Learning causal dependencies in large-variate time
series

Gianluca Bontempi
Machine Learning Group, Department of Computer Science
ULB, Université Libre de Bruxelles, Belgium

Abstract—A major challenge in causal inference from obser-
vational data is to discriminate between associative dependencies
and effective causal relationships. This is particularly challenging
in large-variate and temporal settings (e.g. in spatio-temporal
time series) where the multivariate nature of interactions induces
a significant correlation between most of the variables. In recent
years, a number of data-driven approaches have been proposed to
learn the mapping between some features of the data distribution
and the probability of a causal connection between a pair of
variables. Most state-of-the-art approaches, however, deal with
bivariate cases neglecting the role of the context determined by
the other variables. This is a strong limitation in large-variate
and temporal settings which are the object of this study. In
order to address the context issue, this paper introduces a new
set of descriptors based on interaction information to featurize
the context and justifies its introduction by using a graphical
modeling formalism. The resulting causal inference method
is assessed on a number of large-variate synthetic stationary
time series. The assessment shows that the proposed method
outperforms several state-of-the-art causal inference techniques.

I. INTRODUCTION

"We are drowning in data and starving for knowledge"
is an old adage of data scientists that nowadays should be
rephrased into "we are drowning in associations and starving
for causality". The omnipresence of big data and the success
of machine learning expose our society to a number of (real
or presumed) associations that could have impact on lifestyle,
health choices, economic and political decisions. Most recent
Al success stories boil down to companies (or scientists)
discovering some interesting associations in data and using
them for some smart decision making (e.g. control, risk
management, or customer interaction). The democratization
of machine learning software and platforms grows then the
risk of ascribing causal meaning to simple and sometimes
brittle associations. The risk of spurious attributions increases
in settings characterized by high dimension, multivariate
interactions, dynamic behavior where direct manipulation is
not only unethical but also impractical. Think, for instance, to
genetics, social sciences, economics or climate modeling where
the large dimension of the interactions and the spatio-temporal
nature of the relevant features [1] makes impossible the direct
manipulation of more than few variables (e.g. knocking out few
genes). Nevertheless the high societal impact of those domains
requires accurate causal inference methodologies to enable
transparency, interpretability and effective decision making.
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The most successful notion of causality is related to the
notion of intervention (e.g. by controlled experimentation)
and has been largely discussed in the seminal works of
Pearl [2]. According to this interpretation, the best formalism
to represent the causal structure underlying observational data
is a Directed Acyclic Graph where nodes denote the random
variables and edges the causal relationships. The conventional
ways to recover a causal structure from observational data are
score-based algorithms, which search for a DAG optimising a
certain score (e.g. likelihood) and constraint-based algorithms
(e.g. PC [3]) [4] which seek a DAG that is compatible with
the conditional independencies seen in the dataset. Score-
based search methods rely on NP-hard optimization problems
and scale badly to high-dimensional data. Constraint-based
algorithms suffer as well of many limitations like the presence
of indistinguishable configurations (e.g. a closed triplet or a pair
of variables) due to equivalence classes, the high complexity
(polynomial in the number of variables but exponential on the
size of the neighborhood tested for conditional independence)
in large variate settings and statistical inconsistency due to
multiple hypothesis testing [4]. This opened the way to alter-
native learning algorithms which pose the problem of causal
inference as the classification of probability distributions [5],
[6]. The rationale of those algorithms is that the existence of
a causal relationship induces a constraint on the observational
multivariate distribution. In other words, causality leaves
footprints in the data distribution that can be hopefully used to
reduce the uncertainty about the causal structure [5]. Typically
those approaches featurize the data distribution and use those
features to train a classifier able to predict the causal patterns
between a pair z;,z; of interest (e.g. z; — z;, z; < z; or the
absence of a link).

Most algorithms in literature focus on bivariate distributions.
Examples are ANM (Additive Noise Model) [7], IGCI (In-
formation Geometry Causality Inference) [8], [9], LINGAM
(Linear Non Gaussian Acyclic Model) [10] and the algorithms
described in [11] and [12]. The interest of those strategies
became evident thanks to the Chalearn cause-effect pair
challenge [13] organized by I. Guyon, whose results made
clear that indistinguishable settings (e.g. in terms of conditional
probability) can be in practice set apart once large enough
datasets are made available.

An extension of this principle to large variate case has been
proposed by the D2C (Dependency to Causality) approach [6].
This approach stands out from the mainstream litterature since it



does not use kernel techniques (e.g. kernel mean embedding [5])
to featurize observed data but it relies on asymmetric features
(also called descriptors) based on information theory to extract
meaningful hints about the causal structure. The D2C algorithm
performs three steps to predict the existence of a directed
causal link between two variables in a multivariate setting: (i)
it estimates the Markov Blankets of the two variables of interest
and ranks its components in terms of their causal nature, (ii) it
computes a number of asymmetric descriptors and (iii) it learns
a classifier (e.g. a Random Forest) returning the probability of
a causal link given the descriptors value.

Note that the first step is necessary because of the context
issue in multivariate causal inference: the relevance of a
statistical descriptor in predicting a dependency between two
variables z; and z; necessarily depends on the context, i.e.
the set of remaining variables (see Section 4 of [5]). This
issue is made explicit by the notion of strong relevance in
variable selection [14] which is a necessary condition for
causal relevance [15]: given a set Z = [z1,...,2,] of n
random variables, a variable z; is strongly relevant for z; if
the information of z; about z; given all the remaining ones is
larger than zero. Since the relevance of a variable is dependent
on the context (e.g. in the XOR case), in a multivariate setting
its causal role cannot be fully accounted for by remaining in a
bivariate perspective. In [6] the context issue is addressed by
first inferring from data the causal components in the Markov
blankets of z; and z;. However this bootstrapping procedure
induces a vicious circle, since to learn the causal relation
between z; and z;, we should already be able to infer the
causes of z; and z;.

This paper addresses this dilemma by proposing a way to
featurize the context, i.e. by including in the set of descriptors
a new one, based on the notion of information interaction [16],
which is able to account for the context information without
relying on an explicit computation of the neighbourhood. This
paper extends the D2C algorithm into three main directions:
(1) it introduces a new context-aware asymmetric descriptor
based on interaction information (ii) it justifies the relevance of
such descriptor in a probabilistic way by means of a graphical
modelling formalism (Section III), and (iii) it assesses the
accuracy of the modified algorithm in a number of large
scale temporal tasks by benchmarking it against state-of-the-art
approaches (Section V).

In time series analysis, causal inference is typically based
on the concept of Granger causality which relies on the
concept of temporal precedence and the assumption that a cause
contains information not available elsewhere. Notwithstanding
its historical role, this measure is an associative measure and
not a causal one, since it is more adequate to detect relevant
variables than causal ones (see also chapter 10 of the book [17]).
In fact, strong relevance is necessary but not sufficient for
causal relevance [15]. For this reason, especially in large
variate temporal settings, Granger tests are of limited utility in
reconstructing the causal dependencies.

The experimental session shows instead that a context-
aware learning approach may be accurate in inferring causal

relationships in large-variate (up to one hundred dimensions)
stationary time series whose generative process is given by
a graphical model (e.g. an auto-regressive process). To the
best of our knowledge, this is the first work addressing causal
inference in such a large scale temporal setting. The most
related work is [18] which adopted as well an approach based
on supervised learning inspired to D2C but whose multivariate
experimental setting is limited to three dimensional time series.

II. CAUSALITY AND INFORMATION THEORY

Let us consider a dataset D sampled from a multivariate
distribution Z = [z, ..., z,] and suppose that we want to infer
from D the causal relationships underlying the distribution. Let
us suppose that the set of causal relationships existing between
the variables' of interest can be described by a Markov and
faithful Directed Acyclic Graphs (DAG) [4], [2]. In this case a
DAG is an accurate representation of (in)dependencies between
the components z; and by d-separation we may read from the
graph if two sets of nodes are (in)dependent conditioned on a
third?.

A structural notion which can be described in terms of
conditional mutual information is the notion of Markov Blanket
(MB). The Markov Blanket of the variable z; is the smallest
subset of variables belonging to Z\ z; (where \ denotes the set
difference operator) which makes z; conditionally independent
of all the remaining ones, i.e. I(z;; (Z\ (M; Uz;))|M,;) =0

Let us suppose that we are interested in predicting the

existence of a directed causal link z; — z;. In [6] a
dependency descriptor of the ordered pair (i, j) is a function
d(i,7) of the distribution of Z which depends on ¢ and
7. Example of dependency descriptors are the correlation
p(i,7) between z; and z;, the mutual information I(z;;z;)
or the partial correlation between z; and z; given another
variable zy,i # j,j # k,i # k. A dependency descriptor
is symmetric if d(i,j) = d(j,7) (e.g. correlation and mutual
information) otherwise it is asymmetric. The rationale of the
D2C approach is that, because of the asymmetric property of
causality, asymmetric descriptors d(i, j) are informative about
the causal relationship between z; and z;. Useful asymmetric
descriptors can be derived once we known the Markov Blankets
Mi and Mj.
Let mgk) and mE-k) denote the generic components of the
Markov Blankets M; and M, respectively, with no distinction
between cause, effect or spouse. Let us consider for instance
the portion of a DAG represented in Figure 1 (excerpt from [6])
where the variable z; is a direct cause of z;. The figure shows
also the Markov Blankets M;, M; and their components, i.e.
the direct causes (denoted by c), the direct effects (e) and the
spouses (s) [20].

IFor the sake of clarity, we will use the term "variable" to refer to a
component of Z and the term "feature" or "descriptor” to denote the statistic
used to featurize the observed data distribution.

2 Given three continuous random variables zi, z> and z3 having a
joint Lebesgue density, the conditional mutual information [19] I(z1;2z2|z3)
between z1 and z2 once z3 is null if and only if z; and z2 are conditionally
independent given z3



Fig. 1. Two causally connected variables and their Markov Blankets (excerpt
from [6]).

Under the following assumptions [6]: (i) the only path
between the sets z; U M; and z; U M; is the edge z; — z;
and (ii) there is no common ancestor of z; (z;) and its spouses
s; (s;), a number of asymmetric conditional (in)dependence
relations follow (see Table 1 in [6]) like

2, >2; =>2; L c§-k>|zj and z; I cgk)|zi vk

In plain words, by conditioning on the effect z; there is a
dependence between z; and the direct causes of z; while by
conditioning on the z; there is a d-separation between z; and
the direct causes of z;. Such reasoning leads to the definition
of a number of asymmetric descriptors like

o ¥

dig) = 1@ ley), a6 g) = Ie(:cf|a,).

d(i,5) = 1(c{”; c\P|zy),

diP(i,5) = Iazef™) (1)
which are all bigger than zero while their asymmetric counter-
parts are all null.

Though the asymmetric nature of descriptors (1) is encourag-
ing, the computation of those quantities takes for granted that
it is possible (i) to infer the Markov Blankets M; and M; and
(i1) to label each of component m( ) ¢ M; and m( ) ¢ M;
as causes, effects or spouses. Now if this was the case, we
would have already solved the causal inference problem. In

practice instead of (1) the algorithm may only compute

d"(i,5) = I(z;mP|z;), a0, 5) = I(mP;m{P|z;),

k . k k
dg)(z,])fl( ( )' m| )|zj),
d(k)(Z -]) J(Z]’ ( )) (2)

where m(k) € M, and mgk) € M. We may define this issue
as the context—dependency issue according to the discussion in
Section 4 of [5].

To address this aspect, in [6] a preliminary causal variable
ranking, based on a causal filter [21], [22] is proposed to
disambiguate the role of mgk) and mgk in (2). However this
step is time consuming and prone to propagate errors in the
subsequent computation of the descriptors (2). In the following
section we discuss how it is possible to avoid this bootstrapping
step by properly featurizing the context.

III. CONTEXT-AWARE FEATURIZATION BASED ON
INFORMATION THEORY

Structure learning approaches to causal inference aim to find
necessary and sufficient conditions for associating a DAG struc-
ture to an observed dataset. This is often unfeasible because
of indeterminate configurations or sequential procedures (e.g.
constraint-based algorithms) which reduce the significance of
the final output. The rationale of this paper is to address the
problem of causal inference in a probabilistic setting and define
a set of variables which bring probabilistic information about
the existence of a causal link z; — z;. The considerations
made in the previous section show that if z; — z; holds,
then with a certain probability (i.e. the probability that our
assumption is true) a number of relationships (1) hold as
well (e.g. [ (cgk); cgk) |z;) > 0). Unfortunately those quantities
cannot be computed directly from data. What we can estimate
are indeed quantities like 7(m (-k); *) |z;) for which we have
no certainty about the role (i.e. cause or effect) of m(k)
(k) (e.g.is m(k) a cause c(k) or an effect e(k) ofz;7). In other
terms the role of the elements used to compute the descriptors
are latent since they are not directly observable. However,
though their specific role is not observable, we can observe
some related statistics, like the information interaction [16],
which may provide some insight about the nature of the
elements belonging to the Markov blankets. Given three random
variables m( ) m(z) € M, and z; the interaction information
is

i) (3)

This quantity sheds a light on the possible causal patterns (e.g.
v-structures) existing between them. For instance in [21] it is
shown that negative interaction between mgl), ml(?) and z; are
typically associated to the common effect configuration (also
known as the explaining-away effect where mgl), ml(- are
both causes of z;) while positive interaction is associated to the
common cause confi i i (1) (2) h effi
guration (i.e. m; ', m,”’ are both effects

of z;). While in [21] interaction information is used to design
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Fig. 2. Graphical modelling of the dependencies between context-aware
descriptors based on interactions (nodes D and E), original D2C descriptors
(nodes B and C) and the causal relationship z; — z; (node A).

a causal ranking filter, here we use it as a context-aware and
observable proxy of the Markov Blankets M; and M;.

Now, it is possible to show that context-aware descriptors
based on interaction (3) and the original D2C descriptors (2)
are jointly informative about the causal dependency z; —
zj, i.e. they reduce the uncertainty about the existence of
this link. In order to illustrate this concept, we summarize
all the relevant elements in the graphical model of Figure 2
where latent variables are denoted by dotted line nodes and
observable statistics by the continuous line nodes. The latent
node A represents a binary variable I;; associated to the causal
relation z; — z; taking value 1 in the case of an existing link,
0 otherwise. This node is not directly observable but from
Section II we know that it conditions (via edges (1) and (2) )
the probability distribution of D2C descriptors (nodes B and
C). The distribution of those descriptors however are not only
dependent on the actual causal relationship but also on the
nature of terms mz(»k) € M; and mg»k) € M; (edges (3)-(6)
). Since the causal nature of the components of M; and M,
is latent we can denote it by random variables m; and m;
taking values in the ternary set {cause, effect, spouse}. As
discussed above, the interaction between members of IM; and
M, is informative about the causal nature of those variables.
In other terms the latent nature of m; and m; conditions the
distribution of the observable interaction terms (nodes D and
E).

From the graphical model it is easy to realize that, given
the latent nature of the nodes F and G, no d-separation (i.e.
no independence) occurs between the nodes B,C,D,E and the
node A. This means that the features associated to the nodes
B,C,D.E are informative about the state of the node A. In
other words, by measuring the quantities represented by nodes
B,C,D.E we may reduce the uncertainty about the binary state
of the node A.

IV. THE CONTEXT-AWARE ALGORITHM

Let us consider a pair of measured variables z; and z; and
suppose we want to estimate the probability of a direct causal
link between them. The original D2C algorithm learns from
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Fig. 3. Training data generation in caD2C.

synthetic data the mapping between a number of descriptors (1)
and the label of the causal relationships. The training data
generation process is sketched in Figure 3. First, several
synthetic datasets (in this paper we deal with multivariate
time series) are generated on the basis of the associated DAG
representation. Then, for each dataset and for (a subset of) all
pairs of variables , descriptors are computed. Finally, for each
considered pair (e.g nodes 1 and 2 in DAG 1 of Figure 3), a
data sample is created from the set of descriptors made of the
input vector z1,...x4 and the related target label (e.g. 1 to
denote the existence of the link) of the associated causal edge
1 —2).

Here we briefly summarise the proposed algorithm (caD2C)
by insisting on the the changes of the context aware version
with respect to the original (D2C). We refer the reader to the
D2C paper [6] for more details. Suppose we want to predict
the existence of a causal link z; — z;. The caD2C steps are

1) it ranks the most relevant variables (e.g. in terms of
correlation or mutual information) for z; and z; and
stores them into the sets M; and M.

2) for each pairs (mgk),myc)), where mz(-k) € M; and

mg-k) € M, it computes the set of (conditional) mutual

information descriptors (2) to featurize the dependency

between z; and z;

3) for each pairs (mgk),mgt)) and (mgk),m;t)), where
mgk),mgt) € M; and m§.k),m§.t) € M;, it computes

the context aware interaction information descriptor (3)

4) it computes a set of quantiles of the empirical distribu-
tions of the terms computed in the two steps before and
use them as input vector of the classifier.

Note that in the step 1, since an interaction information
descriptor is added, there is no more need to bootstrap the
algorithm by identifying a set of putative causes of z; and
z;. It is is sufficient to compute a superset M; (M ) of the
Markov Blanket of z; (z;) by using a simple ranking algorithm,
e.g. by ranking variables on the basis of their correlation to the



target. This step has now a linear complexity in the number n
of variables and contains with high probability some causes
and effects.

Once the dataset is built, a conventional binary classifier
(e.g. Random forest) is used to train the classifier. Note that
a problem of unbalancedness may occur (given the edge
distribution in DAGs) since the positive class (associated to
the existence of a causal relationship) is a minority class.
For this reason we have recourse to Easy Ensemble [23]
strategies to address the unbalancedness issue. The algorithm is
implemented in R in the package D2C3. As far as complexity is
concerned, given that the proposed algorithm is a modification
of D2C, the considerations in Section 3.1 of [6] are still valid,
with the exception of the term related to the computation of the
Markov blankets of the two nodes whose complexity decreases
from O(n?) to O(n). The complexity for testing the existence
of a causal link between a pair of variables becomes then
O(Cn + K?N) where N is the number of samples of the
observed dataset and K is the size of M; and M; *.

V. EXPERIMENTS

We carried out a number of causal inference experiments
on a large number of simulated stationary time series charac-
terized by nonlinearity, large dimension and cross-sectional
dependencies. The set of 16 synthetic generating processes
is detailed in Table I. Two additional linear processes were
considered as well. All the processes are in the multivariate
Nonlinear Autoregressive (NAR) format

= (Y[, Yi[n], Yia 1], ..o Yiea[n], .
Yalll, . Yoala)) + Wt

Yi1[1]

Yiialn] = fo(Yill],. .. Yi[n), Yica[1],...., Yia[n),. ..,

Yialll, . Yianl) + Winjep

“)
where | > 0 is the maximum considered lag, Y; =
(Yi[1],...,Y;[n]) is a n dimensional stationary time series
and the covariance of the error vector W is diagonal. Note
that not all arguments of the functions f;(-) are necessarily
present and that each of those vector autoregressive processes
may be represented by a graph visualizing the conditional
distribution of each component of Y; given the past values
Y;—1,...,Y:_; [1]. From each generating process we obtain
several stationary series by changing the seed, the number of
series (from n = 10 to n = 50), the number of observations
(from N = 150 to N = 500), the neighborhood set A/ (of
random size in the interval [1, 3]), the error variance (in the
interval [0.1,0.3]) and by selecting a subset of the lagged
variables in the right-hand terms of (4). To avoid overfitting,
the caD2C algorithm is trained on 1000 time series generated
from a subset of 10 processes from Table I and tested on
200 time series generated from the remaining ones. Since the

3https://github.com/gbonte/D2C
“4Note that in the code it is possible to approximate the empirical distributions
by using only a random sample of the K? pairs

multivariate size of each series goes up to 50 and the maximum
lag is [ = 5, the size of underlying DAGs may go up to 250
nodes.

We benchmarked the caD2C strategy against the original
D2C and several state of the art algorithms for causal inference.
Note that no algorithm received any information about time,
i.e. we did not take advantage of time priority to reduce the
search space: this was done on purpose to make the task harder
and increase the risk of confounding effects with causes. For
the sake of reproducibility we considered algorithms whose
implementation is available in R. In particular we consider
the following algorithms: Semi-Interleaved HITON-PC local
discovery structure learning algorithms (HPC) [24], incremental
association MB constraint-based structure learning algorithm
(IAMB) [25], the Fast-IAMB version of IAMB (FIAMB),
Grow-Shrink (GS) constraint-based structure learning algo-
rithm [26], the PC version implemented in the pcalg package
(PCalg) and the Granger test (GRA) provided by the lmtest
package [27]. For each of the 200 test multivariate time series
and for each method, we measure the accuracy of the prediction
of the causal directionality for 40 edges (about half with
existing link and half with no link) and we compute the
related Balanced Error Rate (BER)’. The adoption of BER,
that equally weights errors in sensitivity and specificity, is
justified by the unbalancedness of the classification task. A
summary of the inference accuracy (distribution of the BERSs)
of the assessed methods is reported in Figure 4. On the left
(right) we report the BER distribution over the time series
whose associated DAGs has less (more) than 100 nodes. Some
methods were computationally unfeasible for large dimension
and are therefore not reported on the right plot. From the
summary we see that caD2C outperforms significantly all the
state-of-the-art methods (the lower the BER the better). Its
average AUC is 0.81. By testing caD2C vs. standard D2C (the
second best method) and PC it appears that caD2C outperforms
significantly both D2C and P2C for both settings (p-value of
the paired t-test < 0.025).

VI. CONCLUSION AND FUTURE WORKS

In recent years, we assisted to an adoption of learning
techniques for inferring causal structure from data. However,
most of those techniques deal with cause-effect pairs and their
extension to settings characterised by more than two variables is
not evident, e.g. because of confounding effects ©. We proposed
the addition of information-theoretic features in order to take
into account the multivariate context. Experimental results
showed that the resulting technique is able to outperform state-
of-the-art methods in large-variate temporal tasks. Current
work consists in benchmarking this technique against other
state-of-the-art methods in the CauseMe’ platform: preliminary

5The balanced error rate formula is BER = 0.5*(FP/(TN+EP) + FN/(EN+TP))
where FP (FN) stands for the number of False Positives (Negatives) and TP
(TN) stands for the number of True Positives (Negatives).

bsee also chapter 6 in the recent "Cause-effect pairs in machine learning"
book whose draft is available in http://causality.chalearn.org/experimental-
design

"https://causeme.uv.es/
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TABLE I
CROSS-SECTIONAL AND TEMPORAL SERIES: \j; DENOTES THE INDICES OF THE SET OF TIME SERIES WHICH ARE NEIGHBORS OF THE jTH COMPONENT.
Y; [Vj] STANDS FOR THE AVERAGE OF THE VALUE OF THE NEIGHBORING SERIES AT TIME ¢. THE COVARIANCE MATRIX OF THE GAUSSIAN NOISE VECTOR
W IS DIAGONAL.

results are promising for real series. Future work will focus
on extending the approach to multi classification tasks, e.g.
by extending the labelling in order to take into consideration
more structural causal dependencies, like the ancestry or the
offspring.
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