diagnosis.

TABLE III
THE DIAGNOSIS ACCURACY OF EXPERIMENTS FOR TARGET

SAMPLE SETS WITH NORMAL SIZE

Experiment Source
Samples

Target
Samples

Accuracy(%)

SVM
optimized

kernel-JDA-
SVM

C2A 828 370 71.89 91.35
C2D 828 828 85.51 96.26

It can be seen from the table that the accuracy of optimized
kernel-JDA-SVM is the highest. And the optimized kernel-
JDA-SVM improves the ACCs of the SVM for ’C2A’ and
’C2D’ by more than 10%, making the fault diagnosis accuracy
greater than 90%.

Results of grid search for optimized kernel-JDA-SVM are
shown in Fig.4. The gird for ’C2D’ remains the initial state
while that for ’C2A’ experiment has been fined to get the
better results. The optimized parameters of kernel-JDA-SVM
in ’C2A’ experiment are γ = 9 and λ = 32. And the optimized
parameters in ’C2D’ experiment are γ = 2−3.5 and λ = 2−7.
In addition, the MMD of marginal distribution and that of
marginal distribution are calculated based on Eq.1 and Eq.5 to
measure the difference between target distribution and source
distribution. The total MMD is denoted as MMDT , which
is calculated by

MMDT =

C∑
c=0

tr(ATKMcK
TA) (20)

Table IV compares the MMDT for original samples and
mapped samples after using optimized kernel-JDA-SVM in
both ’C2A’ and ’C2D’ experiments. The MMDT are de-
creased after mapping based on optimized kernel-JDA. So,
the SVM classifiers trained by mapped samples have higher
accuracy than those trained by original samples.

TABLE IV
THE MMDT BETWEEN TARGET DATA AND SOURCE DATA BEFORE AND

AFTER USING OPTIMIZED KERNEL-JDA-SVM

Experiment MMDT (10
−2)

Before After
C2A 205.7 66.09
C2D 45.85 27.21

In general, it can be concluded that optimized kernel-JDA-
SVM can be effective in transfer learning fault diagnosis.

D. Performance Analysis of Optimized kernel-JDA-SVM Fault
Diagnosis for Small Size of Target Samples

The experiments to validate the applicability of the pre-
sented method in small set of target samples are also conducted
in this study. 77 independent samples under the D working



(a) RMS (b) SF (c) MF (d) AE2
3

(e) AE4
3 (f) AE6

3 (g) AE7
3

Fig. 3. A Part of Normalized features extracted from data under C working condition (The x-coordinate is the sequence number of the sample, while the
y-coordinate is the normalized value of the feature.)

(a) C2A (b) C2D

Fig. 4. The gird search for optimized kernel-JDA-SVM (The red cross in the figure shows the optimal accuracy in the grid, and its corresponding coordinates
are the optimized parameters.)

condition are taken as the target data at each time, while all
the samples under C working condition are taken as the source
data. Table V shows the results of fault diagnosis for small
set of target samples based on the direct SVM and optimized
kernel-JDA-SVM respectively.

It can be seen that the average accuracy of fault diagnosis
for small target samples based on optimized kernel-JDA-SVM
reaches 96%, which is higher than SVM without distribution
adaptation. Especially for these with lower accuracy, the opti-
mized kernel-JDA-SVM has increased the accuracy a lot. For
example, the accuracy of fault diagnosis in ’C2D1’ experiment
is improved from 66.23% to 98.70%. For the situations where
the distribution similarities between target and source domains
are high enough to use SVM directly, the accuracies of the
optimized kernel-JDA-SVM can still stay at a high level.
Although the accuracies for ’C2D10’ and ’C2D3’ have been
a little bit decreased by 1%, the accuracies of the optimized

kernel-JDA-SVM are still larger than 95%. So, the optimized
kernel-JDA-SVM is effective in gear fault diagnosis under the
situation where the target samples are insufficient.

In general, it has been proved that optimized kernel-JDA-
SVM is effective in bearing fault diagnosis under various
working conditions, which make the source data useful for
fault diagnosis in other working conditions with relative high
accuracy.

V. CONCLUSION
In this study, a transfer learning based method has been

designed for rolling bearing fault diagnosis under variable
working conditions. The method includes multi-features ex-
traction and classifier construction based on optimized kernel-
JDA-SVM. The multi-features contain 7 kind of time domain
features and 8 wavelet packet features. The parameters of
kernel-JDA-SVM are optimized by grid search to get a better
performance. Furthermore, the effectiveness of the proposed



TABLE V
THE DIAGNOSIS ACCURACY OF EXPERIMENTS FOR TARGET

SAMPLE SETS WITH SMALL SIZE

Experiment Source
Samples

Target
Samples

Accuracy(%)

SVM
optimized

kernel-JDA-
SVM

C2D1 828 77 66.23 98.70
C2D2 828 77 92.21 94.80
C2D3 828 77 97.40 96.10
C2D4 828 77 92.21 94.81
C2D5 828 77 92.21 94.81
C2D6 828 77 89.61 94.81
C2D7 828 77 94.81 96.10
C2D8 828 77 96.10 97.40
C2D9 828 77 90.91 98.70
C2D10 828 77 98.70 97.40

AVG 91.04 96.36

approach is validated through groups of comparison experi-
ments. In the experiments, above 90% accuracy is achieved
in optimized kernel-JDA-SVM for fault diagnosis for target
data under different working conditions. Meanwhile, for the
situation when the size of target samples is relatively small,
optimized kernel-JDA-SVM increase the accuracy from 66%
to over 90% in the experiment.

For the future, the weight of marginal distribution difference
and conditional distribution difference will be studied to adjust
it automatically by evolutionary computation to improve the
performance. In addition, the applicability of the method
for different types of bearings will be also studied through
experiments.
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