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Abstract—Multi-label text classification (MLTC) is an impor-
tant task in natural language processing, which assigns multiple
labels to each text in the dataset. Typical method like Binary
Relevance (BR) is arguably the most intuitive solution for the
task. It works by decomposing the multi-label learning task into
a number of independent binary learning tasks while ignoring
the correlation between labels. Recently, neural network models
attract much attention. Researchers view the MLTC task as
a sequence generation problem. Although some new methods
based on generative model (e.g. sequence-to-sequence), such as
novel decoder structure and various attention mechanisms, can
improve the performance. These methods still have some short-
comings, such as unreasonable loss function, unclear ordering of
target labels. To address these limitations, we propose a simple
and effective novel model, which combines the merits of neural
network and BRs methods. Our model also takes into account
the categories and levels of labels. We decompose the MLTC
problem to binary classification, together with global and local
extractor to avoid the impact of label ordering and cumulative
error. Experimental results show that our model achieves an
improvement of 3.0% micro-F1 and a reduction of 6.0% hamming
loss on AAPD dataset compared with the state-of-the-art work.
And obtained good performance on RCV1-V2 dataset.

Index Terms—Multi-label, Nerual Networks, Global-and-Local
Extractor

I. INTRODUCTION

Multi-label text classification (MLTC) is an important task
in natural language processing (NLP), which assigns multiple
labels to each text in the dataset. MLTC enables a broad range
of applications, and one common real-world scene is the news’
labels classification. In order to accurately and effectively
recommend the news to its right users, we need to classify the
news. Usually, the content of news involves multiple topics
(labels), and this is where multi-label classification comes in.

To tackle this task, many efficient methods had been pro-
posed. Binary Relevance (BR) [33] transforms the MLTC
into multiple single-label classification problem. Specifically,
BR procedure works in an independent manner, where the
binary classifier for each class label is learned by ignoring the
existence of other class labels [22]. Hence, many correlation-
enabling extensions to binary relevance have been proposed
[19], [23], [24], [35]. Recently, neural network models have
made a remarkable achievement in NLP. Inspired by the
tremendous success of the sequence-to-sequence (seq2seq)

model, there are many innovations [31], [41], [43] based
on it, such as novel decoder structure and various attention
mechanisms, and achieve new state-of-the-art performance.

Typical approach (BR), unlike seq2seq model, dose not
produce cumulative error and the prediction of a single label
will not be disturbed by all labels. But on the other hand, this
independence causes it to ignore correlations between labels,
which might weaken the performance of task.

Seq2seq model, however, suffers from several problems.
First, labels are predicted by RNN-based decoder relying on
a predefined ordering of labels. Previous studies [1], [2],
[30] show that label ordering in dataset greatly affects the
model performance. Moreover, setting a strict order to acquire
the perfect label order is too costly. Second, seq2seq model
is trained with the maximum likelihood estimation (MLE)
method and the cross-entropy loss function. Labels with more
occurrences are more likely to be predicted, and the correla-
tions among labels cannot be captured by the model without
label interaction. Third, at one timestep, the probability of all
labels is converted only from the low-dimension hidden state
of decoder, which fails to make full use of the text. Moreover,
as the timestep increases, the error of label prediction will
accumulate when a previous timestep cannot correctly predict
a label.

To address these issues, we propose a novel framework
that combines the advantages of BR and neural networks.
In other words, some relatively independent classifiers are
learned by BR, and the fitting ability of neural network is also
utilized to extract some global and local information. With
MLTC problem been decomposed into binary classification
for each label, recurrent neural network (RNN) and convo-
lutional neural networks (CNN) is selected to fully extract
the information from the text. As shown in Figure 1, Global
and local extractors using neural networks have extracted
the information that they care about respectively, which will
greatly help to improve the performance of MLTC task. In this
method, since no generative method is used to get the label
sequence, the relevance of labels is captured through Extractor
without cumulative error.

In addition, we observe that there are category relationships
and hierarchical relationships among labels. Intuitively, in
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Fig. 1. A simplified example of how global and local extractors operate.
Global Extractor is utilized to extract basic information useful for the
classification task. Local Extractor for Computer Science is used to extract
interesting information from sentence in current subject. Local Extractor for
Computer Mathematics also plays the same role. In this example, the first
two extractors have found the information they are concerned about, while
the text does not involve mathematics-related content, so the third extractor
is not concerned.

MLTC task, the quantity of label is large and often artificially
pre-specified. There will be an objective hierarchical relation-
ship between labels, or labels can be divided into multiple
categories. Labels in the same category share some knowledge.
Therefore, we assign a specific local extractor to each category,
so that this extractor can accurately extract the information
that the category cares about from the sentence. Ideally, as
shown in Figure 1, when computer science-related information
appears in the text, the corresponding local extractor can
discover it.

Inspired by these, we propose the Global-Locally Encoding
(GLEN) Model. GLEN utilize global extractor to learn knowl-
edge among the text that plays a fundamental role in the
results of classification. Then some local extractors (category-
specific) are used to extract different information of categories.

The experimental results on real-world datasets including
AAPD [31], RCV1-V2 [6] show that our model achieves the
state-of-art performance compared to all baseline methods.
GLEN obtains 0.720 micro-F1 and 0.0236 hamming loss on
AAPD dataset, outperforming prior state-of-the-art work by
3.0% and 6.0% .On RCV1-V2 dataset, our model achieves
0.870 micro-F1 and 0.0080 hamming loss..

The contributions of this paper are listed as follows:

• Unlike recent efforts to improve the seq2seq model, we
propose a new framework which combines the merits
of neural network and BRs methods. It captures the
relevance of labels and will not produce cumulative error.

• To the best of our knowledge, we are the first to take the
category of labels into account in MLTC task. We use
global and local extractors to obtain knowledge shared
by all categories and knowledge within categories. And
the trick of label statement is used to integrate the
hierarchical relationship among labels.

• Experimental results demonstrate that our model outper-
forms all baseline models and achieves the state-of-the-art
performance on the dataset AAPD and RCV1-V2.

II. RELATED WORK

Multi-label text classification is one of the most important
task in NLP. Many efforts have been invested in it. Early
work on exploring the MLTC task focuses on machine learning
algorithms, mainly including problem transformation methods
and algorithm adaptation methods [2]. Problem transformation
methods, such as Binary Relevance (BR) [33], Label Powerset
(LP) [34], and Classifier Chains (CC) [35], map the MLTC
task into multiple single-label learning task. Algorithm adap-
tion method extend specific learning algorithm to handle multi-
label data directly. The corresponding representative work is
ML-DT [27], Rank-SVM [26], ML-KNN [16] and so on.

Typical method -BR is one of the simplest and most popular
transformation methods. Its main drawback is that it does
not consider dependencies between labels. However, it has
has been shown that in many cases, BR can yield predictive
performance as good as more complex methods depending on
the characteristics of the data [20], [21].

Recent years, the research turned to the application of neural
networks. Zhang [36] proposed a neural network algorithm
named BP-MLL, which is the multi-label version of backprop-
agation . Kurata [37] proposed a neural network initialization
method to treat some of the neurons in the final hidden layer
as dedicated neurons.

Since RNN-based approach (e.g. seq2seq) works well on
MLTC task, more and more researchers focus on it. Chen
[39] proposed an ensemble application of CNN and RNN to
capture both the global and the local textual semantics. The
model belongs to encoder-decoder pattern, in which CNN acts
as encoder and RNN is used for decoding. Yang [2] and Li
[42] proposed to view the multi-label classification task as a
sequence generation problem. A seq2seq model with a novel
decoder (global embedding) structure is proposed by Yang [2].
Li [42] proposed a label distributed seq2seq model with a
novel soft loss function to solve the problem.

To further improve the seq2seq model, some methods of
attention mechanism have been proposed. Lin [41] proposed
a semantic-unit-based dilated convolution model based on
seq2seq. A corresponding hybrid attention mechanism and
multi-level dilated convolution are implemented to extract both
the information at the word-level and the level of the semantic
unit. Wang [44] proposed ranking-based AutoEncoder with a
word-vector-based self-attention.

However, some problems inherent in seq2seq are difficult
to solve. Training a RNN decoder requires a predefined order
of label. Although Nam [29] and Yang [31] compare several
ordering strategies and suggest ordering positive labels by
frequency directly in descending order (from frequent to rare
labels), it is unnatural to impose a strict order on labels, which
may break down label correlations in a chain [30]. Yang [2]
proposed a novel sequence-to-set framework utilizing deep
reinforcement learning, which reduce the dependence on the
label order. Tsai [30] proposed a framework based on optimal
completion distillation and multitask learning to solve this.
Chen [3] proposed the order-free RNN to dynamically decide



a target label at each time during training by choosing the label
in the target label set with the highest predicted probability.
However, these methods only alleviate some of the problems
of the seq2seq model and do not significantly improve the
performance of the task.

Therefore, we try to combine the advantages of BR and
neural networks to make MLTC tasks achieve better results.
In other words, our model is able to achieve relative indepen-
dence between categories, and can learn the knowledge within
the category through the extractors, without being bothered by
label ordering and error accumulation.

Besides, we observed that there is a relationship among
the labels. The quantity of label is usually large and often
artificially pre-specified. Moreover, in order to make the use
of labels more efficient, these labels are usually hierarchical.
These levels can be expressed as categories. Figure 2 shows
the hierarchy of labels in the AAPD dataset. Intuitively, some
labels belonging to a certain category should correspond to
some common knowledge. For instance, label cs.ai and cs.cv
share some knowledge in the field of computer science.

Fig. 2. Hierarchy of labels in AAPD dataset. The actual labels are on the
third level of the tree. For example, the label for Artificial Intelligence in the
field of Computer Science is cs.ai.

The previous work ignores the fact that these intrinsic
information may help for the classification performance. They
[30], [37], [41] treat the labels as being at the same level.
Inspired by the success of Zhong [28] in dialogue state
tracking task, which is a vital component in the task-oriented
dialog system [17], [18], [25], we began to pay attention to
the use of specific local information in MLTC task.

III. METHOD

In this section, we will introduce our model in details. First,
we give an overview of the model in Section 3.1. Second,
we describe how to assign categories to labels in Section 3.2.
Third, we explain the details of the Global Encoding Module in
Section 3.3. Fourth, we introduce the Local Encoding Module

in Section 3.4. Finally, we present the Scroing Module in
Section 3.5.

Formally, the source sentence x = {x1, . . . , xi, . . . , xn} and
the target label sequence t = {t1, . . . , ti, . . . , tm} are both
given in the dataset, where n,m are the corresponding lengths.
xi is a word in the sentence, and ti is a label. Given the label
space with L labels, we divide all labels into k categories.
For the convenience of explanation, we set k to 4, that is, we
assume that there are four categories, and they are recorded as
Category A to Category D. The number of elements (labels)
in these four categories is lA, lB , lC and lD. The purpose is
to correctly predict the involved label based on the sentence.

A. Overview

Our model is shown in Figure 3. Our model consist of
three components: Global Encoding Module, Local Encoding
Module and Scoring Module.

Given a sentence x, we first compute the probability of lA
labels under category A, and then calculate the probability of
other labels under category B to category D.

Under category A, we use Global Encoding Module shared
by all categories and Local Encoding Module specific to
category A to encode the sentence x. As for labels, we first
expand lA labels in category A to label statements, and pass
through the Global Encoding Module and Local Encoding
Module, and further simplifed by the self-attention layer.
Then, the encoding of labels seperately read the encoding of
sentence, and fuse the results to get the score of each label
in current category by Scoring Module. Next, we select the
labels that receive a score above a threshold.

After dealing with all categories, we integrate the labels
selected by different categories as the final output.

B. Assign a Category to Each Label

We assign a category to each label. In general, the labels
are often pre-specified and each label have practical meaning.
And when the quantity of labels is large, in order to improve
the work efficiency, these labels will be artificially divided into
certain categories.

In the AAPD and RCV1 datasets used in our experiments,
these categories of information can be explicitly extracted,
which will be described in detail in the Experimental Settings
in Chapter 4. However, previous studies have ignored these
categories of information and treated all labels at the same
level.

Then, in our model, we regard categories (e.g. label ”cate-
gory A”) as first-level labels and actual labels (e.g. label ”a1”)
as second-level labels.

To make full use of the first and second level labels, rather
than simply using a trainable embedding matrix to encode
label, we expand the label into an assignment statement so
that more information could be obtained by time sequence
encoding.

We use the trick of the label statement here. As shown in
Figure 3, label a 1 is expanded to statement,

< s > A = a1 < /s > (1)



Fig. 3. The overview of our proposed model. Assume that all labels are grouped into 4 categories and they are recorded as Category A to Category D. Our
model consists of three components: Global Encoding Module, Local Encoding Module and Scoring Module.

where A is a category with the same dimension as the
label embedding. We treat these catgeories as special labels.
Specifically, we treat the labels as hierarchical structures, the
category labels are on the first level, and the actual labels are
on the second level. In this way, our model can learn not only
the knowledge within the category, but also the hierarchy of
labels through both global and local fashion.

C. Global Encoding Module

Global Encoding Module is shared by all categories. This
module consists of three components: a global sentence CNN
(convolutional neural network), a global sentence LSTM (bidi-
rectional Long Short-Term Memory) and a global label LSTM.
In order to avoid repeated calculation, we only run the global
module once for encoding a sentence x when dealing with
different categories.

Consider the global sentence LSTM first. It encodes the
source sentence from both directions and generates the hidden
states for each word,

−→
h g

i =
−−−−−→
LSTMg

(−→
h i−1, xi

)
,
←−
h g

i =
←−−−−−
LSTMg

(←−
h i+1, xi

)
(2)

where the superscript g represents global LSTM. Then the
hidden state from both directions at each time step are con-
catenated (hgi = [

−→
h g

i ;
←−
h g

i ]). The global label LSTM has the
same structure.

As for the global sentence CNN, unlike CNN-RNN model
[39] in which CNN is used as an encoder, in our model we
apply CNN to extract text features and structure information.
The way to use CNN is similar to the one used in [9]. Each
word in sentence x will look up the randomly initialized word
embedding matrix. The sentence is then a concatenation of

word vectors wi. Thus, a sentence x of length n is represented
as:

S = w1:n = w1 ⊕ w2 ⊕ . . .⊕ wn (3)

where ⊕ is the vector concatenation operator. So, we can
treat the sentence as a ”image”, and perform convolution on it
via linear filters. In natural language, several adjacent words
are usually used together to form a phrase. Thus, filters with
different window sizes are used to extract this information,
which may be helpful for classification. We use wi:i+h−1 to
represent the sub-sentence. A convolution operation involves
a filter WCNN and a bias term.

oi =WT
CNN · Si:i+h−1 + b (4)

where i = 1 . . . n − h + 1, and · is the dot product between
the filter vector and the word vector. This filter is applied
repeatedly to each possible window of h words in the sentence
to produce an feature map o = [o1, o2, . . . , on−h+1]. Then, we
apply a 1 −max − pooling to each feature map to induce a
fixed-length vector. This process is repeated by different filters
with different window sizes.

Next, concatenate the output vector of filters and project it
into a lower dimensional vector hc by a full-connect layer,
where superscript c indicates CNN, as shown in Figure 3.

D. Local Encoding Module
Local Encoding Module consists of two components: a local

sentence LSTM and a local label LSTM. Each category has its
own unique LSTM network to extract the information it cares
about. The local sentence LSTM and the local label LSTM
have the same structure as the global LSTM.

Consider the local sentence LSTM first under category A,
−→
h A

i =
−−−−−→
LSTMA

(−→
h i−1, xi

)
,
←−
h A

i =
←−−−−−
LSTMA

(←−
h i+1, xi

)
(5)



where the superscript A represents local sentence LSTM. Then
the hidden state from both directions at each time step are
concatenated (hAi = [

−→
h A

i ;
←−
h A

i ]).
The outputs of the two (global and local) LSTMs for

sentence are combined through a category-specific scalar pa-
rameter αA to yield a global-local encoding hs of sentence x,
where superscript s indicates sentence and αA is a trainabel
parameter. Now hs denotes that both universal information
for classification and unique information for category A are
obtained.

hs = αAhg + (1− αA)hA (6)

Next ,consider the encoding of labels. Similar to the process
of sentence encoding, hl is calculated by passing the label
statement to global label LSTM and local label LSTM, where
superscript l means label. The global label LSTM can process
all the labels in different categories and learn the general
knowledge applicable to classification contained in the label.
And the local label LSTM (for category A) is only used to
extract the information of the label under the current category.

Then, different from sentence encoding, we compute a self-
attention context cl over hl aiming to transform hl into a
vector. Self-attention or intra-attention, is a special case of
attention mechanism that only requires a single sequence to
compute its representation, which has been applied to many
tasks [10]–[13]. It also provides a more flexible way to select,
represent and synthesize the information of the inputs [14]. In
our case, for ith element in hl,

ali =Wsah
l
i + b (7)

pl = softmax
(
al
)

(8)

where the subscript of Wsa indicates self-attention.
The self-attention context cl is then the sum of each element

hi, weighted by the corresponding normalized self-attention
score pli.

cl =
∑
i

plih
l
i (9)

E. Scoring Module

Intuitively, we can determine whether the sentence ex-
pressed the label under one category by examining two input
source, hc and hs. The first source is the timing encoding
of the sentence x. Labels are interested in words at certain
positions in the sentence.

ati = (hsi )
>
cl (10)

pt = softmax
(
at
)

(11)

qt =
∑
i

ptih
s
i (12)

yt =Wtq
t + b (13)

where t indicates timing information. The score yt indicates
the degree to which the label was expressed by the sentence
x under certain category.

The second source is the output of structure information
encoding module hc. This source studies the association be-
tween label and adjacent words collocations. All labels under
the current category cl get the probability of their classification
by reading the structural information hc of the sentence .

yc = (cl)>hc (14)

The final score y is then a weighted sum between two source
yt and yc, normalized by the sigmoid function σ.

y = σ
(
yt + uyc

)
(15)

where the weight u is a adjustable parameter. The dimensions
of yt, yc, and y are all k, which is the number of labels under
one category.

Finally, we use binary cross-entropy loss to estimate the
loss of prediction. It is a sigmoid activation plus a cross-
entropy loss. Unlike softmax loss and cross-entropy loss used
in generative model [2], it is independent for each label (class),
meaning that the loss computed for every class is not affected
by other class. That’s why it is used in our model, were the
insight of an element belonging to a certain class should not
influence the decision for another class. Below is the loss
calculation between the score of label y under one category
and groudtruth t of sentence x.

loss = −1

k

k∑
i=1

ti · log (yi) + (1− ti) · log (1− yi) (16)

IV. EXPERIMENT

In the following, we evaluate our proposed model on two
datasets. We first introduce the dataset, evaluation metrics,
all baselines, experimental settings and results. Finally, we
perform ablation experiments and discussion.

A. Datasets
Arxiv Academic Paper Dataset (AAPD): This dataset

is provided by Yang [31]. It consists of the abstract and
corresponding subjects of 55,840 papers in arxiv. An academic
paper may have multiple subjects and there are 54 subjects
in total, such as cs.IT, math.CO, math.IT, quant-ph. To be
specific, the training set contains 53840 samples, while the
validation set and test set contain 1000 samples respectively.
The statistic information of the two datasets is shown in Tabel
II.

TABLE I
THE DESCRIPTION OF LABEL OF RCV1-V2 DATASET

Label Description

C11 Strategy, new companies, joint ventures, consortia,
diversifications, investment.

E12 Monetary/economic policy and intervention, interest rates.
G15 All European Community affairs.
M11 Stock exchanges, performance of equities.

Reuters Corpus Volume I (RCV1-V2) 1: This dataset is
provided by Lewis [6]. It consists of over 800,000 manually

1http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004
rcv1v2 README.htm



TABLE II
STATISTIC OF TWO DATASETS. TOTAL SAMPLES, LABEL SETS DENOTE

THE TOTAL NUMBER OF SAMPLES AND LABELS. WORDS/SAMPLE IS THE
AVERAGE NUMBER OF WORDS PER SAMPLE AND LABLES/SAMPLE IS THE

AVERAGE NUMBER OF LABELS PER SAMPLE.

Dataset Total Samples Label Sets Words/Sample Labels/Sample
RCV1-V2 804,414 103 123.94 3.24

AAPD 55,840 54 163.42 2.41

categorized newswire stories made available by Reuters Ltd
for research purposes. Multiple topics can be assigned to each
newswire story and there are 103 topics in total. To be specific,
the training set contains 802414 samples, while the validation
set and test set contain 1000 samples respectively. The topics
in the dataset are desensitized, such as C11, C12, E521, ECAT.
However, the actual meaning of each topic (text interpretation)
as shown in Tabel I and the tree structure of the topics are
additionally given in the data set. This means that there is a
hierarchical relationship between the topics.

B. Evluation Metrics

Following the previous studies [16], [39], we adopt ham-
ming loss and micro-F1 score to evaluate the performance
of our models. For reference, the micro-precision as well as
micro-recall are also reported.

Hamming-loss [31], [38], [41] evaluates the fraction of
misclassified instance-label pairs, where a relevant label is
missed or an irrelevant is predicted.

HL =
1

L

∑
I(y 6= ŷ) (17)

Micro-F1 [31], [40] can be interpreted as a weighted
average of the precision and recall. It is calculated globally
by counting the total true positives, false negatives, and false
positives.

microF1 =

∑L
j=1 2tpj∑L

j=1 2tpj + fpj + fnj
(18)

C. Baselines

In the following, we introduce the baseline models with
which our model compares.
• Binary Relevance (BR) [33] transforms the MLC task

into multiple single-label classification problems by ig-
noring the correlations between labels.

• Classifier Chains (CC) [35] transforms the MLC task
into a chain of binary classification problems and takes
high-order label correlations into consideration.

• Label Powerset (LP) [34] transforms a multi-label
problem to a multi-class problem with one multi-class
classifier trained on all unique label combinations.

• CNN [9] uses multiple convolution kernels to extract text
features, which are then inputted to the linear transforma-
tion layer followed by a sigmoid function to output the
probability distribution over the label space.

• CNN-RNN [39] proposes a CNN and RNN based method
that is capable of efficiently representing textual features
and modeling highorder label correlation.

• Seq2Seq [31] applies the sequence-to-sequence model to
perform multi-label text classification.

D. Experimental Settings

We implement our experiments in PyTorch on an NVIDIA
1080Ti GPU. The size of the vocabulary is 50000 and
out-of-vocabulary (OOV) words are replaced with unk for
both datasets. We use the Adam [8] optimization method
to minimize the binary cross-entropy loss over the training
data.Follow [31], for the hyper-parameters of the Adam opti-
mizer, we set the learning rate α = 0.001, two momentum
parameters β1 = 0.9 and β2 = 0.999 respectively, and
ε = 1 ∗ 10−8. We set dropout [7] to 0.2.

For the RCV1-V2 dataset, each document is truncted at
the length of 500. We set the (randomly intialized) word
embedding size to 256. As for the number of categories, no
specific information is displayed in the label, such as C11,
E12, G15 and M11. However, as shown in Table I, each label
has an actual text interpretation, and all labels are tree-shaped.
We can use this information to assign categories to labels. We
use the first letter of label to distinguish categories. Therefore,
it can be determined that there are four categories of labels:
C, E, G, M. All four categories are in the first layer of topic
hierachy tree which is shown in official website. For example,
topic ECAT belongs to category E.

Therefore, for the encoding of sentence, one global LSTM
and four local LSTM for four categories are used. For the
encoding of labels, the same number of LSTMs are configured.
The hidden size of the bi-LSTM is 128. It should be noted
that the dimension of word embedding must be twice the
dimension of hidden size of bi-LSTM due to the inner product
of the vector. In structure information encoding module. we
use 100 filters of each the four window-size (4,5,6,7), which
result in a 400-dimension output after concatenation. And this
output be projected into a 256-dimension vector hc by a full-
connect layer. We set the parameter u in equ.15 to 0.5.

For the AAPD dataset, we use 100 filters of each the four
window-size (2,3,4,5). As for the number of categories, we
use the prefix of the label (subject) to determine the category.
We divided the subjects into three categories: cs, math, and
the rest. For example, subject cs.cv starts with cs., so it is
assigned to category cs. Subject physics.soc-ph is classified
as category the rest. To be specific, among the total of 54
subjects, there are 33 subjects in category cs and 8 subjects in
category math, while category the rest contains 13 subjects.
The size of (randomly initialized) label embedding is 256.
Hence, one global LSTM and three local LSTM are configured
for the sentence encoding and label encoding. The rest of the
parameters are the same as that in the RCV1-V2 dataset.

E. Results

The experiment results of our model and the baselines on
both datasets are shown in Tabel IV and Tabel III.



TABLE III
PERFORMANCE ON THE AAPD TEST SET. HL, P, R, AND F1 DENOTE
HAMMING LOSS, MICRO-PRECISION, MICRO-RECALL AND MICRO-F1,
RESPECTIVELY. THE SYMBOL “+” INDICATES THAT THE HIGHER THE

VALUE IS, THE BETTER THE MODEL PERFORMS. THE SYMBOL “-” IS THE
OPPOSITE.

Model HL(-) P(+) R(+) F1(+)
BR 0.0316 0.644 0.648 0.646
CC 0.0306 0.657 0.651 0.654
LP 0.0312 0.662 0.608 0.634

CNN 0.0256 0.849 0.545 0.664
CNN-RNN 0.0278 0.718 0.618 0.664

Seq2Seq 0.0251 0.746 0.659 0.699
Our model 0.0236 0.770 0.677 0.720

TABLE IV
PERFORMANCE ON THE RCV1-V2 TEST SET.

Model HL(-) P(+) R(+) F1(+)
BR 0.0086 0.904 0.816 0.858
CC 0.0087 0.887 0.828 0.857
LP 0.0087 0.896 0.824 0.858

CNN 0.0089 0.922 0.798 0.855
CNN-RNN 0.0085 0.889 0.825 0.856

Seq2Seq 0.0081 0.887 0.850 0.869
Our model 0.0080 0.926 0.834 0.871

TABLE V
ABLATION TEST ON AAPD DATASET

Model HL(-) P(+) R(+) F1(+)
Our model 0.0236 0.770 0.677 0.720

- text global-cnn 0.0024 0.781 0.645 0.706
- text global-local-rnn 0.0253 0.803 0.578 0.672

- label global-local-rnn 0.0238 0.779 0.654 0.711

Table III presents the experimental results on AAPD test
set. It indicates that our model achieves a reduction of 6.0%
hamming loss and an improvement of 3.0% micro-F1 score
over the state-of-the-art performance. Similar to the results on
the AAPD test set, our model still achieves the prior best work
with less parameters on RCV1-V2 dataset.

F. Ablation Test and Discussion

Considering the feasibility of computing resources, we
perform some ablation experiments on the AAPD dataset to
analyze the effectiveness of different components of our GLEN
model. The results of these experiments are shown in Tabel
V.

In the table, we mark the process of global sentence CNN
as text global-cnn, the global and local sentence LSTM as text
global-local-rnn and the process of label statement encoding
as label global-local-rnn, and . And - text global-cnn in the
table means that we do not implement text global-cnn module
in our model, and the rest of our model are working properly.

Labels with categories can improve classification tasks.
This is due to the use of categories which get more information
within the category mined. In addition, a large classification
task is decomposed into some smaller classification tasks
under each category, which further reduces error.

Decomposing multi-label classification task into multiple
binary classification tasks can effectively avoid the accumu-
lation of errors caused by the generative method (seq2seq).
The way to avoid the disadvantage of seq2seq is to apply
the traditional classification loss function. Therefore, we use
binary cross-entropy loss (BCE) in our model, which leads to
an improvement in micro-precision (P) metric. This is due to
the fact that some labels with low probability will be trained
to tend to 0, the most directly manifestation of which is that
the model will not output its own uncertain results. At the
beginning of training stage, the prediction is usually empty.

Temporal order is important than structure information.
As shown in Tabel V, the performance of the model without
text global-local-rnn is weaker than the model without text
global-cnn, which suggest that capturing temporal dependen-
cies is helpful for understanding phrases for classification.
Because of the cooperation between two parts, text global-cnn
and text global-local-rnn, our model can achieve the desired
results.

Label encoding with label statement trick and self
attention works better than ordinary label embedding.
We observe that there is a significant decrease in performance
when remove the label global-local-rnn. This stems from the
flexibility in the attention context computation afforded by the
self-attention mechanism, which allows the model to focus
on selecting sentence history relevant to the current label.
Moreover, label statement trick is integrated into the primary
and secondary labels, which makes the label encoding process
more efficient

V. CONCLUSION

In this paper, we propose a simple and effective novel
framework, named Global-Locally Encoding (GLEN). Exper-
imental results shows taht GLEN achieves the state-of-the-art
performance. Our model learns information within categories
by encoding sentences and labels in both global and local
fashion. In addition, through the method of label statement, we
integrated the hierarchical relationship of labels into the model
for learning. And our model does a good job of avoiding the
problems that might arise with a generative approach, such as
error accumulation and unclear label ordering.
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