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Abstract—In this paper, we propose a method about 3D human
pose estimation with only 2D joints as input. Previous methods
generally lift 2D poses to 3D space through a single mapping
function, in which case some large-pose samples far away from
the majority distribution may not be well concerned. To address
the issue above, we design a multi-branch network based on
the human center of gravity (COG) to enhance the robustness
of the model to large-pose samples. Specifically, noticing the
correspondence between the COG and human pose, by clustering
the COG, we separate the large-pose samples from the normal
ones in an unsupervised pattern, and lift them with separate
branch network. In addition, we introduce a global loss function
to regularize the integrality of 3D joints. Extensive experiments
on the largest publicly available dataset demonstrate the validity
and efficiency of our method.

Index Terms—3D human pose estimation, center of gravity,
clustering, multi-branch network

I. INTRODUCTION

3D human pose estimation is a fundamental problem in
computer vision thanks to many potential useful real-world
applications such as human-computer interaction, virtual real-
ity and sports analysis. Great progress has been made in 3D
human pose estimation based on deep learning in recent years.
Generally, 3D human pose estimation can be categorized into
2D joints detection and 3D pose regression. While the former
step aims to locate accurate joints from a monocular RGB
image [1], the latter aims to infer human depth information
for each joints [2]–[4], [11], [12]. The merit of the two-stage
approach is that it decomposes a complex problem into a
combination of two simple problems, so that the pose regres-
sion task only needs to analyze 2D joints without considering
interference factors such as background, lighting and clothing.

There have been extensive studies on two-stage methods in
recent years, mainly focusing on the second step. Martinez
et al. [3] propose a simple baseline for 3D human pose
regression, proving ‘lifting’ 2D ground truth joints to 3D space
is a task that can be conducted with a remarkably low error
rate only utilizing a simple network architecture. Since the
2D joints are stored in a non-square matrix form, which can
only be represented in the form of irregular structure, the
regression method in [3] only utilizes linear structure without
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convolutional layer. To address this limitation, Zhao et al.
[2] utilize Graph Convolutional Networks [5] to directly deal
with the irregular data, boosting the performance of 3D human
pose regression with the help of non-local module. Despite the
significant progress with deep learning, 3D human pose esti-
mation is still a challenging task due to the variety of human
poses. The most widely used human dataset Human3.6M [7]
consists of 3.6 million images with 15 actions, whose poses
hold a variety of different actions (e.g. Walking and Sitting-
Down), and therefore it is hard to fit multiple poses with large
deviations using a single mapping function. When dealing with
the samples from various distributions, the network will tend
to fit majority distribution, while some samples with a small
proportion and deviating from the majority distribution may
not obtain enough attention, this part of samples will bring a
large error, we call them large-pose samples. To address the
impact of large-pose samples, learning from the idea of the
Gaussian Mixture Model, Li et al. [8] utilize multiple models
to predict multiple candidate 3D human poses for each 2D
pose, their weighted sum is considered as the most appropriate
pose. However, estimating multiple candidate poses for each
2D pose is time consuming. Besides, in the case that large-pose
samples are not separated and treated specially, using multiple
models does not solve the problem mentioned above, due to
the task of each model is still to fit the majority distribution.

Fig. 1. The COG distributions of four action sets in Human3.6M, the pose
on the left is a sample from each action sets, We calculate the position of the
COG (red point) relative to the root joint (blue point). The red star represents
the distribution center.
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Fig. 2. The workflow of the proposed CoGN framework. (a) Before training, calculate the COG of all samples in the training dataset and cluster them into n
categories, then obtain an initial 3D pose for each class. (b) During training, each batch of samples is first classified utilizing KNN according to the clustering
center gained in step (a). The color of the border represents the class to which the pose belongs. (c) According to the classification results in (b), the weights
of the samples sent to each branch are adjusted separately. The transparency of the sample indicates the level of weight. (d) Each branch according to its own
input combined with the initial 3D pose to give a prediction result. (e) The final prediction is a weighted sum of the outputs of each branch.

In this paper, we propose a multi-branch network CoGN
(Center of Gravity Network) for 3D human pose regression.
Unlike the previous methods processing the all 2D poses
equally, we utilize an unsupervised method to separate large-
pose samples from the normal ones and reason them through
separate branch network. To be more specific, we notice that
the body’s COG is above the bellybutton when standing, if
performing an action, the COG will shift with the body move-
ment. By following the method in [9], we get the distribution
of the COG under four different action sets in Human3.6M
as shown in Fig. 1. It is obvious that different actions have
different distributions of COG. Based on this observation, we
categorize the 2D poses into several classes by adopting K-
Means on the COG calculated from 2D joints. Samples from
each class have similar COG distributions and pose, and this
step requires no additional supervision. Then the samples in
each class are mainly processed through a separate branch
network. We also customise an initial 3D pose for each class to
improve the efficiency and accuracy. In addition, we introduce
a COG loss function to constraint the integrality of the 3D
joints. Our main contributions lie in the following aspects:

• Unlike previous methods lifting all the 2D poses to 3D
space through a same mapping function, we utilize an
unsupervised method to separate the large-pose samples
from the normal ones and lift them with separate branch
network.

• To the best of our knowledge, we are the first to classify
human pose in virtue of the correspondence between
human pose and the COG, so that we can conduct pose
estimation for each class separately.

• We control the exploration scope of each branch network
by providing an exclusive initial 3D pose respectively, so
that each branch can accurately and efficiently lift one
class of 2D poses.

• Extensive evaluation on the largest publicly avail-
able dataset Human3.6M demonstrates our method can
achieve higher estimation precision than the state-of-the-
art methods with less training episode.

II. METHOD

A. Overview
Our goal is using 2D input to infer the coordinates of human

body joints in three-dimensional space, i.e., to learn a mapping
function f : R 2n ! R 3n. But only using a single mapping
function is hard to accurately lift multiple 2D inputs from
variety of actions. To this end, inspired by Boosting Method,
we utilize multiple mapping functions to deal with the 3D pose
regression problem. Each mapping function mainly focus on
lifting one class of pose. Finally, all the mapping functions
are combined linearly to form a strong regressor F , which is
competent for the pose estimation task of all classes:
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Where x i represents the location of 2D joint, y i is the
corresponding 3D label, C is the number of categories we
set, and f ⇤

j is the corresponding C mapping functions. We



design a multi-branch network CoGN to implement this idea,
multiple branches act as different mapping functions. The
workflow of CoGN is shown in Fig. 2. Specifically, at the
beginning of the training, we categorize the training dataset by
clustering its COG, for each class we calculate an initial 3D
pose. During training, each batch of samples will be classified
through KNN. Before sending into each branch, the weight
of the samples will be dynamically modified according to the
task of the current branch. Then each branch performs pose
estimation on the basis of initialization. Finally, the results of
all branches are combined to give the eventual prediction.

Fig. 3. The training dataset is classified by K-Means according to the relative
position of the COG (the red point). The five classes represent the five
distribution region of the COG.

B. Dataset Classification and Preprocessing

Before training, the entire train dataset must be reasonably
classified. We observe that the COG shifts with the movement
of the body, its position can roughly reflect the human pose, so
that we can achieve unsupervised pose classification by clus-
tering the COG. The more categories obtained by clustering
means that the classification is more refined, but it will also
increase the cost of the multi-branch network. By the way,
although Human3.6M has 15 action sets, different action sets
have some poses in common (e.g. Sitting and Eating in Fig.
1). So as is shown in Fig. 3, we just cluster the 2D poses into
5 categories according to COG distribution. It can be seen that
the COG of the common pose locates around the center, which
is shifted to the surroundings in large-pose. Then, we calculate
an average 3D pose for each class as the initialization:
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where 3DPose j is the 3D label corresponding to the j-class
sample, N j is the number of samples in the j-class. It should
be noted that during the evaluation, we still use the initial pose
generated from the training data without recalculating.

C. Weight Modification
In this part, we make weight adjustments to the sample sent

into each branch network. We aim at forcing each branch to
focus on processing a specific class of pose, but if only one
class of pose is used to train a branch, it will inevitably lead
to overfitting. So we still train each branch with the poses
from all classes, while adjusting the weight of samples sent to
each branch according to its task. For example, as shown in
Fig. 2.(c), the first branch is mainly responsible for regressing
the sitting pose (with yellow border), so the weight of sitting
poses in the gradient calculation is increased, while reducing
the weight of all other samples:
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Equation (3) shows how to calculate the gradient of a batch
in which N ⇤ samples belong to the class which the current
branch is focus, and the weight of these samples is increased,
while the other N �N ⇤ samples is reduced.

Fig. 4. The architecture of each branch network

D. Multi-Branch Network
We design a multiple branch network to act as multiple

mapping functions for handling different classes of pose,
shown in Fig. 2.(d). Each branch is similar to the network
in [3], as shown in Fig. 4. We set a customize 3D pose as the
initialization for each branch respectively, so that the task of
each branch changes from reasoning 3D coordinates to fine-
tuning the initial 3D pose:

Pose 3D = � ⇤ InitPose+ (1� �) ⇤ Pre (4)

where Pre is the prediction of the branch, and the � is
used to weight the proportion of the initial pose in the final
prediction. The smaller the � is, the more the initialization can
be fine-tuned.

E. Mixture Module
In this part, we model a linear combination of multiple

branch networks to get a strong regressor. For example, when
processing a sample, the branch which is focus on its class
should present the most accurate prediction result. However,
when dealing with some samples which are close to the
classification hyperplane or misclassified due to wrong COG
calculation, it is helpful to refer to the prediction results of
other branches to reduce the prediction error. Therefore, for



each sample, all the branches will be integrated to infer the
most accurate pose:

Pose 3D =
5X

j=1

W j ⇤Pose j (5)

s.b. j ⇢ Z[1, 5],
5X

j=1

W j = 1

where Pose j , j ⇢ Z [1, 5] represents the prediction of each
branch, W j represents the weight of each branch in the current
sample prediction.

F. Loss Function
We train our network on the fully-annotated 3D dataset, so

the training loss can be a simple standard Euclidean Loss using
ground-truth depth label Y dep, let Y p

dep denote the predicted
depth, the loss of joints is:

Loss j =
���Y dep �Y p

dep

��� 2 (6)

However, this loss function only constraints the accuracy
of each joint but ignores the integrity of all the joints. As
mentioned above, the position of the COG can reflect the
overall distribution of joints, so we introduce the COG loss
as an overall constraint on 3D joints:

Loss g =

�����
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�����
2 (7)

where W i is the weight of Joint i in COG calculation. In
summary, the final loss of our network is:

Loss = Loss j +� ⇤ Loss g (8)

Loss j is a direct constraint on each joint, which is the main
constraint, while Loss g does not act on each joint directly, so
its weight � will be adjusted when it is used.

III. EXPERIMENT

In this section, we first introduce settings and implementa-
tion details for training and evaluation, then report our results
and compare with state-of-the-art methods.

A. Dataset and Protocol
Our proposed approach is comprehensively evaluated on

Human3.6M [7], the largest publicly available dataset for 3D
human pose estimation, following the standard protocol.

Dataset. Human3.6M is a large-scale dataset consisting of
3.6 million RGB images of 11 different professional actors
performing 15 everyday activities, both 2D and 3D ground
truth are available for supervised learning. Our method only
leverages 2D joints of the human pose as inputs, the ground
truth (GT) 2D joints are calculated by camera parameters
and 3D ground truth. We also evaluate our approach on the

detected 2D joints which are gained by HourGlass (HG) [1],
the HG is first pre-trained on MPII [21] and then fine-tuned
on Human3.6M. We process the dataset following Zhao et al.
[2].

Protocol. We follow the standard Protocol#1, using all 4
camera views in subjects S1, S5, S6, S7 and S8 for training,
and the same 4 camera views in subjects S9 and S11 for
evaluation. Errors are calculated after alignment of the root
between ground truth and our prediction.

We utilize the accepted evaluation metric Mean Per Joint
Position Error (MPJPE), which is calculated in millimeter
between the predicted 3D coordinates and the ground truth
after aligning the root joint.

B. Implementation Details
We train our network for 100 epochs using Adam [10],

adopting a starting learning rate of 0.001 and exponential
decay every four epochs, using mini-batches of size 256.
We implement our code using python2.7 on Pytorch, which
takes around 10 minutes for one epoch training on the entire
Human3.6M dataset in one Titan Xp GPU with CUDA 9.0 and
cudnn7. Each branch contains a linear module, as shown in
Fig. 4, the keeping probability of dropout is set to 0.5 during
training. The W h and W l in equation (3) are set to 1 and 0.5
respectively. The � in equation (4) and equation (8) are set to
0.9 and 0.5 respectively.

C. Evaluation on 3D Human pose Regression
Our method uses only 2D joints as input to complete 3D

pose regression. We conduct experiments on ground truth 2D
joints and 2D detections created by HG respectively. We show
the evaluation results under Protocol#1. We compare ours with
previous methods on the Human3.6M, some of them aim to
exploit temporal information [2], [16], while others simply
learn a mapping function to complete the 2D to 3D regression
[3]. These methods have their own strengths, some are good at
estimating large-pose sample, while others focus on processing
in-the-wild pose. Therefore, comparing with them can examine
the performance of our method comprehensively. TABLE I
report the results.

Fig. 5. Test errors curves of our network with different settings on Sitting-
Down action set in Human3.6M.



TABLE I
Quantitative evaluations on the Human3.6M under Protocol1(no rigid alignment or similarity transform is applied in post-processing). GT and HG indicate

our model is trained with the ground truth 2D pose and 2D detections of HourGlass respectively. The Bold-faced numbers represent the best results.

Protocol#1 (HG) Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Average
Tome et al. [11] CVPR’17 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 173.9 84.9 85.8 86.3 71.4 73.1 88.4
Metha et al. [20] TOG’17 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Lin et al. [12] CVPR’17 58.0 68.2 63.3 65.8 75.3 93.1 61.2 65.7 98.7 127.7 70.4 68.2 72.9 50.6 57.7 73.1

Pavlakos et al. [14] CVPR’17 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Tekin et al. [19] ICCV’17 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7

Jahangiri et al. [17] CVPR’17 63.1 55.9 58.1 64.5 68.7 61.3 55.6 86.1 117.6 71.0 71.2 66.3 57.1 62.5 61.0 68.0
Martinez et al. [3] ECCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Zhao et al. [2] CVPR’19 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.5 48.9 64.8 51.9 60.8
Fang et al. [13] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Sun et al. [15] ICCV’17 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Our 50.2 53.2 55.4 56.2 64.1 72.1 51.9 53.8 70.0 87.4 59.0 56.3 60.3 45.8 49.3 59.0
Protocol#1 (GT) Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Average

Moreno. et al. [18] CVPR’17 53.5 50.5 65.7 62.4 56.9 80.8 60.6 50.8 55.9 79.6 63.6 61.8 59.4 68.5 62.1 62.1
Martinez et al. [3] ECCV’17 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Zhao et al. [2] CVPR’19 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Lee et al. [16] ECCV’18 34.6 39.7 37.2 40.9 45.6 50.5 42.0 39.4 47.3 48.1 39.5 38.0 31.9 41.5 37.2 40.9
Wang et al. [6] CVPR’19 36.5 42.7 38.2 39.6 45.3 50.8 40.2 34.8 45.0 50.3 39.4 39.9 42.5 32.2 33.8 40.8

Our 35.3 40.8 35.3 38.0 40.4 47.6 41.5 36.3 48.2 49.0 39.1 40.3 40.7 31.0 33.9 39.8

Fig. 6. Test errors curves of our networks with different settings and compare
with other two methods.

D. Ablation Study

We calculate the ablation study on the proposed method,
mainly focus on the effects of the initial 3D pose InitPose
(Sec.II.B) and the integrity constraint Loss g (Sec.II.E).
InitPose. We set up an initial pose for each class to

achieve rapid exploration. To explore the effect of initial pose
on network performance, we test our approach with different
settings on the SittingDown action set in Human3.6M, using
HG 2D joints as input, the result is shown in Fig. 5. A larger
� indicates the greater impact the initial pose has on the final
result. As � increases, MPJPE decreases throughout the whole
training phase, which proves that a reasonable initial pose
can improve the prediction accuracy. However, a large � also
means that the network relies too much on the initial pose
and lacks its own exploration which may lead to overfitting.
Therefore, we set � to 0.9, which preserves the exploration
ability of the network.
Loss g . Considering the integrity of joints, we utilize

Loss g performs as an overall constraint on joints. We test
the Loss g on Human3.6M, using GT 2D joints as input, Fig.
6 shows the effect of Loss g on network performance. It can be
seen that after the introduction of Loss g , the average MPJPE
and the minimum MPJPE in the training phase are reduced,
while the stability of training is not affected.

E. comparison with state-of-the-art methods

We compare our method with the previous ones from four
aspects: the ability to solve large-pose sample, the robustness
of multi-action, the performance upper bound and the stability
in the training process.

Large-pose. We select the top four action sets of MPJPE
in previous methods for comparison: SittingD., Sitting,
Phone, Smoke. In two of the above actions, our method
works best, and the other two are close to the first place.
Our network separate these large-pose poses from the common
ones according to the COG distribution, therefore, we can
make special treatment to the large-pose poses to improve the
prediction accuracy.

Robustness. Our average MPJPE across all action sets is
the lowest among all the mentioned methods, proving that our
method is more robust when dealing with variety of actions.
Since our network is a linear combination of several weak
regressors, and each weak regressor is good at reasoning a
specific category of pose. After combination, when processing
different poses, the weight of each regressor will be modified
dynamically to obtain the best performance.

Upper bound. We evaluate our method on the 2D ground
truth joints to show an upper bound performance. Our method
not only shows a better performance compared with the
baseline method [3], but even exceeds the state-of-the-art
method. Compared with using 2D detection as input, the
promotion is more significant, suggesting the detection error of
2D joints affects the calculation of COG, thus leading to pose



Fig. 7. Example output on the test set of Human3.6M. left: 2D detection. Middle: 3D ground truth. Right: our 3D predictions. The green joints indicates the
COG.

misclassification, which is not conducive to pose estimation.
However, 2D ground truth can ensure the correctness of
classification and bring significant performance improvement.

Stability. We also show the test errors curves of our
networks with different settings and other two methods, as
shown in Fig. 6. Compared with the other two, our method
is significantly more stable, the test error does not show a
fluctuation as [2] does. Moreover, the error is relatively low at
the beginning of the training (49.35mm vs 64.71mm), which
proves that the initial 3D poses we set are reasonable and
effective, which can accelerate the training speed.

F. Qualitative results
In Fig. 7, we select three large-pose action sets from

Human3.6M to visualize our results: Posing, SittingDown
and Sitting from top to bottom. As seen, our method is able
to accurately predict those large-pose samples. It indicates that
our CoGN can pay close attention to such actions which are
markedly different from the common pose.

IV. CONCLUSIONS

In this paper, we propose a novel approach based on COG
for 3D human pose estimation. Our method has addressed the
large-pose problem which is not well concerned by previous
methods. By utilizing COG to classify poses and mixing multi-
ple mapping functions reasonably, our method is competent for
handling the multi-pose regression task. Extensive experiments
demonstrate our method can boost the training speed and the
estimation precision.
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