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Abstract—We compare standard autoencoder topologies’ per-
formances for timbre generation. We demonstrate how different
activation functions used in the autoencoder’s bottleneck dis-
tributes a training corpus’s embedding. We show that the choice
of sigmoid activation in the bottleneck produces a more bounded
and uniformly distributed embedding than a leaky rectified linear
unit activation. We propose a one-hot encoded chroma feature
vector for use in both input augmentation and latent space
conditioning. We measure the performance of these networks,
and characterize the latent embeddings that arise from the use
of this chroma conditioning vector. An open source, real-time
timbre synthesis algorithm in Python is outlined and shared.

Index Terms—neural network, autoencoder, timbre synthesis,
real-time audio

I. INTRODUCTION

Timbre refers to the perceptual qualities of a musical sound
distinct from its amplitude and pitch. It is timbre that allows
a listener to distinguish between a guitar and a violin both
producing a concert C note. Moreover, a musician’s ability to
create, control, and exploit new timbres has led, in part, to the
surge in popularity of pop, electronic, and hip hop music.

New algorithms for timbre generation and sound synthesis
have accompanied the rise to prominence of artificial neural
networks. GANSynth [10], trained on the NSynth dataset [12],
uses generative adversarial networks to output high-fidelity, lo-
cally coherent outputs. Furthermore, GANSynth’s global latent
conditioning allows for interpolations between two timbres.
Other works have found success in using Variational Autoen-
coders (VAEs) [13] [5] [4], which combine autoencoders and
probabilistic inference to generate new audio. Most recently,
differential digital signal processing has shown promise by
casting common modules used in signal processing into a
differentiable form [11], where they can be trained with neural
networks using stochastic optimization.

The complexity of these models require powerful computing
hardware to train, hardware often out of reach for musicians
and creatives. When designing neural networks for creative
purposes one must strike a three-way balance between the
expressivity of the system, the freedom given to a user to
train and interface with the network, and the computational
overhead needed for sound synthesis. One successful example
we point to in the field of music composition is MidiMe
[9], which allows a composer to train a VAE with their
own scores on a subspace of a larger, more powerful model.

Moreover, these training computations take place on the end
user’s browser.

Our previous work has tried to strike this three-way bal-
ance as well [7] [8], by utilizing feed-forward neural net-
work autoencoder architectures trained on Short-Time Fourier
Transform (STFT) magnitude frames. This work demonstrated
how choice of activation functions, corpora, and augmentations
to the autoencoder’s input could improve performance for
timbre generation. However, we found upon testing that the
autoencoder’s latent space proved difficult to control and
characterize. Also, we found that our use of a five-octave
MicroKORG corpus encouraged the autoencoder to produce
high-pitched, often uncomfortable tones.

This paper introduces a chroma-based input augmentation
and skip connection to help improve our autoencoder’s recon-
struction performance with little additional training time. A
one-octave MicroKORG corpus as well as a violin-based cor-
pus are used to train and compare various architectural tweaks.
Moreover, we show how this skip connection conditions the
autoencoder’s latent space so that a musician can shape a
timbre around a desired note class. A full characterization
of the autoencoder’s latent space is provided by sampling
from meshes that span the latent space. Finally, a real-time,
responsive implementation of this architecture is outlined and
made available in Python.

II. AUTOENCODING NEURAL NETWORKS

An autoencoding neural network (i.e. autoencoder) is a ma-
chine learning algorithm that is typically used for unsupervised
learning of an encoding scheme for a given input domain,
and is comprised of an encoder and a decoder [25]. For the
purposes of this work, the encoder is forced to shrink the
dimension of an input into a latent space using a discrete
number of values, or “neurons.” The decoder then expands
the dimension of the latent space to that of the input, in a
manner that reconstructs the original input.

In a single layer model, the encoder maps an input vector
x ∈ Rd to the hidden layer y ∈ Re, where d > e. Then, the
decoder maps y to x̂ ∈ Rd. In this formulation, the encoder
maps x→ y via

y = f(Wx+ b) (1)
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where W ∈ R(e×d), b ∈ Re, and f(· ) is an activation function
that imposes a non-linearity in the neural network. The decoder
has a similar formulation:

x̂ = f(Wouty + bout) (2)

with Wout ∈ R(d×e), bout ∈ Rd.
A multi-layer autoencoder acts in much the same way as a

single-layer autoencoder. The encoder contains n > 1 layers
and the decoder contains m > 1 layers. Using Equation 1
for each mapping, the encoder maps x → x1 → . . . → xn.
Treating xn as y in Equation 2, the decoder maps xn →
xn+1 → . . .→ xn+m = x̂.

The autoencoder trains the weights of the W ’s and b’s
to minimize some cost function. This cost function should
minimize the distance between input and output values. The
choice of activation functions f(· ) and cost functions depends
on the domain of a given task.

III. NETWORK DESIGN AND TOPOLOGY

We build off of previous work to present our current network
architecture.

A. Activations

The sigmoid function

f(x) =
1

1 + e−x
(3)

and rectified linear unit (ReLU)

f(x) =

{
0 , x < 0
x , x ≥ 0

(4)

are often used to impose the nonlinearities f(· ) in an
autoencoding neural network. A hybrid autoencoder topology
combining both sigmoid and ReLU activations was shown
to outperform all-sigmoid and all-ReLU models in a timbre
encoding task [7]. However, this hybrid model often would
not converge for a deeper autoencoder [8].

More recently, the leaky rectified linear unit (LReLU) [21]

f(x) =

{
αx , x < 0
x , x ≥ 0

(5)

has been shown to avoid both the vanishing gradient prob-
lem introduced by using the sigmoid activation [16] and
the dying neuron problem introduced by using the ReLU
activation [19]. The hyperparameter α is typically small, and
in this work fixed at 0.1.

B. Chroma Based Input Augmentation

The work presented in [8] showed how appending descrip-
tive features to the input of an autoencoder can improve
reconstruction performance, at the cost of increased training
time. More specifically, appending the first-order difference
of the training example to the input was shown to give the
best reconstruction performance, at the cost of doubling the
training time. Here, we suggest a basic chroma-based feature
augmentation to help the autoencoder.

Chroma-based features capture the harmonic information of
an input sound by projecting the input’s frequency content
onto a set of chroma values [22]. Assuming a twelve-interval
equal temperment Western music scale, these chroma values
form the set {C, C#, D, D#, E, F, F#, G, G#, A, A#, B}. A
chromagram can be calculated by decomposing an input sound
into 88 frequency bands corresponding to the musical notes
A0 to C8. Summing the short-time mean-square power across
N frames for each sub-band across each note (i.e. A0-A7)
yields a 12×N chromagram.

In this work, a one-hot encoded chroma representation is
calculated for each training example by taking its chroma-
gram, setting the maximum chroma value to 1, and setting
every other chroma value to 0. While this reduces to note
conditioning in the case of single-note audio, this generalizes
to the dominant frequency of a chord or polyphonic mixture.
Furthermore this feature can be calculated on an arbitrary
corpus, which eliminates the tedious process of annotating by
hand.

C. Hidden Layers and Bottleneck Skip Connection

This work uses a slight modification of the geometrically
decreasing/increasing autoencoder topology proposed in [8].
All layers aside from the bottleneck and output layers use the
LReLU activation function. The output layer uses the ReLU,
as all training examples in the corpus take strictly non-negative
values. For the bottleneck layer, models are trained separately
with all-LReLU and all-sigmoid activations to compare how
each activation constructs a latent space.

The 2048-point first-order difference input augmentation is
replaced with the 12-point one-hot encoded chroma feature
explained above. Furthermore, in this work three separate
topologies are explored by varying the bottleneck layer’s width
– one with two neurons, one with three neurons, and one with
eight neurons.

Residual and skip connections are used in autoencoder de-
sign to help improve performance as network depth increases
[14]. In this work, the 12-point one-hot encoded chroma
feature input augmentation is passed directly to the autoen-
coder’s bottleneck layer. Models with and without this skip
connection are trained to compare how the skip connection
affects the autoencoder’s latent space. Figure 1 depicts our
architecture with the chroma skip connection and eight neuron
latent space. Note that for our two neuron model, the 8 ×N
latent embedding would become a 2 × N latent embedding,
and similarly would become a 3 × N for our three neuron
model.

IV. CORPORA

In this work a multi-layer neural network autoencoder is
trained to learn representations of musical timbre. The aim
is to train the autoencoder to contain high level descriptive
features in a low dimensional latent space that can be easily
manipulated by a musician. As in the formulation above,
dimension reduction is imposed at each layer of the encoder
until the desired dimensionality is reached. All audio used to



Fig. 1: Network diagram with eight neuron bottleneck and
chroma skip connection

generate the corpora for this work is stored as a 16-bit PCM
wav file with 44.1kHz sampling rate.

The various corpora used to train the autoencoding neural
network are formed by taking 2049 points from a 4096-point
magnitude STFT sn(m) as its target, where n denotes the
frame index of the STFT and m denotes the frequency index,
with 75% frame overlap. The Hann window is used in all
cases. Each frame is normalized to [0, 1]. This normalization
tasks the autoencoder to encode solely the timbre of an input
observation and ignore its loudness relative to other observa-
tions within the corpus. These corpora were not mixed for
training; models were only trained on each corpus separately.

A. MicroKORG Dataset

Two corpora were created by recording C Major scales from
a MicroKORG synthesizer/vocoder. In both cases, 70 patches
make up the training set, 5 patches make up the validation
set, and 5 patches make up the test set. These patches ensured
that different timbres are present in the corpus. To ensure
the integrity of the testing and validation sets, the dataset is
split on the “clip” level. This means that the frames in each
of the three sets are generated from distinct passages in the
recording, which prevents duplicate or nearly duplicate frames
from appearing across the three sets.

The first corpus is comprised of approximately 79, 000
magnitude STFT frames, with an additional 6, 000 frames held
out for validation and another 6, 000 for testing. This makes
the corpus 91, 000 frames in total, or roughly 35 minutes of
audio. The audio used to generate these frames is composed
of five octave C Major scales recorded from a MicroKORG
synthesizer/vocoder across 80 patches.

Input Augmentation Test Set MSE Training Time
No Append 3.185× 10−4 35 minutes

1st Order Diff 3.001× 10−4 44 minutes
One-Hot Chroma 2.920× 10−4 37 minutes

TABLE I: Five Octave Dataset Autoencoder holdout set MSE
loss and training time

Bottleneck Activation Skip? Test Set MSE
LReLU No 3.516× 10−4

LReLU Yes 3.598× 10−4

Sigmoid No 3.358× 10−4

Sigmoid Yes 3.472× 10−4

TABLE II: One Octave Dataset Autoencoder holdout set MSE
loss, 2 neuron bottleneck

The second corpus is a subset of the first. It is comprised
of one octave C Major scales starting from concert C. Ap-
proximately 17, 000 frames make up the training set, with an
additional 1, 000 frames held out for validation and another
1, 000 for testing. This makes the subset 19, 000 frames in
total, or roughly 7 minutes of audio.

By restricting the corpus to single notes played on a
MicroKORG, the autoencoder needs only to learn higher
level features of harmonic synthesizer content. These tones
often have time variant timbres and effects, such as echo and
overdrive. Thus the autoencoder is also tasked with learning
high level representations of these effects.

B. TU-Note Violin Sample Library

A third corpus was created using a portion of the TU-Note
Violin Sample Library [26]. The dataset consists of recordings
of a violin in an anechoic chamber playing single sounds,
two-note sequences, and solo performances such as scales
and compositions. The single notes were used to construct
a training corpus, and the solo performances were cut into
two parts to form the validation and test sets. These two parts
were split on the “clip” level to ensure that no frames from
the same passages were found across the validation and test
sets. Approximately 91, 000 frames make up the training set,
with an additional 10, 000 frames held out for validation and
another 10, 000 for testing. This makes the subset 111, 000
frames in total, or roughly 43 minutes of audio. Here, the
autoencoder is tasked with learning the difference in timbre
one can here when a violin is played at different dynamic
levels, semitones, and with different stroke techniques.

C. Training Setup

All models were trained for 300 epochs using the ADAM
method for stochastic optimization [17], initialized with a
learning rate of 5×10−4. Mean squared error was used as the
cost function, with an L2 penalty of 10−7 [18]. All training
utilized one NVIDIA Quadro P2000 GPU, and all networks
were implemented using Keras 2.2.4 [6] with Tensorflow-GPU
1.9.0 [1] as a backend.



Bottleneck Activation Skip? Test Set MSE Training Time
LReLU No 7.731× 10−4 41 minutes
LReLU Yes 6.478× 10−4 58 minutes
Sigmoid No 8.900× 10−4 43 minutes
Sigmoid Yes 6.388× 10−4 43 minutes

TABLE III: TU-Note Violin Sample Library Dataset Autoen-
coder holdout set MSE loss and training time, two neuron
bottleneck

Corpus Skip? Test Set MSE Training Time
One Octave No 3.228× 10−4 8 minutes
One Octave Yes 3.055× 10−4 8 minutes

Violin No 8.545× 10−4 44 minutes
Violin Yes 5.763× 10−4 45 minutes

TABLE IV: Sigmoid Bottleneck Autoencoder holdout set MSE
loss and training time, three neuron bottleneck

V. RESULTS

Table I shows the performance of three autoencoders with
an eight neuron bottleneck layer using LReLU activations
trained on the five octave MicroKORG corpus. The model
with the chroma augmentation outperforms both the first-
order difference augmentation and no augmentation models.
Moreover, the chroma augmentation only increases training
time by two minutes. Therefore, the rest of the models in this
work utilize the chroma input augmentation.

Table II show the performance of four autoencoders with
a two neuron bottleneck layer trained on the one octave Mi-
croKORG corpus. Models used either the LReLU or sigmoid
activation for the bottleneck, and either did or did not utilize
a chroma skip connection. All models took eight minutes to
train. Both sigmoid models outperformed each LReLU model,
and the sigmoid model with no skip connection performed the
best.

Table III show the performance of four autoencoders with a
two neuron bottleneck layer trained on the TU-Note Violin
Sample Library corpus. Models used either the LReLU or
sigmoid activation for the bottleneck, and either did or did not
utilize a chroma skip connection. With this corpus, the chroma
skip connection significantly improved the reconstruction error
for both sigmoid and LReLU activations. Furthermore, the sig-
moid activation with the chroma skip connection outperformed
all models.

With these results in mind, two models were trained on
the one octave MicroKORG corpus using a three neuron
bottleneck with sigmoid activations: one with the chroma
skip connection, and one without. Two more models with
corresponding topologies were trained on the TU-Note Violin
Sample Library corpus. Table IV shows the reconstruction
performance of each model. In this case, the models with the
chroma skip connection outperformed the models without.

A. Latent Embeddings

When designing an autoencoder for musicians to use in tim-
bre synthesis, it is important not only to measure the network’s
reconstruction error, but also to characterize the latent space’s

embedding. The software synthesizer implemented in [8] al-
lows a musician to chose a point in the autoencoder’s latent
space and generate its corresponding timbre. By exploring the
latent space, the musician can explore an embedding of timbre.

A clear understanding of the boundedness of an embedding
ensures that a musician can fully explore the latent space
of an arbitrary training corpus, and a clear understanding
of the density of the latent embedding can help a musician
avoid portions of the latent space that will generate unrealistic
examples while interpolating between two encoded timbres
[24] [27].

Recent work has attempted to encourage an autoencoder
to interpolate in a “semantically continuous” manner [3]. The
authors sample from their autoencoder’s latent space along a
line that connects two points to demonstrate this meaningful
interpolation. The authors also characterize their latent space
using a method proposed by [28], where an unsupervised
clustering accuracy is measured to see how well ground truth
labels are separated in the latent space. In the case of our work,
however, we are less concerned with how clusters separate
in the latent space and more concerned with how uniform
samplings of the latent space produce note classes and timbres.

We begin with a visual inspection of the training set em-
beddings produced by the eight distinct autoencoders referred
to in Tables II and III. Figure 2 shows the embeddings for
the one octave MicroKORG corpus, and Figure 3 shows the
embeddings for the TU-Note Violin Sample Library corpus.
Models trained with the LReLU bottleneck activation are
plotted in the top row, and models trained with the sigmoid
bottleneck activation are plotted in the bottom row. Models
trained without the chroma skip connection are plotted in
the left column, and models trained with the chroma skip
connection are plotted in the right column. Each note class
is plotted as one color (i.e. C is dark blue, F is teal, B is
yellow) using a perceptually uniform colormap.

In all cases, the chroma skip connection appears to encour-
age the embedding to be denser and contain fewer striations.
Note that by definition, all models with sigmoid activations are
bounded by (0, 1). On the other hand, the models with LReLU
activation vary their bounds greatly. Moreover, the first and
second dimensions of the LReLU embeddings appear to have
linear correlations, rather than populating the latent space in a
more uniform manner. As such we move forward using only
sigmoid activations at the bottleneck.

A full accounting of the two neuron sigmoid bottleneck
autoencoder’s latent space is shown in Figures 4 and 5. These
graphs were created by setting the chroma conditioning vector
to a given note class, and then sampling the autoencoder’s
latent space using a 350 × 350 point mesh grid. Each note
class is plotted as one color (i.e. C is dark blue, F is teal, B
is yellow) using a perceptually uniform colormap. We observe
that the autoencoder is able to use the majority of the alloted
two dimensions to produce timbres that match the conditioned
chroma vector. We note that most mismatches occur near the
boundaries of the latent space. We suspect this may be caused
by the asymptotic behavior of the sigmoid function coupled



with the L2 penalty encouraging the network to choose smaller
weights, though a full characterization is outside the scope of
this paper.

This mesh sampling procedure was repeated for the three
neuron and eight neuron sigmoid bottleneck models. Due
to compuational constraints, the three neuron model used
a 50 × 50 × 50 mesh and the eight neuron model used a
5×5×...×5 mesh. The accuracies of the model samplings are
shown in Table V. We suspect that some of the decreases in
prediction accuracy as the number of neurons in the bottleneck
increases may be due in part to the coarser meshes over-
weighing samplings near the boundaries of the latent space,
though a full characterization is outside the scope of this paper.

Fig. 2: 2D embeddings of the One Octave MicroKORG Corpus

VI. PYTHON IMPLEMENTATION

As outlined in [8], a spectrogram with no phase information
can be generated via bypassing the network’s encoder and
passing latent activations to the decoder. To generate the true
phase of this spectrogram, the real-time phase gradient heap
integration algorithm can be used [23]. However, to decrease
the computational overhead involved in our algorithm, we
store the stripped the phase of a white noise audio signal and
use it to invert the generated spectrogram.

Our implementation is purely Python, using Tkinter as
our GUI backend. Once a user selects a trained decoder to
sample from, Keras loads the model into memory. The user is
presented with sliders that correspond to each neuron in the
model’s bottleneck, and a twelve-value radio button is used

Fig. 3: 2D embeddings of the TU-Note Violin Sample Library
Corpus

to set the chroma conditioning vector. The Pyaudio library
provides Python bindings to PortAudio [2], and handles the
audio stream output.

Our implementation has been made available at
github.com/JTColonel/manne, along with code to create
a corpus from an audio file for training, code to train a model,
and code to plot the samplings of a model’s latent space.
We have tested our implementation on a laptop with an Intel
Core i7-8750H CPU @ 2.20GHz × 12 with 16GB of RAM.

We also provide code to train and sample from Variational
Autoencoder implementation (specifically a β-VAE [15]), with
a word of caution. We found that all of our trained models
exhibited posterior collapse [20], wherein the variational dis-
tribution would closely match the uninformative prior for a
subset of latent variables, and the rest of the latent variables
would output high mean, low variance samplings. Moreover,
we did not find that the non-conditioned β-VAE disentangled
the note class from timbre. We found that the note class would
change when varying any one latent dimension while fixing the
rest. Unfortunately a full treatment of this behavior is outside
the scope of this paper.

VII. CONCLUSION

We present an improved neural network autoencoder topol-
ogy and training regime for use in timbre synthesis and inter-
polation. By using a one-hot encoded chroma vector as both
an augmentation to the autoencoder’s input and a conditioning
vector at the autoencoder’s bottleneck, we improve the autoen-
coder’s reconstruction error at little additional computational



Model Mesh Length C C# D D# E F F# G G# A A# B
2D One Octave 350 .896 – .941 – .981 .884 – .908 – .863 – .937
3D One Octave 50 .827 – .857 – .847 .953 – .851 – .904 – .933
8D One Octave 5 .741 – .650 – .949 .526 – .605 – .834 – .660

2D Violin 350 .980 .840 .941 .902 .999 .846 .905 .864 .892 .992 .884 .984
3D Violin 50 .942 .629 .999 .692 .999 .997 .659 .980 .999 .999 .885 .977
8D Violin 5 .837 .833 .950 .844 .814 .805 .956 .782 .820 .844 .805 .920

TABLE V: Percent of sampled outputs matching conditioned chroma skip vector

cost. Moreover, we characterize how this conditioning vector
shapes the autoencoder’s usage of its latent space. We provide
an open source implementation of our architecture in Python,
which can sample from its latent space in real-time without
the need for powerful computing hardware.
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Fig. 4: 2D embeddings of the One Octave Corpus

Fig. 5: 2D embeddings of the TU-Note Violin Sample Library Corpus




