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Abstract—Recurrent neural network (RNN) has been widely
used for sequential learning which has achieved a great success
in different tasks. The temporal convolutional network (TCN), a
variant of one-dimensional convolutional neural network (CNN),
was also developed for sequential learning in presence of sequence
data. RNN and TCN typically captures long-term and short-
term features in temporal or spatial domain, respectively. This
paper presents a new sequential learning, called the convolutional
recurrent network (CRN), which fulfills TCN as an encoder and
RNN as a decoder so that the global semantics as well as the local
dependencies are simultaneously characterized from sequence
data. To facilitate the interpretation and robustness in neural
models, we further develop the stochastic modeling for CRN
based on variational inference. The merits of CNN and RNN are
then incorporated in inference of latent space which sufficiently
produces a generative model for sequential prediction. Experi-
ments on language model shows the effectiveness of stochastic
CRN when compared with the other sequential machines.

Index Terms—Convolutional neural network, recurrent neural
network, stochastic modeling, sequential learning

I. INTRODUCTION

Deep learning has been successfully developed for nu-

merous applications in signal processing, natural language

processing [1]–[5] and computer vision [6], [7]. Basically,

deep models can handle high-dimensional data with the com-

plicated mapping between input signals and output targets,

and perform well for different classification and regression

tasks. Nevertheless, it is still challenging to carry out a

desirable generation task in presence of high-dimensional data.

Meanwhile, sequence data in temporal and spatial domains are

everywhere in real world and is ranged from speech signals to

music signals, natural sentences and video streams, to name a

few. When we deal with sequential learning and generation, it

is important to predict or generate future targets based on all

previous samples due to the casual property in signals. Such

a prediction is called the autoregressive generation where the

prediction at each time step is conditioned on all previous

observations. Autoregressive generation is seen as a building

block in many systems with temporal and spatial signals. This

paper presents a new stochastic sequential learning [8]–[11] for

autoregressive generation where an inference and generative

procedure based on convolutional neural network (CNN) [12]–

[16] and recurrent neural network (RNN) is developed.

RNN [17]–[19] is specialized as a recurrent machine which

identifies the temporal or spatial features from sequence

patterns. The dynamic state or internal memory is evolved

through time. RNN has been recognized as a popular solu-

tion to autoregressive model in different practical systems.

Recently, the temporal convolutional network (TCN) [20], [21]

was proposed for sequential learning using temporal data in

spite of many successful spatial models for image data using

CNN in computer vision. Typically, TCN is beneficial for

parallel computation which provides rapid prediction. Multi-

layer TCN can capture the temporal hierarchy where different

layers represent various sizes of receptive field. RNN and

TCN are both feasible to sequential modeling. This study aims

to combine TCN and RNN in construction of the so-called

convolutional recurrent network (CRN) for sequential learning

where long- and short-term temporal patterns are learned [22].

Basically, TCN is powerful to learn from sequence data to

extract short-term features in local fields while RNN is spe-

cialized to capture long-term semantics in global contexts. The

proposed CRN would like to infer or encode local information

via convolutional layers and then generate or decode each

individual time sample via recurrent layers. CRN corresponds

to implement TCN as encoder and RNN as decoder. A hybrid

model of TCN and RNN is established. The complementary

local and global features are characterized. Importantly, the

recurrent layers in CRN are used to relax the limitation of

TCN where the size of receptive field is constrained by the

number of layers. CRN allocates the recurrent layers on top

of convolutional layers so that the insufficiency of long-term

temporal characteristics in TCN can be compensated. Further-

more, the stochastic variant of CRN (SCRN) is proposed to

improve the robustness of CRN for sequential prediction. The

randomness of sequential latent variables is reflected in opti-

mization procedure via variational inference [9], [23] where

the variational lower bound of log likelihood, marginalized

over latent variables, is maximized. SCRN is proposed with

an explainable latent space. The experiments on language

modeling are conducted to investigate the performance of

different convolutional recurrent networks. We show the merits

of the proposed methods by comparing with RNN and TCN

under different experimental settings.

II. BACKGROUND AND MOTIVATION

This paper presents a new neural network architecture which

combines CNN and RNN for sequential learning. In the

literature, it has been common to mix CNN and RNN for

speech, image and video processing in different tasks and

applications. For example, two-dimensional (2-D) CNN was
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used for representation of images while RNN was applied to

capture temporal relations in video data [24]. In [25]–[27],

CNN was concatenated with RNN for object recognition, sign

language recognition and person identification. The hybrid

CNN and RNN was also exploited for natural language

processing in [28], [29]. In previous hybrid CNN and RNN

models, the spatial model using 2-D CNN was employed.

These models are different from 1-D CNN or TCN where

the causality and dilation [30] are considered. To facilitate

sequential learning, TCN can act as a meaningful approach to

capture temporal hierarchy. The upper layers are feasible to

span larger receptive field with increasing window size. This

paper constructs the temporal hierarchy by using TCN where

RNN is further allocated in top layer. The receptive field with

infinitely large size is represented in the proposed CRN.

Besides, we explore the stochastic latent space for CRN

by using variational inference. Previously, stochastic modeling

has improved the generalization in different learning tasks.

In [31], a stochastic variant of RNN was proposed to build

a recurrent latent variable model. Recently, the stochastic

property was merged in TCN [32], [33] where RNN was

excluded in temporal modeling. In [31]–[33], an additional

latent variable was added to fulfill stochastic modeling in

sequential learning based on variational inference. A simple

linear transformation was used in either encoder or decoder.

This study presents how a variational or stochastic CRN is

formulated to improve sequential learning where TCN and

RNN separately act as the encoder for local features and

decoder for global views in inference and generation stages,

respectively. A meaningful two-stage inference is designed

similar to variational autoencoder (VAE) [23].

III. CONVOLUTIONAL RECURRENT NETWORK

Temporal convolutional network (TCN) leverages large re-

ceptive field by stacking a number of dilated convolutions. The

size of receptive fields is determined by the number of layers.

In general, TCN introduces a temporal hierarchy where the

upper layers can access longer sub-sequences of input signals

so as to learn representations at a larger time scale. TCN has

an attractive architecture to capture temporal dependency at

various time scales. On the other hand, RNN with gating

mechanism [18], [34], [35] is feasible to capture temporal

dependency with unbounded length. It is therefore meaningful

to introduce RNN as the most upper layer so as to relax the

limitation in TCN. Here comes the deterministic variant of

convolutional recurrent network (CRN).

The architecture of CRN is shown in Figure 1 with input

layer {xt} and output layer {yt} where RNN is built on top

of TCN. TCN is seen as 1-D CNN with kernel size 2 and two

hidden layers. Dilation is 1 and 2 in first layer {dt} and second

hidden layer {zt}, respectively. Information propagation is

run in a bottom-up manner. More hidden layers can be

applied. TCN acts as an encoder to extract local temporal

features {zt} with a receptive field containing four time steps

while RNN serves as a decoder to capture global view via

long-term recurrent codes {ht}. The size of receptive field

Fig. 1. Architecture of convolutional recurrent network.

Prior Network Inference Network (Encoder)

Generative Network (Decoder)

Fig. 2. Architecture of stochastic convolutional recurrent network.

is unbounded in RNN. Basically, convolution operation can

extract local features efficiently as shown in many computer

vision tasks. Nevertheless, in sequential learning, TCN still

suffers from the limited window of receptive field caused by

the specifications of dilation and kernel size. To relax this

limitation, RNN is combined as a decoder to continuously

capture long-term temporal semantics from the beginning x1.

TCN and RNN are complementary with different functions

which are mutually leveraged to build CRN. Take text mod-

eling as an example, TCN encoder can be regarded as a

new type of word embedding. Instead of embedding every

words independently, TCN encodes a word by relating to its

neighboring words. This is reasonable because there might be

different meanings for a single word. Contextual information

provides an efficient and meaningful way to calculate the

causal and dilated convolutional embedding zt for each word

xt. Taking a look at previous words {xi}ti=t−3 is helpful to

find precise meaning or embedding of current word zt. RNN

decoder can accordingly identify long-range information from

full text paragraph with limited computation overhead. This

RNN extends the temporal hierarchy since the size of receptive

field is continuously increasing to final time step T .

IV. STOCHASTIC NEURAL NETWORK

The combination of TCN and RNN can improve model

capability in the resulting CRN. However, the enhanced model



usually induces the issue of overfitting. Pursuing stochastic

property for an existing deterministic model is beneficial to

handle this issue. Here, variational inference provides a theo-

retical bound for generation. Moreover, stochastic variants of

autoregressive models in previous works [31]–[33], [36], [37]

have shown significant improvement in characterizing complex

and structural relation between {xt} and {yt}. This study is

accordingly motivated by implementing the stochastic CRN

(SCRN) where the word embeddings from TCN encoder {zt}
are random as illustrated by circles in Figure 2. SCRN differs

from CRN where deterministic variables {zt} are assumed as

shown by diamonds in Figure 1. SCRN is constructed with an

inference model as encoder and a generative model as decoder.

TCN is applied to infer or encode a Gaussian variable zt from

input signal xt with mean μt and standard deviation σt while

RNN is adopted to generate output signal yt from a set of

Gaussian samples zt. The whole procedure of inference and

generation is governed by variational inference as detailed as

follows.

First, the deterministic hidden state d
(l)
t at layer l and time

t is calculated by 1-D convolution in a bottom-up manner by

d
(l)
t = Conv

(
d
(l−1)
t ,d

(l−1)
t−j

)
, 1 ≤ l ≤ L (1)

where d
(0)
t � xt and j = 2l−1 means the dilation. This hidden

state d
(l)
t summarizes previous input signals x≤t = {xi}i≤t

within a receptive field ended at time t. The latent codes {d(l)
t }

are then transformed by a linear matrix to calculate Gaussian

mean μt and standard deviation σt for sampling of the latent

variables {z(l)t } (shown by dashed lines). Importantly, each

sample z
(l)
t at layer l and time t is conditioned on the latent

code z
(l+1)
t at a higher layer l+1 at time t and the deterministic

state d
(l)
t−1 at layer l at previous time t−1 [38]. Using SCRN,

the inference model is built according to a prior network of

zt given by history samples x<t

pω(zt|x<t) = pω(z
(L)
t |d(L)

t−1)

L−1∏
l=1

pω(z
(l)
t |z(l+1)

t ,d
(l)
t−1) (2)

where

pω(z
(l)
t |z(l+1)

t ,d
(l)
t−1) = N (μ

(l)
p,t,σ

(l)
p,t) (3)

with Gaussian parameters

[μ
(l)
p,t,σ

(l)
p,t] = f (l)

p (z
(l+1)
t ,d

(l)
t−1) (4)

calculated by a fully connected (FC) network f
(l)
p (·) with

parameter ω using d
(l)
t−1 at time t − 1. Notably, latent code

z is computed in a top-down order, which is different from

bottom-up order for d. The underlying reason is to pursue a

latent code z with rough global feature in higher layer in the

beginning and then with delicate local feature in lower layer

in learning procedure.

Variational inference [39], [40] is introduced to infer a

variational posterior of zt for prediction by using not only

history samples x<t = {xi}t−1
i=1 but also current sample xt,

namely x≤t

qφ(zt|x≤t) = qφ(z
(L)
t |d(L)

t )
L−1∏
l=1

qφ(z
(l)
t |z(l+1)

t ,d
(l)
t ) (5)

where

qφ(z
(l)
t |z(l+1)

t ,d
(l)
t ) = N (μ

(l)
q,t,σ

(l)
q,t) (6)

with Gaussian parameters

[μ
(l)
q,t,σ

(l)
q,t] = f (l)

q (z
(l+1)
t ,d

(l)
t ). (7)

Here, f
(l)
q (·) denotes a variational FC network where the

input d
(l)
t at time t is used. Notably, the history posterior in

Eq. (2) using previous sample x<t is treated as the prior for

an inference network as variational posterior at current time

with sample xt in Eq. (5). Variational parameter φ contains

those from 1-D convolution and variational FC network. Both

parameters ω and φ are varied at each layer l. Overall, the

evidence lower bound (ELBO) L of log conditional likelihood

log p(y|x) is formulated as

log p(y|x) ≥Eqφ(z≤T |x≤T )

[
T∑

t=1

log pθ(yt|x≤t, z≤t)

−DKL(qφ(zt|x≤t)‖pω(zt|x<t))] � L
(8)

where DKL(·) denotes the Kullback-Leibler divergence. Here,

the generative network for output sample yt at each time t
is calculated by using an RNN (or a long short-term memory

(LSTM)) fθ(·) given by a hidden state ht and a concatenated

input vector

zt = [(z
(1)
t )� · · · (z(L)

t )�]�

from the samples in different layers in inference distribution

pφ(zt|x≤t). The generative distribution pθ(yt|x≤t, z≤t) in

decoder is driven by LSTM hidden state ht and calculated

by

pθ(yt|ht) = Mult(fθ), where ht = fθ(zt,ht−1) (9)

where a multinomial probability is continuously updated for

predicting each output word or target yt at time t based

on a hidden state ht updated by fθ(·) using the input from

stochastic state of TCN encoder zt. LSTM decoder contains

parameter θ. A stochastic variant of hybrid TCN and LSTM

is implemented according to the stochastic gradient descent

algorithm using the gradients {∂L
∂ω ,

∂L
∂φ ,

∂L
∂θ } for updating prior

network, inference network and generative network, respec-

tively.

V. EXPERIMENTS

Penn Treebank (PTB) dataset [41] was used to evaluate

word prediction in sequential learning for language modeling

[42]–[45]. PTB contained 929K training words, 73K validation

words, 82K test words and 10K words in its dictionary.

This dataset was preprocessed by removing numbers and

punctuations and lower-casing the capital letters. Perplexity

is measured to illustrate how well a probability distribution



or model predicts a future word. Lower perplexity generally

implies that better performance is achieved for word predic-

tion. LSTM (here denoted as RNN), TCN [20], [21], stochastic

TCN (STCN) [33], CRN and stochastic CRN (SCRN) were

implemented. Different models were trained by running twenty

epochs using stochastic gradient descent algorithm [46], [47].

The mini-batch size was twenty. Gradient clipping was ap-

plied to avoid gradient vanishing [48]. For consistency, all

parameters were uniformly initialized between -1 and 1. The

size of hidden states and the amount of kernels were 450 for

all models using LSTM. Model size was also included in the

evaluation.

TABLE I
PERPLEXITY AND MODEL SIZE USING DIFFERENT COMBINATIONS OF TCN

AND RNN.

Model Size Train Validation Test

RCN 9.5M 125 129 125

2-layer RNN 10.4M 90 126 122

CRN 11.0M 84 128 123

We claim that it is beneficial to encode local information

using TCN earlier than long term information using RNN. It

is important to evaluate different two-stage architectures under

comparable model size as shown in Table I. The recurrent

convolutional network (RCN) is implemented as RNN encoder

and TCN decoder. 2-layer RNN means RNN with two layers.

CRN obtains the lowest perplexity in training phase but

comparable perplexity in test phase. Overfitting issue happens

in CRN. The proposed SCRN may deal with this issue.

Figures 3 and 4 illustrate the learning curves of perplexity

using training and test data, respectively. Typically, CRN and

SCRN significantly perform better than the other models in

training phase. RNN learns very quick and converges very

soon due to the limited model capacity. TCN and STCN

perform worse than RNN because they cannot capture very

long term information. CRN combine the advantages of RNN

and TCN, so its modeling ability is better than both of

them. CRN suffers from overfitting issue. With the stochastic

property, SCRN is more robust and more accurate in word

prediction than CRN during test phase. Table II compares

different models in terms of model size and perplexities of

training, validation and test data. CRN captures the temporal

dependencies better than RNN (or LSTM) and TCN. STCN

and SCRN perform better than TCN and CRN in perplexity,

respectively. But, the model size is increased as well due

to additional memory cost from prior network and inference

network in STCN and SCRN. With the stochastic property,

SCRN outperforms the other models in both training and test

phases.

VI. CONCLUSIONS

We have presented a new two-stage neural network model

for sequential learning. This model combined the advantages

of temporal convolutional network and recurrent neural net-

work to capture complementary temporal features to charac-

Fig. 3. Perplexity of different models using training data.

Fig. 4. Perplexity of different models using test data.

TABLE II
PERPLEXITY AND MODEL SIZE USING DIFFERENT MODELS.

Model Size Train Validation Test

RNN 8.8M 101 128 123

TCN 5.2M 100 152 146

STCN 23.4M 119 147 140

CRN 11.0M 84 128 123

SCRN 17.6M 78 125 119

terize long-term semantics and short-term dependencies in nat-

ural language, respectively. Importantly, stochastic modeling in

convolutional recurrent network was proposed to improve the

robustness and expressiveness in sequential machine where the

temporal hierarchy in an extended receptive field was learned.

Experiments on language model illustrated the merit of the

proposed method. Future works include the extension to other

sequential learning tasks. Multi-scale temporal dependency

will be explored and combined with individual recurrent nets.



Attention mechanism will be developed.
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