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Abstract—Echo State Network (ESN) is a fast and efficient
recurrent neural network with a sparsely connected reservoir
and a simple linear output layer, which has been widely used for
real-world prediction problems. However, the capability of the
ESN of handling complex nonlinear problems is limited by the
relatively simple neuronal dynamics in the reservoir. Although
the gated recurrent unit (GRU) model with multiple nonlinear
operators has achieved an excellent performance, gradient-based
training algorithms usually require intensive computational re-
sources. In this paper, we present a novel ESN model based
on GRUs to tackle complex real-world tasks while reducing the
computational costs, taking advantage of the characteristics of
both the ESN and the GRU models. In the proposed model, the
reservoir unit is replaced by the sparsely connected GRU neurons.
Experimental results on three regression problems demonstrate
that the proposed method performs better than the original ESN
and GRU models.

Index Terms—Echo state networks; gated recurrent unit;
regression problems.

I. INTRODUCTION

In the past few decades, with continuous improvement of
underlying hardware devices and software techniques, a huge
amount of streaming data can be generated and collected by
using various sensors and actuators [1]. Increasing mature
data analysis techniques have made it possible to make use
of mass streaming data. Meanwhile, the data-driven modeling
approach has been one of the hotspots in current both academy
and industry, which has been obtained rapid development and
application in the fields of weather forecast [2], air quality
prediction [3] as well as prediction and control of industrial
process parameters [4].

A popular data-driven modeling technique is artificial neural
networks (ANNs), including both feed-forward neural net-
works (FFNNs) and recurrent neural networks (RNNs) [5],
[6]. It has also been shown [7] that RNNs perform better than
FFNNs in solving various temporal tasks due to their stronger
temporal capabilities and nonlinear properties. Consequently,
the RNN was applied to predict the melt-flow-length for mold
filling.

However, most gradient-based learning algorithms often
suffer from vanishing and exploding gradient problems, de-
teriorating the performance in training complex ANNs, in
particular complex RNNs [8], [9]. The application of gradient-
based learning algorithms to real-time industrial procesess
may also be limited by the heavy computational costs [10].
By contrast, as a biologically plausible and computationally

efficient framework of RNNs, echo state networks (ESNs)
were proposed to reduce the expensive computational cost in
training RNNs [9].

In recent years, several real-life applications based on the
ESNs have been reported, such as time series prediction, activ-
ity recognition, prediction and control of industrial processes
[11], [12]. A canonical ESN can be considered as a three-
layer neural network model, a fixed connected input layer,
a sparsely connected hidden layer (reservoir), and a readout
layer. The original ESN is computationally efficient since
only the reservoir-to-readout connection weights need to be
trained in while keeping the weights on input-to-reservoir
and all weights inside the reservoir fixed. The core of the
ESN model is a large-scale sparse connection matrix that
transforms the input signals to a high-dimensional feature
space. The sparsity in ESNs is loosely inspired by the fact
that neurons in the cortex are also sparsely connected, allowing
various potential circuits to be generated to encode and process
efficiently the internal representations of the external world
[13], [14]. In addition, different stimuli generally results in
responses from different subsets of neurons [14]. Increasing
studies indicated that these sparse representations can improve
the system robustness to noise and variability [15], [16].

Theoretically, earlier RNNs methods including the ESNs
have the short-term memory property by adopting the inter-
nal feedback connections to store information representations
about the recent inputs in form of activations [9], [17]. This
short-term memory property is also referred to as the fading
memory or the echo state property. RNNs with long short-term
memory (LSTM) have also been proposed to capture long-
term temporal dependences, which significantly improves the
prediction performance for problems having large time delays
[18], [19]. Later, Cho et al. [20] proposed a gated recurrent
unit (GRU) model by means of simplifying the gate units of
the LSTM model. Xie et al. [21] presented a two-stream GRU
model to predict the melt viscosity index of the real industrial
process.

However, training of the LSTM model and its variants is
generally based on the gradient descent method such as the
backpropagation through time, making the training process
computationally very intensive. Moreover, full connections
between the neurons in the variants of the LSTM model are
biologically implausible.

Based on above discussions, we can see that the reservoir
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computing framework is able to significantly reduce the com-
putational cost in comparison with some traditional RNNs. On
the other hand, ESNs model are not well suited to learning
long-term dependencies and tackling complex problems [9],
[22]. Inspired by the characteristics of both the ESN and the
GRU models, here we present a novel ESN model by replacing
the neurons in the reservoir with GRUs to deal with multiple-
output regression tasks while reducing the computational costs
of LSTM models.

The proposed ESN model based on GRUs is examined on t-
wo time-series prediction problems and a parameter estimation
problem in an esterification process. Compared with existing
the ESN and the GUR models, the proposed method has been
demonstrated to exhibit much better prediction performance on
all three tasks considered in this work. In addition, the pro-
posed ESN based on GRUs is computationally more efficient
than the original GRU model.

The rest of this paper is organized as follows. In Section
II, the ESN model and the GRU model are briefly introduced.
The GRU-based ESN model is proposed in Section III. Exper-
imental settings and results are provided in Sections IV and
V, respectively. Conclusions and future work are provided in
Section VI.

II. RELATED WORK

A. Echo State Network
The conventional ESN model without output feedback

contains an input layer, a reservoir and an output layer, as
illustrated in Fig. 1. The dynamic reservoir is used to map the
high-dimensional dynamical representations of input signals
[23]. The output units implement the linear readout of input
representations by using a simple regression algorithm [10].

Fig. 1. The basic structure of ESN model.

Let us consider an ESN model with K input units, M
reservoir units and L output units. Input connection weights
W in and internal recurrent connection weights W res are
randomly generated and fixed beforehand. Only connection
weights of the readout layer W out need to be trained. The
reservoir state equation x(t) and output equation y(t) of the
ESN are updated as follows:

x(t) = f(W inu(t) +W resx(t− 1)), (1)

y(t) =W outx(t) (2)

where, u(t + 1) is the external input signal, and the sigmoid
function f is used as activation function of reservoir neurons.
In this work, the following normalized root mean square error
(NRMSE) is adopted to be the evaluation criterion of the
network:

NRMSE(W out) =

√∑T
t=1(y

desired(t)− y(t))2

Tσ2
, (3)

where, σ2 denotes the variance of the desired outputs. T is
the number of training samples. The internal state and desired
output vectors of the network are stored in X and Y over
time t=1, 2, ..., T , respectively. The calculation formula of
the readout weights is given as follows:

W out = (XTX)−1X · Y, (4)

B. Gated Recurrent Unit

The GRU network, a simplified variant of the LSTM ar-
chitecture, can also represent context information by storing
previous inputs. Fig. 2 shows the architecture of GRU model.

Fig. 2. The architecture of GRU model.

Indeed, the GRU couples the input gate and the forget gate
of the initial LSTM into an update gate z, which makes the
output nonlinearity less important [19].

The update gate z controls how much previous state infor-
mation will be stored in the current hidden state x. The reset
gate r controls what information will be thrown away from
the state information of the previous moment, and the update
rules of the GRU model are described in (5) to (8):

r(t) = sigm(Wruu(t) +Wrxx(t− 1) + br), (5)

z(t) = sigm(Wzuu(t) +Wzxx(t− 1) + bz), (6)

x̃(t) = tanh(Wxuu(t) +Wxx(r(t)� x(t− 1)) + bx), (7)

x(t) = (1− z(t))� x(t− 1) + z(t)� x̃(t), (8)

where x̃ is the candidate state. The feed-forward weights W∗u
and the recurrent weights W∗x are the connection matrices for
the current input and the hidden state of the previous moment,
respectively. In the above equations, b∗ is the bias vectors,
sigm and tanh represent the logistic sigmoid function and
the hyperbolic tangent function, respectively, and � denotes
element-wise multiplication.



III. GRU-BASED ESN MODEL

Inspired by the advantages of both the ESN and the GRU
models, a novel ESN model based on GRU is presented
to process multiple-output regression tasks and reduce the
computational training costs. Fig. 3 shows the architecture of
the proposed GRU-based ESN model.

Fig. 3. The architecture of the proposed GRU-based ESN model.

In the ESN model based on GRU, the reservoir is replaced
by a large-scale sparsely connected GRUs. Note that the input-
reservoir fully connected weights W∗u and internal reservoir
sparsely connected weights W∗x are randomly generated and
fixed beforehand. Similarly, only connection weights of read-
out layer Wout need to be trained by using the least square
estimation (LSE) method. The initial state of the model is all
set to r(0)=z(0)=x(0)=0.

IV. EXPERIMENTAL SETTINGS

A. Datasets
1) Weather forecast: The real-time weather data of

the south coast of England is collected from the lo-
cal sensor network, which can be downloaded from
http://www.chimet.co.uk/ [2]. In this work, 52755 samples
from August 2018 to January 2019 are used in the following
experiments. More concretely, each sample consists of abun-
dant weather information such as wind speed and direction,
maximum gust, air temperature, barometric pressure, water
depth and wave height. The weather data is used to evaluate
the proposed model, the sizes of training dataset, validation
dataset, testing data are 30100, 10000, and 12655 respectively,
and the first 100 training samples are used to washout.

2) Prediction of Beijing air-quality: This dataset includes
hourly air quality data from environmental monitoring sites in
Beijing. Removing missing data, 31876 samples from March
2013 to February 2017 are used to evaluate the performance
of the proposed method. In this task, the initial 100 training
samples are only used to washout, the sizes of training dataset,
validation dataset, testing data are set to 10100, 10000 and
11776, respectively [24].

3) Prediction of the esterification process: Polymerization
process is the first step in polyester fiber production process,
which includes the following three stages: esterification, pre-
polycondensation and the final polycondensation. In the es-
terification stage, purified terephthalic acid (PTA) and excess
moles of ethylene glycol (EG) are often used as industrial raw
materials. Then, the bis-hydroxyethyl terphthalate (BHET) is
produced by the esterification reaction using the mixture of
two raw materials with certain proportion. Fig. 4 shows the
flowchart of esterification process.

Fig. 4. The flowchart of esterification process.

The esterification stage involves a large number of param-
eters which can be acquired from different sensors installed
in the polyester plant. In this work, eight important process
parameters of the esterification process are to be predicted.
Table I lists the parameters in esterification stage considered
in this work.

TABLE I
PROCESS PARAMETERS IN ESTERIFICATION STAGE

No. Tag Name Description
1 FIC-10406 Injection flow of esterification
2 DI-10406 Injection density of esterification
3 FI-14701 Injection flow of EG
4 XI-10406 Mole ratio of PTA to EG
5 PI-10525 Pressure of siphon
6 TIC-10506 Temperature of esterification process
7 FI-10711 Flow of oligomer
8 DI-10711 Density of oligomer

Experimental data of esterification stage is collected from
the distributed control system with tangible and hardware sen-
sors of the polyester fiber plant in China. Sampling frequency
of the sensors is 1 Hz. According to the expert experience
and mechanism analysis, eight important parameters of the



process are collected, including pressures, temperatures and
injection flows. In this dataset, 40900 samples are collected to
single-step prediction, of which the sizes of training dataset,
validation dataset, testing data are 20100, 10000, and 10800,
respectively, and the first 100 training samples are used to
washout the initial transient of the network.

B. Experimental Setup
For the setting of connection weights, input-reservoir fully

connected weights W∗u and internal reservoir sparsely con-
nected weights W∗x are randomly generated within the interval
of [-1, 1]. Typically, input weights also need to be scaled
resulting the activation function works in the linear region,
which is between -0.1 and 0.1. The sparsity is set to 0.01.

For the setting of reservoir size, the performance of net-
works with different reservoir sizes is compared before build-
ing the model. Fig. 5 shows the total training and testing
errors of eight process parameters on the esterification task
by using the ESN with different reservoir sizes. In this work,
reservoir size is set to 100. In addition, the size of the hidden
layer of original GRU model is set to 60, resulting in the
best performance compared to other sizes. We trained all
networks with Nvidia GeForce RTX2060 GPU. In addition,
we compare the performance of the reservoir with different
values in sparsity to determine the sparsity parameter. From
Fig. 6 we can see that the ESN can obtain the minimum testing
error, when sparsity is set to 0.01.

Fig. 5. Effects of reservoir sizes on the prediction performance on process
parameters in esterification stage.

Fig. 6. Effects of sparsity on the prediction performance on process
parameters in esterification stage.

V. EXPERIMENTAL RESULTS

In this section, the ESN model with GRU is designed to
predict the real-world multiple-output benchmark regression
tasks.

A. Prediction of Esterification Process

Fig. 6 shows the prediction results of eight process pa-
rameters in esterification stage. As Fig. 6 illustrates, the pro-
posed method can effectively forecast some important process
parameters. For parameters prediction of the esterification
process, the proposed method is compared with original ESN
and GRU models. The mean values of the testing NRMSE
are listed in Table II. From Table II we can see that the GRU-
based ESN model has better prediction performance compared
to the ESN and GRU. Note that, although the gradient-based
GRU model can obtain the best performance in a few of those
process parameters, the total testing error is still large, and
above methods are run independently 30 times.

On the other hand, the training time of the GRU-based
ESN model is significantly lower than the gradient-based GRU
model. It also should be noted that the training time of the
GRU-based ESN model is slightly higher than the original
ESN model because of its multiple gate units.

TABLE II
THE PERFORMANCE OF DIFFERENT METHODS ON THE

ESTERIFICATION PROCESS

Index
NRMSE,Time Model

ESN GRU GRU-based ESN

FIC-10406 0.4284 0.2658 0.4183
DI-10406 0.2140 0.1607 0.1991
FI-14701 0.3842 0.1663 0.3799
XI-10406 0.3901 0.7545 0.3457
PI-10525 0.3168 0.6052 0.2994
TIC-10506 0.2158 0.1479 0.2022
FI-10711 0.2013 0.2569 0.1959
DI-10711 0.4448 0.5087 0.4202
Total error 2.5854 2.8663 2.4607
Training time 1.317s 104.92s 2.679s

B. Weather Forecast Dataset

Two real-world datasets, England weather dataset and Bei-
jing air-quality dataset, are used to further substantiate the
effectiveness of the GRU-based ESN model. For weather
forecast task, the prediction results of ten dimensional weather
data are presented in Fig. 7. The actual output of GRU-based
ESN model could fit well with the real meteorological data.
In addition, the GRU-based ESN model is compared with the
ESN and GRU models on the weather dataset. 30 independent
simulations have been conducted and the averaged testing
NRMSEs of different methods are listed in Table III. Similarly,
the GRU-based ESN model can obtain the minimum total
prediction error on testing set compared to the ESN and GRU.



Fig. 7. The prediction results produced by the GRU-based ESN model for eight process parameters in the esterification stage.

Fig. 8. The prediction results produced by the GRU-based ESN model for the weather forecast dataset.



TABLE III
THE PERFORMANCE OF DIFFERENT METHODS ON THE

WEATHER FORECAST DATASET

Index
NRMSE,Time Model

ESN GRU GRU-based ESN

Wind speed 0.2268 0.2164 0.2187
Wind direction 0.4192 0.5403 0.4201
Maximum gust 0.2332 0.2526 0.2234
Air temperature 0.0591 0.2298 0.0589
Barometric pressure 0.0487 0.2636 0.0484
Water depth 0.0676 0.2154 0.0571
Average wave height 0.3595 0.2654 0.3427
Maximum wave height 0.3166 0.2858 0.2966
Significant wave height 0.1018 0.1295 0.1011
Average wave period 0.5124 0.1381 0.4969
Total error 2.3452 2.5374 2.2459
Training time 4.4733s 207.04s 11.9244s

Obviously, the GRU-based ESN model owns much cheaper
computational complexity compared with the gradient-based
GRU model. In addition, the proposed model with multiple
gate units results in a slightly higher time cost compared with
the original ESN model.

C. Prediction of Beijing Air-Quality

For prediction problem of Beijing air-quality, Fig. 8 shows
the prediction results of ten air indicators. As Fig. 8 illustrates,
the air-quality data could be effectively fitted by the proposed
method.

In experiments on prediction task of Beijing air-quality,
the proposed method is compared with existing ESN and
GRU models, which also demonstrate that the GRU-based
ESN model owns minimum total testing error and acceptable
training time.

TABLE IV
THE PERFORMANCE OF DIFFERENT METHODS ON

PREDICTION TASK OF THE AIR-QUALITY

Index
NRMSE,Time Model

ESN GRU GRU-based ESN

PM2.5 concentration 0.2330 0.1951 0.2327
PM10 concentration 0.3144 0.5426 0.3124
SO2 concentration 0.3370 0.2130 0.3298
NO2 concentration 0.3026 0.3848 0.2902
CO concentration 0.2898 0.2653 0.2849
O3 concentration 0.2424 0.2438 0.2367
Temperature 0.0879 0.2306 0.0833
Pressure 0.0465 0.2146 0.0463
Dew point temperature 0.0849 0.1661 0.0846
Wind speed 0.5674 0.2120 0.5669
Total error 2.5059 2.6683 2.4678
Training time 3.4269s 142.76s 8.9969s

VI. CONCLUSION

In this paper, an ESN model with GRU is presented to deal
with several real-world multiple-output regression problems.
The effectiveness of the GRU-based ESN model is verified on
three real-world regression tasks and our experimental results
demonstrate that the proposed method can predict effectively
multiple output indexes compared with the original ESN and
GRU models. More important, the GRU-based ESN model can

significantly reduce the time complexity compared with the
gradient-based method, which is essential to real-time online
prediction of streaming data.

In this work, connection weights within the reservoir are
randomly generated and fixed, which also limit the network
performance. For future work, some unsupervised learning
rules can be used to optimize the connection weights and
intrinsic excitability of neurons in this ESN model with GRU
such as synaptic plasticity and intrinsic plasticity learning
rules.
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[20] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[21] Ruimin Xie, Kuangrong Hao, Biao Huang, Lei Chen, and Xin Cai.
Data-driven modeling based on two-stream λ gated recurrent unit
network with soft sensor application. IEEE Transactions on Industrial
Electronics, 2019.

[22] Haibin Duan and Xiaohua Wang. Echo state networks with orthogonal
pigeon-inspired optimization for image restoration. IEEE Transactions
on Neural Networks and Learning Systems, 27(11):2413–2425, 2015.

[23] Herbert Jaeger. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the” echo state network” approach, volume 5.
GMD-Forschungszentrum Informationstechnik Bonn, 2002.

[24] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi
Chen. Cautionary tales on air-quality improvement in beijing. Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 473(2205):20170457, 2017.




