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Abstract—We present a novel black-box adversarial training
algorithm to defend against state-of-the-art attack methods in
machine learning. In order to search for an adversarial attack,
the algorithm analyses small regions around the input that are
likely to make significant contributions for the generation of
adversarial samples. Unlike some of the literature in the area, the
proposed method does not require access to the internal layers
of the model and is therefore applicable to applications such as
security. We report the experimental results obtained on models
of different sizes built for the MNIST and CIFAR10 datasets.
The results suggest that known attacks on the resulting models
are less transferable than those models trained by state-of-the
art attack algorithms.

I. INTRODUCTION

Conventional machine learning models are known to be
vulnerable to adversarial examples [1]–[4]. A gradient-based
approach to generate adversarial examples for linear classi-
fiers, support vector machines (SVM), and neural networks
in the context of MNIST models was first developed in [5].
This was then extended to proactive and reactive defences
to improve the security of machine learning models [6]. It
has also been observed that adversarial examples may have
imperceptible differences compared to the original input [7].
[8] suggested that adversarial examples are inherently caused
by the linear behaviour of deep neural networks (DNNs)
when operating in high-dimensional spaces. The topology
and geometry of adversarial examples were analysed in [9],
while the local intrinsic dimensionality of adversarial regions
for adversarial examples were characterised in [10]. More
recently, it has been observed that adversarial examples are
transferable, i.e., an example which is adversarial for a DNN
can often be used to mislead the prediction of other DNNs [7],
[11], [12]. Moreover, adversarial examples could be universal
in the sense that a single example may be used against several
different models created from the same dataset [13].

Adversarial examples on DNNs have raised serious security
issues as DNNs have become increasingly popular in applica-
tions such as computer vision systems for autonomous vehi-
cles, face recognition software, and malware detection [14]–
[16]. Several defence methods against adversarial attacks have
been proposed [17]–[19]; but these were broken shortly [20]–
[22]. More powerful defence techniques are required to make
DNNs robust and usable in safety-critical applications. This
paper makes a contribution towards this aim.

To increase the models’ robustness against attacks, several
adversarial training methods have been developed. [8] first

injected adversarial examples during the training stage and
demonstrated that in this way the robustness of DNNs can be
increased significantly. However, this comes at a high cost as
the resistance to attacks increases only after large numbers of
adversarial examples have been added to the training data. This
raises the key research question of learning models that are
robust to adversarial examples in a computationally effective
manner.

In this research, we propose an adversarial attack method to
generate adversarial examples for adversarial training. Given
an arbitrary input to a DNN, the algorithm here proposed
searches small regions around the input that have significant
potential to generate adversarial samples. The algorithm does
not require access to the internal layers of the DNN and thus
falls in the realm of black-box adversarial attack. Similarly to
other approaches, these attacks are then used for adversarial
training. By comparing against FGSM [8] and PGD [21],
two state-of-the-art methods in adversarial training, our results
show that the resulting DNNs synthesised via our method are
less susceptible to attack transferability. We also show that
the method reduces significantly the number of adversarial
examples required for adversarial training.

The remainder of this paper is organised as follows. Sec-
tion II introduces some preliminaries regarding adversarial
examples and their formulation under different attacks on
DNNs. Section III describes the main black-box algorithm
here proposed aimed at generating adversarial examples and
how adversarial examples are employed for adversarial train-
ing. Section IV defines robustness transferability and reports
quantitative results on the MNIST and CIFAR10 datasets;
Section V concludes the paper.

Related work. State-of-the-art defence methods can be
categorised into two groups. The first is commonly referred to
as approaches dealing with reactive countermeasures. These
defend the model after an attack has been performed. They
attempt to detect adversarial examples in the inputs. These
include methods of adversarial detecting [23] and input recon-
struction [24]. The second consists of proactive methods which
aim to train robust DNNs before attacks are performed on
them. These include network distillation [17] and adversarial
training [25]. Although all these countermeasures improve the
robustness of DNNs to some level, they still have significant
limitations. This paper overcomes some of them as we explain
in the following.

Subnetworks to detect adversarial examples for a given net-
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work were explored in [23]. This deep subnetwork is trained
to distinguish genuine data from data containing adversarial
perturbations. Similar ideas are employed in approaches aimed
at detecting adversarial examples in the testing stage [26]–
[29]. For instance, SafetyNet [29] extracts each ReLU layer’s
output as the features for the adversarial detector and detects
adversarial examples using the RBF-SVM algorithm. In [28],
adversarial examples are shown to have different coefficients
in low-ranked components after whitening by Principal Com-
ponent Analysis (PCA). While all of these methods can help
to mitigate against some attacks, [30] demonstrate that most of
these adversarial detecting methods, including [23], [26]–[28],
cannot defend against the C&W attack that they develop. In
terms of adversarial training, PGD [21] is presently the most
performing method and was shown to be more powerful than
C&W. When tested against it, the method we present achieves
higher accuracies than PGD.

A related concept in the literature is the one of input
reconstruction which aims to transform adversarial examples
to clean data and then using these to assist DNNs in predicting
correct classifications via denoising autoencoders (DAEs). A
variant of DAEs, called deep contractive networks (DCNs), is
proposed to increase the robustness of neural networks without
a significant performance penalty [24]. However, calculating
partial derivatives at each layer in the back-propagation stage
has a high computational cost. In addition, the proposed
layered based approach does not guarantee global optimality.
Compared to this approach, at least for the datasets that we
experimented with, our method does not suffer from local
optimality problems.

[17] proposed network distillation, which was originally
designed to reduce the size of DNNs whilst maintaining
classification characteristics, for defence purposes. However,
network distillation was unable to defend against the PGD
attack developed in [21]. Reducing the size of the model may
also have implications on the overall accuracy. In contrast, we
do not suffer from any accuracy degradation and we show that
the approach is resilient against the PGD attack. In summary,
our contribution is intended to improve on the state of the art
by providing a technique that is comparably computationally
attractive, can defend against the C&W and PGD attacks, and
has good accuracy, and does not appear to be susceptible to
local optima.

II. PRELIMINARIES

In this section we define some background notions used
in the rest of the paper. Specifically, in Subsection II-A we
formalise deep neural networks. In Subsection II-B we intro-
duce the problem of finding adversary symbols formally. In
Subsection II-C we introduce two state-of-the-art adversarial
attack methods, which are also used later in experimental
comparisons. Lastly, in Subsection II-D, we give some details
of adversarial training strategy.

A. Deep Neural Networks

We focus on the most common architecture of k-layer fully-
connected feed-forward neural network with ReLU activation
function. For an input vector xt, each hidden layer transforms
its input vector from the previous layer to the next layer by
applying an affine transform as follows:

z0 = xt,
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where N (l), W (l) and b(l) are the number of nodes, a weight
matrix, and a bias vector of the l-th layer, respectively, and
σ(a

(l+1)
i ) is a nonlinear ReLU activation function. The Recti-

fied Linear Unit (ReLU) is defined as ReLU(x) = max(0, x),
where the output is the maximum between 0 and the input
positive value. In the last layer, the softmax function is used
to obtain the probability of the class yt, which is formulated
as:

softmax(xt) =
exp(wyta

L)∑N(L)

n=1 exp(wna
(L))

, (2)

where L is the number of hidden layers and N (L) is the
number of output units. In summary, a DNN model θ is defined
by the set of weight matrices W , bias vectors b, and a nonlinear
activation function σ(x) as follows:

θ = {W, b, σ(x)}, (3)

where W = {W (1), ...,W (L)} and b = {b(1), ..., b(L)}. We
refer to [31], [32] for more details of DNNs.

B. Adversarial Symbols

We denote a labelled training dataset of size n with
{(xi, yi)}ni=1, where xi ∈ Rd is the input data in d dimensions
and yi ∈ {1, ..., k} is a label in k classes. Given a deep neural
network N with associated function f(·) : Rd → yi, the
loss function of the network with parameters θ on (xi, yi)
is expressed as L(xi, θ, yi). The gradient of the associated
function f(·) with respect to the vector xi is denoted as
5xf(·).

Definition II.1. Let δ be a perturbation for a given input xi.
The perturbation between the original input data xi and the
adversarial example x′i is represented as δ = x′i − xi ∈ Rd.

Definition II.2. Let ` be a norm of some p, where:
• for p ∈ R and 1 ≤ p <∞, the `p norm of xi is defined

as ‖xi‖p = (
∑d
j=1 |xi(j)|p)1/p;

• for p ∈ ∞, the `∞ norm of xi is defined as ‖xi‖∞ =
maxj |xi(j)|.

Given a trained neural network N and an input data sample
xi, generating an adversarial example x′i ∈ Rd with a label



y′i ∈ {1, ..., k} under some norm p can be formulated as a
box-constrained optimisation problem:

min ‖δ‖p s.t. f(x′) 6= f(x), x′ ∈ [0, 1], (4)

where ‖ · ‖p denotes the distance between two data samples
under some norm p. This optimisation problem emphases on
minimising the perturbation δ while misclassifying the target
prediction given a constrained input data.

We here use another definition for adversarial example
by minimising the loss value of the target class, where the
perturbation δ is constrained in a subtle range ε. This is
formulated as:

min
x′

L(f(x′), f(x)) s.t. ‖δ‖p ≤ ε, f(x′) 6= f(x),

(5)
where ε denotes the value of the perturbation constraint.

C. Adversarial Attack Methods

In this subsection we illustrate two (attack) methods for gen-
erating adversarial examples. We will evaluate the robustness
and transferability of our proposed method against these two
attack methods in the experimental Section IV.

Fast Gradient Sign Methods (FGSM) [8]. The method
involves searching for adversarial attacks by performing one
step gradient update along the direction of the sign of the
gradient at each pixel of the input data. Specifically, given an
adversarial input x′ = x+ δ, where x is original input image
and δ is the perturbation, the loss function of the model for
adversarial input can be express as Equation (6):

L(x′, θ, y′) = L(x, θ, y) + (x′ − x)Ox L(x, θ, y), (6)

where θ is the hyperparameters of a model. Through minimis-
ing L(x′, θ, y′) subjecting to ‖x′ − x‖∞ ≤ ε, the required
perturbation is derived as Equation (7):

δ = ε · sign(Ox Lθ(x)), (7)

where ε is the magnitude of the perturbation constraint. By
increasing ε the likelihood of x′ being misclassified by the
classifier f(·) increases; by increasing ε the attack may be
more easily detected by humans.

Projected Gradient Descent (PGD) [21]. The PGD at-
tack is widely believed to be of the most powerful attack
methods. This method adopts the multi-step variant FGSM,
i.e., projected gradient descent (PGD) on the negative loss
function [25]:

x′t+1 = Clipx+δ(x
′
t + α · sign(Ox L(x′, θ, y))), (8)

where α is the variant step size at step t and the Clip function
ensures that the output falls in the valid input value. PGD
iteratively re-starts from many points in the `∞ balls around
data points from the respective evaluation sets.

Algorithm 1: Black-box Adversarial Attack: MATTACK

1 function BLACK-BOXADVERSARIALATTACK ;
Input : Clean image dataset x

Initialise perturbation constraint setting for ε
Initialise search trees T

Output: Effective adversarial examples x′

2 Execute Scale Invariant Feature Transform to obtain potential
candidate descriptor;

3 while effective adversarial example not found do
4 Pick up one most promising point as root node NR from

the descriptor;
5 Trace from the root node;
6 Selection: select nodes with greatest confidence value

and trace till the leaf node;
7 Expansion: expand one node from leaf node;
8 Simulation: do simulation with the expanded node and

check win or loss;
9 Backpropagation: update associated information for each

node along the traversing path back to the root node
10 end

D. Adversarial Training

Adversarial training [8] is the process of explicitly training a
model with adversarial examples to enhance model robustness.
First, adversarial examples are generated in every step of the
training stage and then they are injected into the training
dataset. This method significantly contributes to robustness,
as it can provide regularisation and improve precisions for
DNNs under adversarial attacks.

In this training process, the initial setting for neural net-
work is a random uniform distribution. The training process
starts from choosing a minibatch set B of size m from
training dataset and then generating k adversarial examples
{x′1, ..., x′k} from corresponding clean images {x1, ..., xk}
using current state of network N . The new minibatch B′

is expressed as {x′1, ..., x′k, xk+1, xm}. One training step of
network N is implemented with the new minibatch B′ and the
previous steps are repeated until the training loss is converged.

III. THE MROBUST DEFENCE METHOD

In this section we present a black-box adversarial attack
method relaying on the Scale Invariant Feature Transform
(SIFT) algorithm [33]. We present how this algorithm uses
Monte-Carlo tree search (MCTS) [34] to generate effective ad-
versarial examples in Subsection III-A. In Subsection III-B we
summarise the full black-box adversarial training algorithm,
called MROBUST, including a robust optimisation function.

A. Black-box Adversarial Attack Method

In this subsection we introduce Scale Invariant Feature
Transform [33] to search potential invariant feature candidates
and Monte Carlo Tree Search [34] to find an adversarial
example based on the outcomes of Scale Invariant Feature
Transform. We summarise the full algorithm in Algorithm 1.

Scale Invariant Feature Transform [33]. The algorithm
begins by executing SIFT on the clean image, given a pertur-
bation ε, received as input (line 2). SIFT was first proposed



Fig. 1: An Effective Adversarial example in a region Ri with ‖δ‖p ≤ ε.

to extract image features in object recognition systems [33].
It can be employed to extract features for any object in an
image and provide a feature description of this object. This
description can then be used to identify and locate objects in
other images. In order to perform accurate recognition, these
extracted features should be detectable under variations of
image scale, orientation and illumination, and these extracted
features are also invariant to image scaling, translation and
rotation.

For the purpose of searching for features, Laplacian of
Gaussian (LoG) are normally used to detect areas of rapid
changes (edges) in images. Due to the significant computation
cost of LoG operations, the Difference of Gaussians (DoG) is
instead employed for simplification. Once the DoG is obtained,
each pixel in the DoG is compared with its eight neighbours
at the same scale and the process is then repeated at different
scales. If a local maximum is identified, this is considered as
a potential invariant feature. The points that are low-contrast
and those that are edge response points are discarded. By
discarding these points we are left with potential candidates
for feature invariance over the parameters above. These points
are collected into a descriptor also containing the location and
orientation of these points.

Monte Carlo Tree Search (MCTS) [34].
We now explain how Monte Carlo Tree Search [34] can be

employed to identify potential adversary symbols by searching
in the neighbourhood of the candidates obtained by SIFT as
above (line 3-10). MCTS is a heuristic search algorithm for
decision making; its key feature consists of selecting the most
promising moves on the basis of random sampling of the
search space. In each iteration, MCTS consists of four steps,
that are selection (line 6), expansion (line 7), simulation (line
8) and backpropagation (line 9). We consider each node of the
tree as a specific pixel in an image. We first traverse from the
root node NR and choose a child node NC with the highest
confidence value down to a leaf node NL. Then we expand
one or more children nodes NE and simulate from one of them

to get a win or loss. A win of the game represents the fact
that an adversarial example can be found once a perturbation
is applied to this pixel. In the last step we update the tree
structure with the new confidence information for each node
according to the simulation result whether the search was a
win or a loss.

We use the confidence value Ci, representing the associated
information in each node NC of the game tree, given by
Equation (9):

Ci =
wi
ni

+ c

√
lnNi
ni

, (9)

where wi stands for the inversion of Euclidean distances for
the node considered after the i-th move, ni stands for the
number of visits for the node considered after the i-th move,
and Ni stands for the total number of visits after the i-th move.
The exploration parameter c is theoretically equal to

√
2.

Intuitively the higher probability to derive an adversarial
symbol have the higher confidence value for each node. On
the contrary, the lower probability to obtain an adversarial one
will have a lower confidence value. The confidence measure
above is inspired from the game of Go [35] where is widely
used to make decisions in different games and applications for
deep neural networks.

Given the above, we select one effective adversary symbol
from the candidates above by imposing the constraint ‖δ‖p ≤
ε. For each region Ri in an image, each path of the game tree
can be considered as a ladder-like structure. Each region Ri
contains several nodes NCik

of the game tree and a specific
perturbation ∆ik is applied after a node NCik

is selected. The
total perturbations applied to a region is then presented as∑K
k=0 ∆ik, where K is the total number of nodes along a

path. An effective adversarial example EA with ‖δ‖p ≤ ε is
then formulated as Equation (10):

EA = ‖
R∑
i=0

K∑
k=0

∆ik‖p ≤ ε, (10)



Algorithm 2: Black-box Adversarial Training: MROBUST

Deep neural network M
Size of the training minibatch is m

1 function BLACK-BOXADVERSARIALTRAINING ;
Input : Deep neural network M

Training dataset x
Size of the training minibatch is m

Output: Deep neural network MROBUST
Adversarial training accuracy and loss values

2 Randomly initialize deep neural network M
3 while training not converged do
4 Read minibatch B = {x1, ..., xm} from training dataset;
5 Generate m adversarial examples Badv = {x′1, ..., x′m}

from corresponding clean examples {x1, ..., xm} with
black-box adversarial attack method in Algorithm 1:

6 function BLACK-BOXADVERSARIALATTACK;
7 Do one training step of network M using minibatch B′;
8 Update model loss with robust optimisation:

minθ L = minθ
∑m
i=1 maxδ L(x

′
i, θ, yi);

9 end

where R is the total number of regions in an image.
We explain more details in Figure 1 (A-D). In this figure,

there are two regions Ri=1..2 and each region Ri contains
several nodes NCik

of the game tree. For region R1, a
specific perturbation ∆1k is applied after one node NC1k

is
selected. The total perturbations applied in a region R1 is then
presented as

∑K
k=0 ∆1k. An effective adversarial example EA

with constraint ‖δ‖p ≤ ε is obtained once all perturbations in
these two regions satisfied with the constraint.

B. Black-box Adversarial Training Algorithm: MROBUST

In the previous subsection we obtained effective adversarial
examples by using the black-box adversarial attack method. In
this subsection we introduce a black-box adversarial training
algorithm relaying on these effective adversarial examples. We
summarise the full algorithm in Algorithm 2, including the
robust optimisation step.

We now explain Algorithm 2. We first randomly initialised
the neural network M . The loss value L of the neural network
M is updated according to the softmax result of each adversar-
ial training iteration. The training loop continues for as many
epochs as required until the required accuracy is converged.
During each training loop, we randomly select a minibatch B
of size m from the training dataset, and generate corresponding
minibatch Badv consisted of size m adversarial examples
using the black-box adversarial attack method. The minibatch
Badv is then applied into the robust model M for adversarial
training. The convergence criteria ensures that resulting model
M is robust in small neighbourhoods of every training point
around x. We call these neighbourhoods the perturbations δ
and we represent them as x′ = x+ δ. The overall process can
be regarded as a solution to the robust optimisation problem
against adversarial examples and formulated as:

min
θ
L = min

θ

m∑
i=1

max
‖δ‖≤ε

L(x′i, θ, yi), (11)

where δ is the perturbation set under the constraint ε corre-
sponding to the adversarial example x′i. This involves optimis-
ing the model parameter θ with respect to a worst-case data
(x′i, yi), rather than against the original training data, which
is related to the black-box attack method previously; the i-th
worst-case data point is selected from the perturbation set δ.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the robustness of the black-
box adversarial training algorithm (MROBUST) presented in
the previous section, and report the results obtained on the
MNIST [36] and CIFAR-10 [37] datasets. We evaluate the
transferability between different adversarial training models
using FGSM, PGD, and MROBUST methods. The evaluation
basis for transferability is defined in Subsection IV-A and
the experimental setup and results are shown in Subsec-
tions IV-B, IV-C and IV-D.

A. Robustness Transferability

Attacks transferability is problematic in applications [11]
as attacks identified in one domain may be easily transferable
to another. Transferability can be analysed in terms of intra-
technique and cross-technique transferability. Intra-technique
transferability concerns the misclassifications (caused by a set
of attacks) on different models trained on the same learning
method. Cross-technique transferability concerns misclassifi-
cations (caused by a set of attacks) on models trained on
different learning methods. Here we focus on cross-technique
transferability against attacks on models built with FGSM [8],
PGD [21], and MROBUST methods. Specifically, we use the
black box adversarial attack method of the previous section as
an adversary and evaluate the robustness of different adversar-
ially trained models against this adversary. We also study the
robustness of different model architectures and evaluate how
the capacity of the network impacts for transferability.

In the following we focus on robustness transferability, de-
fined as RT = 1− attack success rate , which measures the
percentage of adversarial samples produced using the black-
box attack adversary that do not cause a misclassification
on the trained model. In other words, a higher robustness
transferability represents a situation in which the trained
model is more robust under the attack of the black-box attack
adversary.

B. Experimental Setup

We evaluated the method on the MNIST and CIFAR10
datasets. The MNIST database of handwritten digits contains
a training set of 60,000 examples, and a test set of 10,000
examples. The digits were size-normalized and centred in a
fixed-size image of 28×28. We generated adversarial examples
under the perturbation constraints of size ε = 0.1 in the l∞
norm. To investigate model capacity, we considered two train-
ing networks of simple and wide architectures, respectively.
The simple network consisted of two convolution layers of
sizes 32 and 64 filters, and a fully connected layer of size
1024. The wide network consisted of two convolution layers of



Target
Source S. (Nature

Training)
S. (FGSM
Training)

S. (PGD
Training)

S. (M
Training)

W. (Nature
Training)

W. (FGSM
Training)

W. (PGD
Training)

W. (M
Training)

S. (Nature Training) 12.3 85.6 85.8 86.2 6.4 78.4 86.6 87.3
S. (FGSM Training) 78.3 64.3 68.4 74.7 76.4 64.8 76.2 82.1
S. (PGD Training) 80.2 78.4 81.4 80.1 79.2 76.5 80.8 82.7
S. (M Training) 83.8 84.2 84.7 74.9 83.2 84.5 86.8 79.7
W. (Nature Training) 15.7 89.7 88.6 90.1 5.2 77.2 85.3 90.7
W. (FGSM Training) 79.2 72.7 79.6 82.6 70.5 64.2 81.2 84.8
W. (PGD Training) 81.4 80.1 82.7 83.5 81.4 79.5 82.4 82.9
W. (M Training) 85.5 86.3 86.2 78.6 85.1 85.7 88.4 80.6

TABLE I: The robustness transferability comparison of nature training, FGSM, PGD and MROBUST methods using black-box
adversarial attack from the source network on MNIST.

sizes 64 and 128 filters, and also a fully connected layer of size
1024. Both networks were adversarially trained with FGSM,
PGD and MROBUST methods. The robustness transferability
for black-box attack adversary between different adversarial
trained methods and architectures are shown in Table I. More
explanations about the experimental results are described in
Subsection IV-C.

The CIFAR10 dataset contains a training set of 50,000
examples, and a test set of 10,000 examples of 32×32 colour
images in 10 different classes. The value of each pixel in the
input images were normalised in the interval [0, 1]. As before,
we generated adversarial examples under the perturbation
constraints of size ε = 0.1 in the l∞ norm. For the CIFAR10
dataset, we used Resnet model [38] as the baseline model
and constructed a variant with layers wider by a factor of
10, resulting in a wide network with 5 residual units with (16,
160, 320, 640) filters each. This network achieved up to 95.2%
accuracy on clean test dataset. We also performed adversarial
training with FGSM, PGD and MROBUST methods on these
two networks and investigated the robustness transferability
for black-box attack adversary between different adversarially
trained methods. The resulting robustness transferability mea-
sures are shown in Table II. We will explain more experimental
results in Subsection IV-D.

Fig. 2: Adversarial Accuracy on MNIST dataset with ε = 0.1.

Fig. 3: Adversarial Loss on MNIST dataset with ε = 0.1.

C. MNIST

Table I summarises the results for robustness transferability
obtained for the MNIST dataset. We first trained DNNs with
FGSM, PGD and MROBUST methods as source and target
models and generated attacks with a MATTACK adversary
based on the query result from each of the trained source
models. The generated attack was then transferred into each of
the target trained models and a check was carried to determine
whether the target trained models can successfully defend
against this attack. The results obtained show that a strong ad-
versary generally reduces transferability and increases robust-
ness transferability. For example, the robustness transferability
with source simple trained model S. (M Training) paired with
target S. (FGSM Training) is 74.7; this is higher than 68.4,
which is the value for the same target but source S. (PGD
Training). In addition, the MROBUST method generally aug-
ments robustness transferability for different models, except
for those that have MROBUST itself as a source. For instance,
the robustness transferability with source simple trained model
S. (M Training) paired with target W. (PGD Training) is 83.5;
this is higher than 82.7, which is the value for the same
target but source S. (PGD Training). This happens in most
of the cases. On the contrary, the robustness transferability
with source simple trained model S. (M Training) paired with



Target
Source S. (Nature

Training)
S. (FGSM
Training)

S. (PGD
Training)

S. (M
Training)

W. (Nature
Training)

W. (FGSM
Training)

W. (PGD
Training)

W. (M
Training)

S. (Nature Training) 9.1 75.4 76.4 76.9 3.4 71.9 77.6 78.3
S. (FGSM Training) 68.3 53.4 58.2 64.9 66.1 55.5 66.9 72.5
S. (PGD Training) 69.6 68.1 70.7 69.4 69.3 65.9 70.1 73.2
S. (M Training) 73.3 74.1 75.2 64.5 72.1 74.9 76.4 69.3
W. (Nature Training) 10.3 79.1 78.3 79.6 8.3 67.6 75.9 79.8
W. (FGSM Training) 69.1 63.2 69.7 71.5 69.4 54.9 70.1 74.6
W. (PGD Training) 70.6 69.8 71.3 72.9 70.8 69.2 71.9 72.8
W. (M Training) 75.7 77.1 76.8 69.4 75.2 76.6 79.2 68.3

TABLE II: The robustness transferability comparison between nature training, FGSM, PGD and MROBUST methods using
black-box adversarial attack from the source network on CIFAR10.

target W. (M Training) itself is 78.6; this is lower than 86.2,
which is the value for the same target but source S. (PGD
Training). The reason is that we generate attacks based on the
source model using the similar method. Moreover, changing
the architecture from simple to wide networks generally has a
positive effect to robustness transferability; so the value with
source wide model W. (M Training) paired with target W. (M
Training) is higher than source S. (M Training) paired with
target W. (M Training).

We report the accuracy and loss for different adversarial
training methods over the first 2,000 epochs in Figure 2 and
Figure 3. The results show that the convergence is highest
for nature training with no adversarial examples, followed
by MROBUST, then PGD, and finally FGSM. The results
show that MROBUST converges faster than the competing
methods with 13.2 % because it searches for only potential
candidates of the perturbations for adversarial examples. This
can also help to reduce the required adversarial examples
for adversarial training and thus save the training efforts. In
summary, the adversarial training with MROBUST converges
faster than other two methods.

D. CIFAR10

Table II summarises the robustness transferability on the
CIFAR10 dataset. As above the results show that a strong
adversary reduces transferability and helps the robustness
transferability. For instance, the robustness transferability with
source simple trained model S. (M Training) paired with
target W. (FGSM Training) is 71.5; this is higher than
69.7, which is the value for the same target but source S.
(PGD Training). Furthermore, the MROBUST contributes to
robustness transferability for different models, except for those
with a source MROBUST themselves; see, e.g., source S.
(M Training)/target W. (M Training) is lower than source S.
(PGD Training)/target W. (M Training), whilst the value of
source S. (M Training)/target W. (PGD Training) is higher
than source S. (PGD Training)/target W. (PGD Training).
Moreover, changing the architecture from simple to wide
networks improves robustness transferability in average, e.g.,
source W. (M Training)/target W. (M Training) is higher than
source S. (M Training)/target W. (M Training).

We plot the accuracy and loss for different adversarial
training methods over the first 25,000 epochs in Figure 4

Fig. 4: Adversarial Accuracy on CIFAR10 dataset with ε =
0.1.

Fig. 5: Adversarial Loss on CIFAR10 dataset with ε = 0.1.

and Figure 5. As above we found that nature training method
converged faster than all, followed by MROBUST, PGD and
FGSM. The results also show that MROBUST requires fewer
adversarial examples during adversarial training and thus



improves the training efforts with 5.2%. As in the MNIST
case, we can see from Figure 4 and Figure 5, the adversarial
training with MROBUST converges more efficient than other
two methods.

V. CONCLUSIONS

In this paper we proposed the MROBUST defence method
with MCTS and evaluated the robustness transferability results
on MNIST and CIFAR10 datasets. We focused on small
perturbations from potential candidates that are capable to
generate adversarial examples as this can save time complexity
for adversarial training and increase the robustness against
adversarial attacks. In real applications some pre-processing
components like denoising elements are normally included
prior to neural network models; so we here only focus on
potential perturbations. The results show: i) that the method is
computationally attractive, ii) it can defend against the FGSM
and PGD attacks, and iii) does not appear to be susceptible
to local optima. In future work, we will continue to improve
robustness for different datasets like German Traffic Signs
against different attacks.
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