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Abstract—Saliency maps are often used in computer vision
to provide intuitive interpretations of what input regions a
model has used to produce a specific prediction. A number
of approaches to saliency map generation are available, but
most require access to model parameters. This work proposes
an approach for saliency map generation for black-box models,
where no access to model parameters is available, using a
Bayesian optimisation sampling method. The approach aims to
find the global salient image region responsible for a particular
(black-box) model’s prediction. This is achieved by a sampling-
based approach to model perturbations that seeks to localise
salient regions of an image to the black-box model. Results
show that the proposed approach to saliency map generation
outperforms grid-based perturbation approaches, and performs
similarly to gradient-based approaches which require access to
model parameters.

I. INTRODUCTION

Deep learning (DL) techniques have become a standard
approach in computer vision. Specifically, the convolutional
neural network (CNN) architecture has shown exceptional per-
formance, achieving results comparable to human performance
on image recognition tasks [1]–[3]. As a result, CNN models
are often deployed in real life as efficient black-box tools.
However, there remains a gap in our ability to explain and/or
interrogate a model’s decisions. Saliency visualisation in ma-
chine learning (ML) is a type of visualisation that provides an
intuitive explanation of the model’s output by highlighting the
input regions which contributed the most to the final output.
The key motivation behind saliency visualisation in computer
vision is to be able to distinguish the image region that
contains the information responsible for the model’s prediction
[4]–[7]. By providing interpretable details about the model’s
decision, end-user trust can be gained, and introspection can
be performed when predictions are incorrect.

Most existing approaches for saliency map generation as-
sume that the model of choice is a white-box, i.e., that certain
characteristics of the model are known, and that access to
the model’s parameters is available [8], [9]. In this work,
we introduce a saliency map generation approach that can be
used for any black-box model, only requiring access to input
and output data, and the ability to query the model. This is
particularly important for introspection into third-party tools,

Fig. 1. Example of the saliency map (right) and the corresponding input
image (left) for class-prediction “papillon”. The input image has an overlayed
window box, representing an area used to measure sensitivity of the image
location to the model’s output.

or the investigation of models where access to the underlying
parameters is not available.

The proposed approach generalises a standard occlusion-
based sliding window technique for saliency map genera-
tion [6]. The standard occlusion-based approach (referred to as
exhaustive search further in this study) involves sequentially
blanking regions of the input, and measuring the resultant
change in model output. The intuition behind the blanking
operation is that for a given model f , an image X , and
a partially blanked image X̂ , the model outputs f(X) and
f(X̂) should vary significantly if an important feature of X
was blanked in X̂ . An example of a partially blanked image
and the corresponding saliency map is shown in Figure 1.
Using the exhaustive search approach requires many blanking
operations, making it computationally expensive, so typically
only very coarse saliency maps can be generated. An important
parameter for the exhaustive search is the size of the blanking
window. Multiple window sizes can be employed to improve
the quality of the saliency map, however, every additional
window size further reduces the computational efficiency of
the approach.

A method proposed by Burke [10] assumes that the ML
model is a black box, and uses probabilistic inference to mimic
the behaviour of the model in response to small changes made
to the input image. Sampling is performed in areas of interest
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to produce the saliency maps. This approach reduces the need
to sample at every pixel location, however, there is still a need
to manually specify the size of the blanking window used to
occlude image regions.

This study builds on the work of Burke [10] to find a general
occlusion-based saliency method for black-box models. A
Bayesian optimisation sampling approach is used to look for
potential regions to blank in an image. Additionally, Bayesian
optimisation is used to identify the best blanking window size
to use per sample. As a result, the salient parts of the image
are sampled more densely, thus reducing the computational
cost of producing a saliency map. The primary contributions
of this work are as follows:

• We introduce a Bayesian optimisation approach to
occlusion-based saliency map generation for black-box
models.

• We propose an intersection over union saliency metric to
quantitatively measure the accuracy of a saliency map.

The rest of the paper is structured as follows: Section II pro-
vides the background on saliency map generation. Section III
gives a formal definition of the occlusion-based saliency
map generation method. Sections IV discusses the proposed
Bayesian optimisation approach to saliency map generation.
Section V describes the experimental procedure, and presents
the empirical results. Section VI concludes the paper.

II. BACKGROUND

Early work on saliency map generation algorithms [5]–[7]
aimed to calculate the gradients from the model to identify
pixels that contributed more to the model’s output. The derived
gradient was accessed using a single pass through the model,
and did not take the model architecture, eg. individual network
layers, into account. Fong and Vedaldi [11] proposed a method
that builds on [5]. Rather than using one pass through the
model to obtain the gradient used for the saliency map forma-
tion, Fong and Vedaldi’s method derives the gradient multiple
times using the gradient descent optimisation technique. At
each iteration, more information is learned that helps find
the size of the perturbation mask which minimises the image
classification error. In the reported results, 300 iterations
were used to produce the saliency map [11]. In Fong et al.
[12], an extension of [11] is presented, which focuses on
generating the extremal saliency mask that has a maximal
effect on the model’s output when applied on the input image
compared to other perturbations, i.e., when particular pixels
are overlayed on the input image, the model outputs the highest
prediction score. These approaches are not applicable to non-
differentiable black-box models, and finite difference gradient
approximations may be expensive.

More recent approaches [9], [13], [14] have used gradient-
based techniques that explicitly manipulate gradients at dif-
ferent network layers. Zhou et al. [13] proposed a saliency
mapping approach that requires a direct extraction of the
learned weights from the last convolutional layer of a CNN,
and applies global average pooling [15] to generate class
activation maps (CAM). However, this method can only be

used for image classification tasks; thus, a generalisation
of CAM was proposed by Selvaraju et al. [14] to extend
the approach to accommodate any CNN. Even though these
techniques generate saliency maps that are interpretable, they
require direct access to the learned features of a CNN, and are
designed for the specific CNN-type architecture.

Dabkowski and Gal [16] proposed a method that extracts
feature maps at multiple layers and optimises the regions
accountable for the output such that (1) the salient region alone
allows a sufficient confidence classification, and (2) when the
saliency region is removed, the model is not able to predict the
correct class of the image. These objectives are further used
to define a saliency metric that seeks to identify if the saliency
map has indeed discovered the most discriminant region that
contributed to a model’s prediction.

In Ghariba et al. [17], the encoder-decoder saliency map
generation method that requires access to the convolutional
blocks of the CNN model was proposed. The technique
requires access to five different convolutional blocks to obtain
the feature maps and passes the outcome to the five decoder
blocks where the features are up-sampled to form saliency
maps of the same size as the image. Further, all five attention
maps are merged to produce a higher performance map.

Park et al. [18] proposed saliency map generation based
on a visual questioning and answering (VQA) model. The
saliency maps were used to justify the answer obtained from
the model when a question was asked based on the image
provided. To generate the saliency maps, access to the model’s
convolutional blocks and the LSTM features was required.

All of the approaches discussed above require access to
model parameters, which makes them unsuitable for black-
box model introspection.

A general approach for saliency map generation for black-
box models requires testing the model’s sensitivity through
small alterations to the input, as demonstrated by Zeiler and
Fergus [6]. This process sequentially blanks parts of the
image region to find input regions that maximally contribute
to the final prediction. A variation of this approach was
proposed by Burke [10]. The saliency overlay for black-box
models proposed in [10] uses a Gaussian process (GP) for
saliency map approximation, with a random sampling strategy
to search for potential areas to mask in the input image. A
limitation of this method is the use of heuristics to select
the blanking window size to be used for probing the model.
This study proposes a modification of [10] that automatically
chooses the appropriate blanking window size using Bayesian
optimisation.

The next section provides a formal definition of the ex-
haustive occlusion-based method for saliency map generation.
Subsequently, the proposed Bayesian optimisation approach is
discussed in detail.

III. OCCLUSION-BASED SALIENCY

Occlusion-based saliency map generation sequentially
blanks patches of input pixels, and evaluates the model’s
output with respect to the blanked image location. This can be



considered a crude form of sensitivity analysis that identifies
salient regions in the image by measuring the change in model
output, without tampering with the model.

Without loss of generality, the following definition assumes
the model of interest to be a classification model. Let f be the
image classification model and X be the images. To evaluate
how well f performs given X , we observe the relationship
between the blanked image X̂ and the change in the model’s
output, i.e. class probability, y = f(X)− f(X̂). The saliency
map is formed by the y values, which are obtained by
sequentially blanking the image per pixel location, and passing
the blanked image X̂ to the model.

The exhaustive per-pixel approach requires many model
evaluations, where uninteresting regions are also blanked
multiple times. This approach is typically infeasible for larger
images, and a grid-based approximation is generally proposed
for computational feasibility.

The next section presents the proposed Bayesian optimisa-
tion approach for saliency map generation.

IV. BAYESIAN OPTIMISATION FOR SALIENCY GENERATION

Bayesian optimisation is a search method that locates the
global optima of a black-box function through sequential
sampling. The sequential process alternates between two steps:
(1) fitting a probabilistic model that approximates the global
function value at a point (or region) of f , and (2) using a ma-
nipulation function to determine the next best point to evaluate
based on the previous mean and variance predictions [19]. This
work aims to exploit this method for the purpose of saliency
map generation. The primary goal of this work is to generate
the saliency map using the search method that chooses globally
optimal sampling parameter values for the blanking process,
such that the greatest reward is yielded for faster saliency map
convergence.

Figure 2 provides a diagrammatic overview of the pro-
posed saliency map generation algorithm using Bayesian
optimisation. The black-box model is accessed to extract
the information used to generate the saliency map through
Bayesian optimisation, which involves fitting a GP model to
the observations, and using an acquisition function to select
the next region to sample, together with the window size.
Section IV-A discusses how the GP model is fit. Section IV-B
discusses the acquisition function employed in the study.
Section IV-C proposes a region-based ratio metric to be used
for the performance evaluation of the saliency maps.

A. Gaussian process

Generating the saliency map for a given image requires
iteratively fitting a GP model to determine the posterior
probability over functions. A GP by definition is a collection
of normally distributed random variables where any finite
number of the variables have a jointly Gaussian distribution
[20]. Intuitively, the GP is a generalisation of the multivari-
ate Gaussian distribution that is completely specified by the
mean function m(Q) and the covariance function k(Q,Q

′
),

given a set of observations Q. The GP is used to construct

a probabilistic model g using any finite random collection
of data, D = {(x1:i, y1:i)}; x1:i = {(u1:i, v1:i, s1:i)} and
y1:i = {f(X)1:i − f(X̂)1:i}, which is expected to approx-
imate the black-box function f after sufficient observations
have been made. Thus, fitting a GP model g requires a
finite set of input and output observations from the black-
box model f . Let X be an m × n input image given by
a set {(u1, v1), ..., (um, vn)} of all possible pixel coordinate
combinations, and let S = {s1, .., sl} be the set of variable
window sizes of length l. We can fit g using a set of samples
D1:i = {x1:i, y1:i}. The model g can later be used to predict
the approximated saliency map for other unseen observations
Q = {x1, ...,xp}, p = m× n× l.

To begin the algorithm, a random point(s) xi ∈ Q is
selected, the image X is blanked at coordinates (ui, vi)
with window variable size si, and fed to the model to
obtain the output f(X̂i) before GP evaluation. The finite set
D1:i = {x1:i, y1:i}, with variables added continuously during
the optimisation process, is then used to build the prior
GP model g. For GP model parameter choice, the Matérn
kernel function is selected. The kernel function is used to
estimate the covariance k(Q,Q

′
) of the Gaussian function.

Genton [21] discusses different types of kernel functions for
ML and their impact. The Matérn covariance function is a
kernel function that assumes an uneven feature space. This
property introduces flexibility that makes the Matérn function
applicable to practical problems [22]. The following equation
defines the Matérn function:

kmat(xi,xj) =
σ22ν−1

Γ(ν)

(√2ν

l
r
)ν
kv

(√2ν

l
r
)
, (1)

where σ is the kernel variance, r = |xi − xj |, Γ(∗) is the
gamma function, kv(∗) is the Bessel function, and ν = 2.5
and l = 12 are the hyperparameters of the Matérn function,
found using maximum likelihood estimation.

Fig. 2. Bayesian optimisation process for the generation of a saliency map.



To fit the GP iteratively, Bayes’ theorem is used, which
provides the updated expected solution based on the previously
observed variables as follows:

p(y|x) =
p(x|y)p(y)

p(x)
, (2)

where p(x|y) is the likelihood, p(x) is the evidence, and p(y)
is the prior. To improve the saliency map, we iteratively update
the prior belief of g by adding new observations to D. The new
observations are selected such that they improve the model g’s
knowledge about the true function f or reduce the number of
sample variables needed to generate the saliency overlay. To
find these observations, we use an acquisition function that
uses the posterior mean and covariance values to specify the
next pixel coordinates of the image to sample at, together with
the window size to blank. Aquisition functions are discussed
in the next section.

B. Acquisition functions

In order for the Bayesian optimisation saliency map ap-
proach to converge in minimal time, a clever way of selecting
regions to blank in the input image that yields the highest re-
ward must be followed. In the Bayesian optimisation approach,
an acquisition function ϕ is used to find the next optimal point
x∗
i ∈ Q observations, using the predicted posterior mean and

covariance [20].
The commonly studied acquisition functions for finding the

global optimum of the black-box function can be found in
[19]. For this work, we used the expected improvement (EI)
acquisition function. The EI acquisition function implicitly
balances the exploration-exploitation trade-off, thereby explor-
ing places with high variance, while exploiting at places with
low mean [23]. The balance between the exploration and
exploitation helps the GP model gain more certainty of the
black-box function as a whole.

As shown in Figure 2, the acquisition function is used to
compute the next set of elements for the blanking process. The
EI acquisition function is given by:

ϕEI = (m(Q)i − y∗i )Φ(Z)− k(Q,Q
′
)iφ(Z),

Z =
m(Q)i − yi
k(Q,Q′)i

,
(3)

where Φ(Z) and φ(Z) denote the cumulative probability
function (CPF) and probability density function (PDF), re-
spectively. The equation uses the CPF and PDF to weigh the
strength of either exploiting at the places already visited, or
exploring, i.e., trying a new place with the highest uncertainty
to see if an improvement on its prediction confidence can be
achieved. The value of ϕEI is then used to find x∗

i to evaluate
f next, which gives the current optimal y∗i .

Algorithm 1 summarises the proposed approach.

C. Saliency map evaluation

In order to test the proposed saliency map generation
method, and to benchmark it against existing methods, a

Algorithm 1 Bayesian optimisation sampling approach for
saliency map generation

1: Start: Random initialisation of D1:i = {x1:i, y1:i}
2: for iterations i = 1, 2, 3, ..., N do
3: Fit GP model g using D1:i using Matérn kernel
4: Predict m(Q) and covariance k(Q,Q

′
) using g

5: Evaluate ϕ(Q)
6: Select x∗

i = arg min
x

ϕ(Q)

7: Query xi and then update yi
8: Augment dataset D1:i+1 = D1:i ∪ (xi, yi)
9: Repeat step [3 − 8] until convergence or the N th

iteration
return m(Q) and covariance k(Q,Q

′
)

means of objectively evaluating the quality of the produced
saliency maps is necessary. There exist a number of evaluation
metrics for saliency map approaches. In Kindermans et al.
[24], an approach that assesses the reliability of pre-existing
saliency methods was proposed. The method in [24] monitors
the invariance of the saliency maps to small changes in the
input, and reports the saliency method robustness, with the
assumption that minor input changes that do not contribute
towards a model’s prediction should not alter the saliency
map. Dabkowski and Gal [16] proposed a saliency metric
that evaluates the quality of the saliency map by finding the
smallest rectangle containing the salient region that still allows
for correct classification. This metric only considers saliency in
terms of the final decision, and would thus penalise a saliency
map that included an entire dog over one that simply included
the dog’s face, since a face is enough to perform classification.
In order to address this limitation, we propose a saliency
ratio metric rsal, which requires that the bounding box of the
desired object be known.

The saliency ratio metric is computed as the sum of the
saliency score inside the bounding box over the total sum
of the saliency map score. Let S represent the saliency map
for the whole image, and T the saliency map for the target
bounding box. The saliency ratio metric is given by:

rsal =

∑
T∑
S
. (4)

This ratio metric evaluates saliency maps in a manner typi-
cally used for segmentation, and rewards saliency within the
bounding box specified for a given target, while penalising
saliency outside this region. The value of rsal is bounded to
the [0, 1] interval, where 0 corresponds to completely missing
the bounding box in the saliency prediction, and 1 corresponds
to perfectly aligning the saliency prediction with the bounding
box.

V. EXPERIMENTAL SETUP AND EMPIRICAL RESULTS

The experiments conducted for this study were designed
to test the proposed method on a complex visual task, and
to benchmark against the existing saliency map generation
approaches. The ImageNet 2012 dataset [25], which mainly
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Fig. 3. Illustration of the saliency overlay process using Bayesian optimisation method with a dog as the data sample. The figure shows pairwise input-output
results obtained using 12 sample examples. The input images show varied blanking window sizes at different image locations. The output shows the saliency
maps that highlight the prominent region corresponding to the exciting part of the input image for the model’s prediction.

consists of different breeds of dogs, was used to evaluate the
performance of the proposed approach. The model used for
testing was the pre-trained VGG16 model [2], which is a
high-performing CNN architecture. For all images tested, the
saliency maps were generated with respect to the associated
target class. For the Bayesian optimisation saliency overlay
approach, 200 sample steps were used, where at each step
a GP model was fit using a set D = {xi, yi}200i=1 where
xi is made of (ui, vi) image coordinates, and the blanking
window size si ∈ S, S = {50, 64, 78, 92, 107, 121, 135, 150}.
A constant colour 128 for the R, G, B channels was used for
the blanked pixels. A total of 500 images were used to quantify
the saliency map performance. A convergence analysis showed
that 200 samples were typically enough for the optimisation
to converge to a maximum on the Imagenet 2012 dataset.

A. Saliency map generation

The results shown in this section illustrate the selection
criteria of the Bayesian optimisation approach for the saliency
overlay generation. Figure 3 shows a subset of the input-
output results, where all the input images are overlayed with
a blanking window, and the corresponding output images
show the saliency maps at a particular iteration. The blanked
position and the blanking window size were specified by
the EI acquisition function. The predicted saliency overlays
corresponding to the input images shown were produced using
the predicted mean of the posterior GP.

Figure 3 shows the automatic selection of the blanking
window size, the sampling position, and the saliency maps
at specific iteration times. The first saliency map is obtained
using a GP model fit with only one sample point, the second
with three sample points, and the last with 200 sample points.
It can be seen that as the sample size increases, the fitted

Fig. 4. The saliency map and the points projection used for the saliency map
generation.

GP is able to produce a saliency map that can approximate
the salient regions of the image using the black-box model,
without evaluating the importance at every image pixel. From
Figure 3, it can be seen that the saliency map gets better with
an increase in sample points, and correctly indicates which
image regions contributed more to the output of the given
black box model.

B. Exploration-exploitation trade-off

The goal of the proposed saliency map technique is to
generate the saliency map from the black-box model with
the minimal number of samples, sampling substantially at
regions of interest with various (or appropriate) window sizes,
as opposed to the exhaustive search saliency map generation
approach. Figure 4 shows a 3-dimensional diagram on the left
illustrating the sampled points, and the corresponding saliency
map to the right. The scattered points represent the (x, y)
image coordinates, and the blanking window sizes (z-axis)
show the blanking values which were chosen to generate the
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Fig. 5. Saliency maps generated from the different methods as follows: (b) the proposed Bayesian optimisation method (Bayes opt), (c) the exhaustive search
discussed in Section III, (d) the saliency by perturbation [11], (e) the grad-CAM [14], and (f) [6], (g) [9] were obtained from [26] toolbox.

saliency map shown on the right of Figure 4. Certain image
regions were blanked over more than other regions, where
a part of the salient region (i.e. the dog’s face) was also
sampled substantially. Thus, the proposed technique exploits
the area of interest, while still exploring in other regions of the
image. With only 200 sample variables, the proposed Bayesian
optimisation saliency overlay generation method was able to
generate the saliency maps as shown in Figures 3 and 4.
The saliency maps produced show that the salient region was
correctly identified.

C. Visual quality and interpretability of the saliency maps

The proposed saliency mapping technique is a generali-
sation of the exhaustive search technique for saliency map
generation, thus a comparison of the proposed technique to
the exhaustive search technique is necessary. Figure 5 presents
a visual comparison of the saliency maps obtained from
the proposed Bayesian optimisation approach, the exhaustive
search approach, and other saliency map generation meth-
ods, applied to the pre-trained image classification black-
box model [5], [9], [11], [14]. It is evident from Figure 5
that the saliency maps from the proposed approach and the
exhaustive search are comparable, producing saliency maps



with a single prominent attention region. The saliency maps
in Figure 5 (d), produced using Fong’s method [11], highlight
multiple attention regions of very complex shapes, making
such salient maps harder to interpret.

By looking at the saliency maps obtained using the proposed
method, it can be observed that the dog’s head contributed
the most as the attention region, since the salient regions are
drawn over the region corresponding to the dog’s head in the
images. Further, the saliency maps produced by the proposed
method are better than the saliency maps from the exhaustive
search approach, since some of the attention regions on the
exhaustive saliency maps (see Figure 5 (b), rows 2, 3, and 6)
do not correspond to the salient object of the input image. For
example, the image in row two has the object of interest shown
in the middle, but the saliency map from the exhaustive search
shows the saliency region to be in the bottom-right corner of
the saliency map.

Note that the proposed method and the exhaustive search
method generate the saliency maps by simply sampling from
a black-box model, with no prior information about the learned
features. The saliency maps shown in Figure 5 illustrate that
this simple technique is sufficient to capture the basic saliency
information. The saliency maps produced by the proposed
method successfully highlight the interesting/important regions
that the model has used to make the class prediction. More
complex methods illustrated in Figure 5 (d) - (g) optimise the
blanking mask or the gradients that change the classification
result of a model. In contrast, the proposed approach and the
exhaustive search approach do not require any information
about the model parameters or the object of interest from the
learned features to produce the saliency map.

D. Localisation of the saliency map

The saliency maps were generated over 500 images, and the
saliency ratio metric defined in Section IV-C was computed for
each map. The results are shown in Figure 6 for the proposed
Bayesian optimisation approach, the exhaustive search, and
four other approaches that require access to model parameters.
For each bar in Figure 6, an overview of how the saliency
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Fig. 6. A comparison of the various saliency mapping methods using the
proposed saliency ratio metric, rsal. Same naming abbreviations as in Figure 5
are used for the algorithm names.

overlay algorithm performed is shown using the statistical five
number summary, namely: the minimum, the first quartile, the
mean, the third quartile, and the maximum, together with the
outliers represented by circular points below the minimum. In
Figure 6, the rsal values of 1 represent perfect saliency maps,
and rsal values of 0 correspond to saliency maps that fall
outside the target bounding box. The results in Figure 6 show
that the proposed Bayesian optimisation saliency method out-
performed the exhaustive search and the perturbation method,
and was comparable with the gradient-aware methods [5], [9],
[11], [14]. The exhaustive search saliency method performed
the worst as compared to the other saliency map algorithms.
Thus, the Bayesian optimisation approach is a viable technique
for saliency map generation, especially when one cannot get
access to the model’s parameters.

The computational efficiency of the Bayesian optimisation
approach is discussed in the next section.

E. Time complexity

The computational complexity of generating the saliency
maps using the Bayesian optimisation approach increases
cubically with an increase in the number of training variables.
The reason behind this is that GP models are computationally
expensive, requiring more time as more data is used to fit the
model. However, the proposed Bayesian optimisation method
generates saliency maps with relatively few samples, making
it computationally feasible.

A comparison of the time efficiency of the exhaustive
approach and the Bayesian optimisation approach is presented
in Table I. Table I shows the time complexity of the saliency
map generation, where m,n, l represent the number of the x
image values, the y image values and the s blanking window
values, respectively, and N is the number of model iterations.
The O(·) notation indicates the number of model evaluations
required when performing the experiment. With the exhaustive
search approach, time increases linearly with the increase in
the number of sample evaluations required to generate the
saliency map. For the Bayesian optimisation approach, the
time required to run the algorithm increases cubically with
an increases in the sample variables. The results presented in
Table I show that for larger images, it takes the exhaustive
approach more time to generate the saliency map. Therefore,
the Bayesian optimisation method requires fewer samples and
uses less computational time than the exhaustive search. Thus,
the Bayesain optimisation method for saliency map generation
is more computationally efficient.

TABLE I
COMPUTATIONAL COMPLEXITY

Approach Time Num. observations
complexity (ImageNet)

Exhaustive O(m× n× l) 401 408
Bayesian opt. O(N3) 200



VI. CONCLUSION

In this study, we proposed a method for the generation
of saliency maps from black-box models using a Bayesian
optimisation sampling approach, generalising an occlusion-
based sliding window approach. Instead of sliding a range
of blanking windows exhaustively over pixel locations, the
proposed approach selects occlusion positions and blanking
region sizes based on previous perturbation results. The results
obtained show that this approach produces improved saliency
maps, and performs similarly to gradient-based approaches,
which require access to model parameters. This means that
the proposed approach is a useful interpretability aid in black-
box model situations, where model introspection is required
without parameter access.

In future, additional criteria can be added for blanking. This
includes adding variables such as height and width blanking
parameters, or different shapes for the blanking window such
as triangular or ellipsoid. Selecting the colour to use, as well as
choosing the alternative methods to fill the blanking window
such as blurring the image, could also be explored. In this
work, the GP is used as a proxy model, which requires
computing N × N covariance function manipulations for
N observations, making it computationally expensive as N
increases. Thus, alternative proxy models such as sparse GP
or other approaches could be evaluated as a substitute.
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