
Hierarchical Embedding for Code Search in
Software Q&A Sites

Ruitong Li∗ , Gang Hu† and Min Peng‡
National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University

Hubei, China
{liruitong∗, hoogang†, pengm‡}@whu.edu.cn

Abstract—In recent years, code search techniques on software
Q&A sites have become increasingly attractive due to the need
for software development. Most of the existing work treats code
snippets as text fragments, ignoring the effect of the structured
information (i.e. sequential information) of the code. Meanwhile,
much of the existing work does not take into account the
interactive between code snippets and queries.

In this paper, we propose a novel deep neural network named
HECS1 (Hierarchical embedding for code search) to solve the
problems mentioned above. Our method divides the embedding
process of code and query into two hierarchies, that is, the
potential information is captured by two modules (the Intra-
language encoding module and the Cross-language encoding
module). In particular, our approach uses special LSTM (Long
Short-Term Memory) variants, which is ON-LSTM (ordered
neurons LSTM) to capture the keyword order structure of the
code. The Intra-language encoding module is implemented by
the LSTM variant and the Cross-language encoding module is
an interactive information calculation module implemented by
the attention mechanism. In this way, the similarity between the
query and the corresponding code snippets in the vector space
could be better captured. HECS can understand the difference
between positive and negative samples more accurately.

We empirically evaluate HECS, using a large scale codebase
collected from StackOverflow. The experimental results show that
our approach achieves state-of-the-art performance.

Index Terms—code search, hierarchical embedding, structured
sequence information

I. INTRODUCTION

As data grows rapidly in various software Q&A sites, code
search is becoming more and more important. Developers of-
ten search for examples of how to accomplish a certain coding
task in software Q&A sites. Code search increases project
developer productivity and reduces duplication of effort.

Many of the previous code search approaches have been
proposed [1]–[3]. Most of them are base on information
retrieval (IR) techniques. For example, Joel et al. [1] proposed
that embedding a task-specific search engine in the develop-
ment environment can significantly reduce the cost of finding
information and enable programmers to write greater code
more easily. Haiduc et al. [2] proposed a code recommender
approach (called Refoqus) based on machine learning, which
is trained with a sample of queries and relevant results.
Linstead et al. [3] proposed Sourcerer, an information retrieval
based code search tool that combines the textual content
‡Corresponding author.
1Replication package: https://github.com/lrt366/HECS

Query: How to implement a function:

c plus one by one when a > b

if a > b:

c += 1

if x < y:

c += -1

if a > b:

c += -1

if x < y:

c += 1

Fig. 1. Examples of different keyword sequences.

of a program with structural information. However, these
code search methods have limitations because they do not
utilize deep learning techniques. For example, an IR-based
approach to one program language is often difficult to apply
to another program language. Recent work [4], [5] has taken
steps towards enabling more advanced code search using deep
learning. We call such methods neural code search. Gu et al.
[4] proposed CODEnn, which jointly embeds code snippets
and natural language descriptions into a high-dimensional
vector space. Srinivasan et al. [5] proposed CODE-NN, that
uses LSTM networks with attention to producing natural
sentences.

A fundamental problem of the previous code search methods
is that none of them takes into account the effect of the
keyword order of the code on the results. But the same
code keywords can make up a completely different code. For
example, the different sequences result in completely different
results as shown in Fig 1. Where, the level represents the
level of the logic of code execution, and the order represents
the order in which the code statements are executed. The two
pieces of code have the same keywords, but their keywords
are of different levels and order, and the results are completely
different.

The majority of the existing methods [4]–[11] apply word
embedding techniques to train embedding for code. But in
common neural networks, neurons are usually out of order.
For example, the forget gate in LSTM is a vector, and there is
no regularity in the position of the elements of the vector. If
the position of all vectors involved in the LSTM operation
is re-disrupted in the same way, the order of the weights
is also disrupted accordingly. But the output can be just a
reorder of the original vector (considering multiple layers,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

or even completely unchanged), the amount of information
remains unchanged, without affecting the subsequent network
use of it. In other words, neither LSTM nor ordinary neural
networks use neuronal sequence information. Therefore none
of the existing methods can capture the sequence information
of the code. Namely, existing work cannot sequence these
neurons and use this sequence to represent specific structures
and effectively using neuronal sequence information.

Furthermore, most of the code search methods [4]–[10],
[12], [13] can be divided into two categories, one modeling the
question and answer vectors separately, and the other using the
correspondence between the word levels of queries and code
snippets. Nevertheless, there is no analysis of the interactive
information between queries and code snippets.

In this paper, we propose a novel deep neural network
named HECS (Hierarchical embedding for code search) for
existing problems in software Q&A sites. We define a code
search task for software Q&A sites, which can be formalized
as a ranking problem searching for the standalone code so-
lution in candidate list. At the same time, to achieve better
training results, we use Noise-Contrastive Estimation [4] to
learn hierarchical representations of the multiple inputs (query,
positive code, and some negative code) directly, using a multi-
ple ranking loss function to learn nonlinear feature correlations
from the hierarchical representations.

To better embed code snippets and queries, we use the
hierarchical model to extract features, divided into the Intra-
language encoding module and the Cross-language encoding
module. Through this coding method, HECS successfully
captures the intrinsic association between them by mapping
code snippets and queries to high-dimensional spaces. In
summary, our contributions are as following:
• We introduce the Intra-language encoding module to

capture the sequence information of the code. A snippet
of code can often be expressed as a hierarchy that, if arti-
ficially abstracted, is what we call structural information,
and HECS is able to model the natural representation of
this hierarchy during training.

• We use the Cross-language encoding module to calculate
the interactive between queries and code snippets. The
attention to the corresponding code snippets on queries
and the corresponding queries on code snippets is calcu-
lated, respectively. This approach makes the input layer
of the model more interactive at the word level of queries
and code snippets.

• We use the codebase of general-purpose imperative and
interpreted programming languages, such as Python and
C#, to demonstrate its effectiveness in code search for
software Q&A sites. The results show that our approach
achieves state-of-the-art performance.

The rest of this article is organized as follows. Section 2
describes the motivation and insight to the code search task.
Section 3 describes the background techniques used for code
search. Section 4 describes the detailed design of our approach.
Section 5 describes the evaluation. Section 6 describes the
results of the evaluation. Section 7 discusses our work. Then

there is Section 8, which describes the related work. We
conclude the paper in Section 9.

II. MOTIVATION AND INSIGHT

Fig. 2. Conceptual steps for HECS.

Recently, some state-of-the-art methods [4]–[9], [12] fo-
cused on using neural network models to perform semantic
similarity calculations of code. Nevertheless, these neural
modeling methods ignore the semantic modeling of code
hierarchical structure information (including sequential in-
formation, interactive information). Due to the lack of this
potential code information, the existing work will face the
following difficulties:
• They do not extract the sequence information of the query

and the code snippets, even if the sequence information
is critical to the code snippets.

• They do not model semantically matched queries and
interactive information represented by code snippets.

• They do not embed the entire sequence of the fabric of the
source code, but rather embed the extracted independent
elements of methods, APIs, tokens into the vector [4].

Inspired by a summary of the shortcomings of the existing
work described above, we first confirmed that the Q&A
programming post contained the hierarchical structure infor-
mation presented. Then, according to the characteristics of the
hierarchical information, we propose a method of code search,
HECS, based on the idea of hierarchical feature extraction
and deeply excavating code information, used to solve these
problems. Fig 2 illustrates the steps to solve three problems
with existing code search methods in software repositories
such as StackOverflow.

HECS captures potential information about queries and code
snippets to address these problems with the given queries and
code snippets collected from a Q&A post. Specific resolution
steps are shown in Fig 2: (1) How to embed the entire sequence
of the source code? Embedding code snippets into separate ele-
ments can result in loss of information. HECS uses the SGNS-
based [14] word2vec model to learn code structure embedding
from millions of Q&A programming data. The complete code
snippets is mapped to a continuous high-dimensional vector.
(2) How to model the sequence information of the code?
Ignoring the sequential information of the code and query
causes the code search model to match incorrectly. HECS uses
the Intra-language encoding modules based on ON-LSTM to
embed sequential information in code snippets and queries. (3)

How to model interactive information? Ignoring the interactive
information of code snippets and queries is ignoring the
correlation analysis. HECS uses the Cross-language encoding
modules, the joint training of queries and code snippets by the
attention mechanism, to incorporate the importance weights of
each other’s presentation of learning.

III. BACKGROUND

A. LSTM

LSTM (Long Short-Term Memory) is a time-cycle neural
network specifically designed to address the long-term de-
pendence of the general RNN (Recurrent Neural Network).
Consider a natural language sentence with a sequence of t
words s = w1, . . . , wt, LSTM embeds it through the following
computations: it reads words in the sentence one by one,
maintains long memories through the forget gate and output
gate, and updates a hidden state at each time step. Each word
wt is first mapped to a d-dimensional vector wt ∈ Rd by
an one-hot representation [15] or word embedding [16]. The
update formula for hidden states on each time step is as
follows:

ft = σ (Wfxt + Ufht−1 + bf)

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

ĉt = tanh (Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ ĉt
ht = ot ◦ tanh (ct)

(1)

ft, it, ot are three single-layer full-connection models, input
is historical information ht−1 and current information xt,
activated with sigmoid, because the results of sigmoid are
between 0 and 1, so their meaning can be interpreted as “gate”,
respectively, named forget gate, input gate, output gate.

B. ON-LSTM

The difference between ON-LSTM and LSTM is that the
update formula for hidden states [14]. In order to learn the
sequence information of the code, in ON-LSTM, the activation
function is defined as:

ĝ = cumax(· · ·) = cumsum(softmax(· · ·)) (2)

Where cumsum denotes the cumulative sum. This formula
allows hidden cells to be updated in two segments. Based on
the cumax(·) function, ON-LSTM introduce a master forget
gate f̃t and a master input gate ĩt.

f̃t = cumax(Wf̃xt + Uf̃ht−1 + bf̃) (3)

ĩt = 1− cumax(Wĩxt + Uĩht−1 + bĩ) (4)

According to the formula introduced above, the update rules
for hidden states are as follows:

wt = f̃t ◦ ĩt (5)

f̂t = ft ◦ wt + (f̃t − wt) = f̃t ◦ (ft ◦ ĩt + 1− ĩt) (6)

ît = it ◦ wt + (̃it − wt) = ĩt ◦ (f̃t ◦ it + 1− f̃t) (7)

ct = f̂t ◦ ct−1 + ît ◦ ĉt (8)

Shen et al. [14] explains why revised update rules can learn
sequential information. The structure of ON-LSTM is shown
in the Fig 3.

Fig. 3. The structure of ON-LSTM

IV. A DEEP NEURAL NETWORK FOR CODE
SEARCH

Since the existing code search methods ignore the inter-
active and sequential information, we propose a novel deep
neural network named HECS. Overall, the method is better
able to map a pair of samples (code snippets, queries) to near
points in high-dimensional space.

A. Architecture

Inspired by the existing work using neural network models
[4], [7], [8], [17], we have proposed a new method of code
search called HECS. HECS is a supervised embedded model
that uses deep neural networks to embed code snippets and
natural language queries into neighbor vectors in uniform
space and measure their similarity. As introduced in Section
3, the LSTM used in HECS is replaced with ON-LSTM, Fig
4 shows the overall architecture of HECS. The model consists
of three modules, each one corresponding to a module of
hierarchical embedding.

B. The Intra-language Encoding Module

The Intra-language encoding module (ILEM) captures and
initially encodes the sequence information of the code snippets
and queries. Consider a snippet of code C = w1, w2, ..., wND,
which contains a sequence of ND words and a query Q =
q1, q2, . . . , qN that contains N words.

C = (w1, . . . , wND)

Q = (q1, . . . , qN)
(9)

Where wi or qi is a vector standing for a d dimentional
word embedding for the ith word in the code snippets. The
dimension of C is nd-by-d and the dimension of Q is n-by-d.
ILEM encodes it into a vector using an ON-LSTM.

~hC =
−−−−−−−−−−→
ON − LSTM(wt, ~ht−1) (10)

~hQ =
−−−−−−−−−−→
ON − LSTM(qt, ~ht−1) (11)

(a) Overall Architecture (b) Detailed Structure

Fig. 4. The structure of the Hierarchical embedding for code search

Let the hidden unit number for each unidirectional ON-LSTM
be u. With ON-LSTM encoding, the shape of hC becomes nd-
by-u and the shape of hQ becomes n-by-u.

Next, we will explain how ON-LSTM embeds a sentence
(e.g., get a list) into a vector. Fig 5 shows this process, where
the recurrent hidden layer of ON-LSTM expands at each time
step. ON-LSTM reads the words in the sentence one by one,
captures the additional sequence information, and updates a
hidden state at each time step. This is a specific procedure:
first it reads the first word “get”, maps the word to the vector
w1, and then uses w1 to calculate the current hidden state h1.
It then reads the second word, “a”, maps the word to the vector
w2, and then uses w2 to update the hidden state h1 to h2. This
process continues until the ON-LSTM receives the last word
“list” and outputs the final state h3. The last state h3 can be
used as an embedded c for the entire sentence.

get lista

embedding

1h 2h 3h

1w 2w 3w

Fig. 5. ON-LSTM for sentence embedding.

C. The Cross-language Encoding Module

The Cross-language encoding module (CLEM) captures and
encodes the interactive information of the code snippets and
queries. The proposed CLEM model is an attention mecha-
nism, which provides a set of summation weight vectors for
the code snippets and queries. For this section, Fig 6 describes
our model. First, the vector of the output query is calculated
as follows:

outputQ = maxpooling(hQ) (12)

Next the attention matrix of the code snippets above the query
needs to be calculated.

Wqc = tanh((hQ ◦Wq) + (hC ◦Wc)) (13)

Here Wq and Wc is a weight matrix with a shape of u-by-L.
Therefore, the shape of Wqc is nd-by-L. Wqc is the attention
matrix of the interactive information between the code snippets
and the query. The weight that acts on the code is calculated
as follows:

P =Wqc ◦W (14)

att = matrixdiag(softmax(P)) (15)

Here the shape of W is L-by-1. Then the shape of P is
reconstructed to nd. att is a diagonal matrix that P builds
after the softmax layer. This is the attention with interactive
information. Finally, the output code snippets vector required
is as follows:

outputC = maxpooling(att ◦ hC) (16)

Since att is sized nd-by-nd, the annotation vector outputC
will have a size nd-by-u.

D. Similarity Matching Module

We have described the transformations that encode the nat-
ural query Q and the code snippets C, which have been con-
verted to outputC and outputQ. Using the existing method
[4] [18], we use cosine similarity cos(V Q, V C) to measure the
similarity between source code and natural query. The cosine
similarity cos(V Q, V C) is defined as:

cos(outputQ, outputC) =
outputQT outputC

||outputQ|| • ||outputC||
(17)

Where ||outputQ|| • ||outputC|| represents the multiplication
of two matrices via their transpose. In addition, outputC

(a) Architecture (b) Attention in (a)

Fig. 6. The Cross-language encoding module

and outputQ are the vectors of code snippets and query
respectively. The higher the similarity, the more related the
code snippets is to the query. Anyway, we enter a pair of
samples (Q,C), which translates into vectors, and finally use
this method to predict the similarity between code snippets
and query.

E. Loss Function

Our goal is to learn a representation function f(·) such that
given some queries q, positive pairs (q, c+) are assigned larger
similarity scores than negative pairs (q, c−):

f(q, c+) > f(q, c−),∀q, c+, c− (18)

Where q, c+, c− denote the query, positive code snippets and
negative code snippets, respectively. In order to measure the
distance between query and code in high-dimensional space,
we use the cosine similarity (cos(·)) as function f(·) for the
measurement. So our final loss function is defined as follows:

min
w

∑
(q,c+,c−)∈N

max(0, 1− (f(q, c+)− f(q, c−)) + λ||W ||2)

(19)
Where W denotes all the model parameters, λ ∈ [0, 1] is a
regularization parameter. We then use a triplet ranking loss,
which minimizes the distance between the query q and a
positive code snippets c+, and maximizes the distance between
the q and a negative code snippets c−. According to e.q. (17),
our final loss function is as follows:

min
w

∑
(q,c+,c−)∈N

max(0, 1− (cos(q, c+)− cos(q, c−))

+λ||W ||2)
(20)

V. EVALUATION

In this section, we will evaluate the effectiveness of the
above methods at different design points. It will also be
compared with several existing code search methods.

A. Corpus

Code search tasks require a huge amount of data. Stack-
Overflow is a popular Q&A forum for posting program-
related questions, and anonymized versions of posts can be
freely downloaded from StackExchange [19]. By using regular

expressions (e.g., Tags = “.*Python.*”) to match different
tags, we can extract multilingual Q&A programming posts to
further build the embedded library. So we build the original
corpus from posts on StackOverflow, which includes posts in
two types of programming languages (Python and C#). In
particular, we only keep posts with multiple candidate code
snippets. Our model is more concerned with the complete
code snippets than the part of the code snippets (method body,
API sequence, etc.), so we remove the candidate codes with
a length of less than 10 in the corpus to ensure the number
of candidates. Finally, we used the CodeMF proposed by Hu
et al. [20] to eliminate noisy posts and extract high-quality
software repositories from programming forums.

Moreover, we try to obtain more corpora for experiments,
but [4], [21] do not share them. In addition, [6], [22] shared
their corpora, but did not share the corpora processing method.
For each programming language in our corpus, we use 80%
of it for training, 10% for validation and 10% for testing. The
statistics of the corpus are shown in TABLE I, which will
be used to develop our models. The column “label with ‘1’”
represents the ratio of the best answers to the total answers.
For Python and C#, the number of samples of not less than 10
lengths is 279695 and 237078. We obtained a labeled corpus,
which we call the Multiple Candidate QC Pairs (MucQC)
corpus. In the process of collecting posts, we filter out posts

TABLE I
THE STATISTICS OF THE MUCQC CORPUS

Data Type Python C#

Length≥10 279695 237078
Label Types QC pairs Label with “1” QC pairs Label with “1”
Training data 222524 30.95% 187500 34.71%

Validation data 28717 29.98% 24708 32.92%
Testing data 28449 30.26% 24864 32.72%

with only one answer and keep posts with at least two answers.
In the reserved post, we mark the code snippets based on the
result of the vote (the code with the highest number of votes
is marked positive (the best answer), and the rest is marked
as negative.).

Compared to previous work [18], [23], our collected
MucQC corpus is better in evaluating the performance of code
search methods, which has the following advantages: (1) The
data source comes from a real code search Q&A community
StackOverflow, not the cleaned GitHub data. (2) The code type
is a more complex code-snippet level, not a class or method
level.

At the same time, in order to test the validity of the model on
the public corpus, we also conducted a comparative experiment
on StaQC (Stack Overflow Question-Code pairs), the largest
dataset to date of 148K Python and 120K SQL QC pairs.
StaQC is a corpus proposed by Yao et al. [23] that was
mined based on BiV-HNN. However, the code content in
the SQL program in StaQC carries less important structured
information when making predictions and lacks intermediate

variable names. Therefore, to better compare with the Python
dataset in MucQC, we chose the Python dataset in StaQC for
the experiment. StaQC is divided in the same way as MucQC.
The statistics of the StaQC corpus are shown in TABLE II.
Unlike the data processing of the original work, we filtered
the manually annotated QC pairs and retained only Multi-
Code Answer Posts and Single-Code Answer Posts. At the
same time, we split a pair of data from Multi-Code Answer
Posts into multi-pair data such as Single-Code Answer Posts.
MucQC uses the same data processing process.

After collecting the data, we used different bilingual to-
kenizers (ANTLR parser for C# [5], python built-in parser
for Python [23], WordNet [24] and Lemmatizer [25] for NL
queries) to obtain a structured sequence of code snippets and
NL queries, respectively. In addition, we have unified the same
type of characters. (e.g. ”c#”, ”C#” and ”C#.Net” replaced with
”csharp”)

TABLE II
THE STATISTICS OF THE STAQC CORPUS

Data Type Python
Size 185906

Label Types QC pairs Label with “1”
Training data 147851 63.05%

Validation data 18862 63.81%
Testing data 19193 64.42%

B. Evaluation Methodology
We used four evaluation metrics, FRank, Precision@k,

Recall@k and Mean Reciprocal Rank (MRR), that were widely
used in information retrieval tasks as well as code search tasks
[26]–[29].

FRank: The FRank (also called hit rank [26]) is the rank
of the first hit result in the response list. This measurement
is a very classic and important metrics in code search tasks.
It represents the ability of the method to sort responses. The
smaller Frank, the faster the user can find the right response.

Precision@k: The Precision@k [27] measures the percent-
age of relevant results in the top k returned responses for each
query. It represents the amount of noise that the code search
method returns the result. Precision@k is calculated as follows:

Precision@k =
relevant responses in the top k responses

k
(21)

The higher the metrics value, the less noise, and the better
the performance of the code search approach.

MRR: The calculation process of MRR is to count the
standard answer in the order of the results given by the
evaluation system as its accuracy, and then average all the
questions. MRR is calculated as follows:

MRR =
1

|Q|

|Q|∑
q=1

1

FRankq
(22)

The higher the value of MRR, the better the code search
capability of the model.

Recall@k: Recall@k indicates that the positive sample is
predicted to be the number of positive samples for all samples.
Recall@k is calculated as follows:

Recall@k =
1

|Q|

|Q|∑
q=1

λ(FRankq ≤ k) (23)

The higher the value of Recall@k, the better the model.

C. Comparison Methods

To prove the effectiveness of our model, we selected the
most advanced or widely used methods to compare. This
section describes the models used for comparison and the
specific implementations of the models we propose. All the
experiments were carried out on the MucQC/StaQC corpus.

CodeLSTM: LSTM is a neural network widely used in
natural language processing tasks. The model consists of an
embedding layer and a bidirectional LSTM layer, with the
hidden unit of LSTM set to 256. Based on experience, we set
the dimension of word embedding to 300.

CodeCNN: CNN (convolutional neural networks) is the
representative algorithm for machine learning. The model
consists of an embedding layer and a CNN layer, with the
number of filters set to 150 and the size of filters set to [1,
2, 3, 5]. Based on experience, we set the dimension of word
embedding to 300.

CodeRCNN: The model includes an embedding layer, an
LSTM layer, and a CNN layer. The CNN layer and the LSTM
layer are set up the same as above. Based on experience, we
set the dimension of word embedding to 300.

DeepCS: DeepCS is a state-of-the-art code search engine
proposed recently [4]. It is a code search model based on
neural networks that combine several pooled layers and several
RNN (Recurrent Neural Network) layers. For the consistency
of the experiment, we did not use the method of dividing the
code into three aspects. We encode the entire code snippets
into a vector. The model consists of an embedding layer, a
bidirectional LSTM layer, and a max-pooling layer, with the
hidden unit of LSTM set to 256. Based on experience, we set
the dimension of word embedding to 300.

UNIF: UNIF is an improved method of supervised nerves
in NCS [21]. NCS uses the Bag-of-words model and FastText
model [30] to joint training code snippets and natural language
queries, while UNIF primarily improves the use of attention
mechanisms to calculate the weights of word embedding.
Based on experience, we set the dimension of word embedding
to 300.

CodeATT: CodeATT is a recently proposed baseline, which
similar to attention-based QA-LSTM [31]. CodeATT only
involves an embedding layer and an interactive attention
layer, where CodeATT and HECS have different attention
mechanisms. Based on experience, we set the dimension of
word embedding to 300.

CodeONLSTM: To verify the effect of the Cross-language
encoding module, we replace the normal LSTM network with

TABLE III
RESULTS FOR RQ1, RQ2 AND RQ3

Model
MucQC StaQC

Python C# Python
Recall@1 MRR Recall@1 MRR Recall@1 MRR

CodeLSTM 0.5269 0.7247 0.4972 0.7104 0.5787 0.7669
CodeCNN 0.5175 0.7184 0.4850 0.7036 0.5687 0.7603

CodeRCNN 0.5241 0.7233 0.5079 0.7168 0.5790 0.7662
SeltATT 0.5307 0.7273 0.5130 0.7197 0.5777 0.7667

UNIF 0.3696 0.6245 0.3739 0.6338 0.4401 0.6825
DeepCS 0.5306 0.7268 0.5097 0.7177 0.5782 0.7713

CodeONLSTM 0.5334 0.7286 0.5156 0.7205 0.5741 0.7646
CodeATTENTION 0.4768 0.6929 0.4860 0.7036 0.5223 0.7333

HECS 0.5419 0.7338 0.5173 0.7226 0.5900 0.7735

an ON-LSTM network and the remaining parameters are set
unchanged.

CodeATTENTION: To verify the effect of the Intra-
language encoding module, we designed a model with only
an interactive mechanism and the remaining parameters are
set unchanged.

HECS: The detailed implementation of the HECS model
is as follows: Based on experience, we used an ON-LSTM
layer with a hidden unit set to 512, and we set the dimension
of word embedding to 300. The shape of matrix W is set to
(200, 1), Wc and Wq to (512, 200), and Wqc to (200, 200).
For the training optimization algorithm, we select the mini-
batch Adam algorithm [37, 40]. Based on past experience, the
learning rate of the model is set to 0.0002 and the batch size is
set to 128. Finally, we built the model using the open-source
framework of TensorFlow, which lasted 50 epochs.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate HECS through experiments.
Specifically, our experiments aim to address the following
research questions:
• RQ1: Whether HECS (Hierarchical embedding for the

code search method) achieves state-of-the-art perfor-
mance in all the benchmarks?

• RQ2: Whether CLEM (Cross-language encoding module)
introduced with attention information can improve the
performance than Non-cross-language encoding based
code search?

• RQ3: Whether ILEM (Intra-language encoding module)
introduced can improve the performance than unordered
encoding based code search?

A. RQ1

The first experiment is conducted to identify the effec-
tiveness of HECS for code search. TABLE III shows the
overall performance of the comparative approaches, measured
in terms of Recall@1 and MRR. In contrast to the original
work, Table III shows that DeepCS is better than UNIF. This
is because DeepCS adopts special tuples of the code fragment
for representing program method instead of using overall

sequential tokens. However, recent work has demonstrated that
sequence-based embedding technology enables state-of-the-art
code search performance, such as CoaCor [4] and CODE-NN
[5]. As a result, the sequence-based DeepCS network provides
a better way to capture the joint representation of the source
code and NL queries for code search.

Compared with the state-of-the-art methods (e.g., UNIF [21]
and CODEnn [4]) available, we can conclude that HECS has
achieved the optimal performance. Because HECS substan-
tially outperforms all baselines. Especially on the results of
the public corpus StaQC, we can see that the gain of HECS is
relatively higher. The reason for this result is that the StaQC
corpus is collected using supervised BiV-HNN model, the
quality of the QC pairs obtained was higher than MucQC,
and then, HESC can learn embedded representation more
efficiently with the better-quality QC pairs. The results show
that the embedded vector of HESC is a superior representation
of the potential information of code snippets and queries than
other methods. Thus given query HESC can generate more
relevant code.

The columns Recall@1 show the results of Recall@k when
k is 1. For this measurement, we select the most stringent
criteria (k=1), which makes the results more representative.
HECS achieves a Recall@1 of 1% to 14% higher than the
benchmarks. The MRR column represents the MRR values of
each comparison model. HECS achieves an MRR of 1% to
11% higher than the benchmarks. This means that HECS can
generate code snippets that are more relevant to the query.

The hierarchical embedding of code search method HECS
enables state-of-the-art performance across all benchmarks.

B. RQ2

The second experiment is conducted to identify the effec-
tiveness of the Cross-language encoding module for HECS.
We designed an ablation experiment on MucQC/StaQC cor-
pus. Model CodeONLSTM is a model that removes the Cross-
language encoding module from the HECS, with only one
Intra-language encoding module and one Similarity Matching
module.

Additionally, TABLE III shows the evaluation results of
the ablation experiment. HECS achieves Recall@1 and MRR
is 1% higher than CodeONLSTM. Fig 7 is a summary of
FRank and Precision@k for the three ablation experiments on
MucQC corpus. The FRank value of HECS is 2% lower than
CodeONLSTM. The Precision@k values of HECS when k is 1,
3 and 5 are 0% to 1% higher than CodeONLSTM, respectively.
Besides, CodeONLSTM achieves Recall@1 and MRR is 1%
to 2% higher than CodeLSTM. The results show that ON-
LSTM captures the sequence information of the code more
successfully than LSTM.

This result shows that the Cross-language encoding mod-
ule (CLEM) is facilitating the potential connection between
the learning code snippets and the corresponding query.

C. RQ3

The third experiment is conducted to identify the effec-
tiveness of the Intra-language encoding module for HECS.
Similar to the above, we also designed an ablation experiment
on MucQC/StaQC corpus. CodeATTENTION is a model that
removes the Intra-language encoding module from the HECS,
with only one Cross-language encoding module and one
Similarity Matching module.

(a) FRank (b) precision@1

(c) precision@3 (d) precision@5

Fig. 7. The statistical comparison of FRank and Precison@k for three code
search approaches.

Furthermore, TABLE III and Fig 7 show the evaluation
results of ablation experiment. HECS achieves more 3%
to 7% higher Recall@1 and 1% to 4% better MRR than
CodeATTENTION in C# and Python datasets. The FRank
value of HECS is 13% lower than CodeATTENTION. The
Precision@k values of HECS when k is 1, 3 and 5 are 1% to
4% higher than CodeATTENTION, respectively.

In particular, the results of the model CodeONLSTM are
better than CodeATTENTION. CodeONLSTM achieves more
3% to 6% higher Recall@1 and 2% to 3% better MRR than
CodeATTENTION. This result further demonstrates that the
Intra-language encoding module is essential for learning to
embed representation. However, we cannot conclude that the

Cross-language encoding module is not important, because
the task of Cross-language encoding module is to learn the
interactive information between the code snippets and the
query on the basis of the Intra-language encoding module.

This result indicates that the Intra-language encoding
module (ILEM) is more suitable for code search tasks and
can capture the sequence information of code snippets.

D. Example of Search Results

To demonstrate the actual effect of HECS, we now pro-
vide specific examples of code search results for benchmark
searching codebase. In case of Python, we chose a more
representative post as a sample. For example, Post# 952914,
the query is “How to make a flat list out of list of lists?”. We
pick the top five from its response. As shown in Fig 8, HECS
is able to retrieve a stand-alone code solution (the correct code
required).

Fig. 8. Example of code search.

As with previous code search methods using neural net-
works [4], query comprehension enables HECS to perform
more powerful code search. Its search results are less affected
by irrelevant or noisy keywords. Fig 8 shows that HECS got
the correct response to the keyword ”flat list”.

In addition, we can find two very similar results in the
first three responses (1st and 2nd). These two candidate code
snippets have the most similar keywords, and traditional code
search methods are difficult to rank them. Obviously HECS is
able to capture the sequence information of the code snippets
and rank them as a way to do so.

HECS also fully understands the semantics of queries and
finds responses (1st and 4th) with different keywords but the
same meaning through associated searches.

To demonstrate the effect of the interactive mechanism, we
show the attention weight above the query “use defaultdict
in a array in Python tagint” for the different fragments of

(a) Attention weights of the direction of
the query

(b) Attention weights of the direction of
the code

Fig. 9. Heatmap of attention weights Mqc for example Python code fragments

the relevant code. Fig 9 shows the interactive attention weight
value between the query and its corresponding code snippets.
Fig 9(a) indicates that attention weights of the direction of
the query, Fig 9(b) indicates that attention weights of the
direction of the code. Darker areas represent stronger weights.
We can observe that dark areas are concentrated in critical and
important parts.

VII. DISCUSSIONS

A. Why Does HECS Work?

We have identified three advantages of HECS that may
explain its effectiveness in code search.

The well-informationed embedded vector of global code
information. The field of natural language processing usually
embeds a complete sentence into a high-dimensional space.
But the code search tasks typically divide the code into several
parts to embed and then connect the embedded vector [4]. This
can result in the loss of potential information between parts of
the code. Our work is to map the complete code snippets to the
continuous high-dimensional space to preserve this potential
information.

Take full advantage of code snippets structured sequence
information. The sequence information of a code snippets is
often important compared to a text snippet. Different keyword
sequences result in different meanings in the code. However,
most of the current neural network code search methods do
not deal with this characteristic of code. Our work uses the
Intra-language encoding modules based on ON-LSTM to fully
embed sequential information, effectively solve this problem.

A deeper understanding of query based on code at-
tention weights. Unlike traditional code search methods, our

method uses attention-based Cross-language encoding mod-
ules to capture the correlation information between queries
and code to better understand the meaning of queries. This
value-weighted model is able to give different attention of both
the natural language query and code terms in their respective
directions, achieving a focus on the natural language query
description.

B. Threats to Validity

HECS differs from these existing methods that focus on
class-type or method-type code snippets because we are de-
signed to improve the performance of retrieving code snippets
through a Q&A site, such as StackOverflow. Threats to the
effectiveness of HECS include: (1) external validity. The use
of large codebases in previous work [4], [18], [21], [23]. How-
ever, because online forums such as StackOverflow contain
a large number of software libraries, there are very limited
code candidates from actual code search scenarios. Thus our
corpus is a little bit small. (2) internal validity. Since our
approach is based on a neural model with supervised learning,
the performance of the model is largely limited by the pre-
processing of the data and the size of the corpus. (3) construct
validity. Due to the limitations of experimental conditions,
we are short of the experiments of manually evaluating the
relevance of the returned code ranking.

VIII. RELATED WORK

Code search tasks have become increasingly popular re-
cently. We survey some of the work that is most closely related
to what we are focused on. Most of the traditional code search
methods are based on information retrieval technology [32],
[33]. For example, Mohammad et al. [33] proposed RACK
to retrieve by converting queries to lists of API classes used
to collect relevant code. McMillan et al. [32] have proposed
portfolios and extracted relevant functions of incentive queries
through keyword matching and PageRank. There are also work
based on query expansion and reformulation [2], [34]. Haiduc
et al. [2] propose machine learning-based queries to refor-
mulate strategies. Zhang et al. [34] proposed an automated
approach to using Word2vec [16] to recommend semantically
related API class names. As described in Section 4, the HECS
we recommend is different from the existing code search
techniques described above, because the model is based on
a supervised model of a neural network and there is spatial
proximity between queries and code snippets. Therefore, it
does not need to deal with a term mismatch.

Due to the development of natural language processing
tasks, much of the recent work has focused on semantic-
based code search [4], [18], [21]. Yao et al. [18] proposed the
code annotation method CoaCor, based on intensive learning.
Gu et al. [4] proposed the method CODEnn for combin-
ing embedding and deep learning to measure the similarity
between code snippets and user queries. Hamel et al. [12]
proposed a supervised neural code search system that uses
multiple sequence-to-sequence networks. Cambronero et al.
[21] proposed a method named UNIF for calculating code

sentence embedding using attention mechanisms. As shown
in Section 4, there are significant differences between these
existing technologies and HECS. None of them considered
the importance of interactive information for semantic feature
representation and matching between natural language queries
and source code. In addition, their embedded representation
does not take into account the sequential information of the
code snippets, but this potential information is critical to the
code search task.

In recent years, most code search tasks have used models
based on deep learning techniques [5], [9], [35], such as
code summarization, code generation, code recommendation,
etc. For the code generation task, Mou et al. [35] proposed
a code model based on the user intent Encoder-Decoder
model. Srinivasan et al. [5] generate synth snippets and SQL
programs through attention mechanisms and LSTM networks.
Allamanis et al. [9] use convolutional neural networks (CNN)
to summarize code snippets. In our work, we embed the
sequence information of the code snippets and the interactive
information of the query and the code snippets into the high-
dimensional space, and dig the in-depth information of the
code search task hierarchically.

IX. CONCLUSION

In this paper, a new type of deep neural network for
Software Q&A Sites called HECS (Hierarchical embedding
for code search) is proposed. HECS uses the interactive
structure of code snippets and natural queries, and special
LSTM variants (ON-LSTM) to capture the keyword order
structure of the code, capturing local and global characteristics,
respectively. Experiments show that the hierarchical design of
HECS is superior to several baselines, and the two modules
are effective. Moreover, the framework we designed in HECS
could theoretically improve the performance of other software
tasks, such as code summarization and code recommendation.

ACKNOWLEDGMENT

Thanks for the financial support of the National Key RD
Program of China under Grant No. 2018YFC1604000 and No.
2018YFC1604003 and Natural Science Foundation of China
(NSFC) under Grant No. 61872272 and No. 61772382.

REFERENCES

[1] J. Brandt, M. Dontcheva, and et.al, “Example-centric programming:
integrating web search into the development environment,” in 28th CHI,
2010, pp. 513–522.

[2] S. Haiduc, G. Bavota, and et.al, “Automatic query reformulations for text
retrieval in software engineering,” in 35th ICSE, 2013, pp. 842–851.

[3] E. Linstead, S. K. Bajracharya, and et.al, “Sourcerer: mining and search-
ing internet-scale software repositories,” Data Min. Knowl. Discov.,
vol. 18, no. 2, pp. 300–336, 2009.

[4] X. Gu, H. Zhang, and et.al, “Deep code search,” in 40th ICSE, 2018,
pp. 933–944.

[5] S. Iyer, I. Konstas, and et.al, “Summarizing source code using a neural
attention model,” in 54th ACL, 2016.

[6] S. Sachdev, H. Li, and et.al, “Retrieval on source code: a neural code
search,” in 2nd ACM SIGPLAN MAPL, 2018, pp. 31–41.

[7] X. Qiu and X. Huang, “Convolutional neural tensor network architecture
for community-based question answering,” in 24th IJCA, 2015, pp.
1305–1311.

[8] A. Severyn and A. Moschitti, “Learning to rank short text pairs with
convolutional deep neural networks,” in 38th ACM SIGIR, 2015, pp.
373–382.

[9] M. Allamanis, H. Peng, and et.al, “A convolutional attention network
for extreme summarization of source code,” in 33nd ICML, 2016, pp.
2091–2100.

[10] L. Mou, G. Li, and et.al, “Convolutional neural networks over tree
structures for programming language processing,” in 30th AAAI, 2016,
pp. 1287–1293.

[11] N. D. Q. Bui and L. Jiang, “Hierarchical learning of cross-language
mappings through distributed vector representations for code,” in 40th
ICSE (NIER), 2018, pp. 33–36.

[12] H. Husain and H.-H. Wu, “How to create natural language semantic
search for arbitrary objects with deep learning,” 2018.

[13] H. Peng, L. Mou, and et.al, “Building program vector representations
for deep learning,” in 8th KSEM, 2015, pp. 547–553.

[14] Y. Shen, S. Tan, and et.al, “Ordered neurons: Integrating tree structures
into recurrent neural networks,” in 7th ICLR, 2019.

[15] J. P. Turian, L. Ratinov, and et.al, “Word representations: A simple and
general method for semi-supervised learning,” in 48th ACL, 2010, pp.
384–394.

[16] T. Mikolov, I. Sutskever, and et.al, “Distributed representations of words
and phrases and their compositionality,” in 27th NIPS, 2013, pp. 3111–
3119.

[17] X. Huo, M. Li, and et.al, “Learning unified features from natural and
programming languages for locating buggy source code,” in 25th IJCAI,
2016, pp. 1606–1612.

[18] Z. Yao, J. R. Peddamail, and et.al, “Coacor: Code annotation for code
retrieval with reinforcement learning,” in 2019 WWW, 2019, pp. 2203–
2214.

[19] “Stack exchange.” [Online]. Available: https://stackexchange.com/
[20] G. Hu, M. Peng, and et.al, “Unsupervised software repositories mining

and its application to code search,” Software: Practice and Experience,
2019.

[21] J. Cambronero, H. Li, and et.al, “When deep learning met code search,”
in ACM ESEC/SIGSOFT FSE, 2019, pp. 964–974.

[22] P. Yin, B. Deng, and et.al, “Learning to mine aligned code and natural
language pairs from stack overflow,” in 15th MSR, 2018, pp. 476–486.

[23] Z. Yao, D. S. Weld, and et.al, “Staqc: A systematically mined question-
code dataset from stack overflow,” in 2018 WWW, 2018, pp. 1693–1703.

[24] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[25] D. Cavar, T. Gulan, and et.al, “The scheme natural language toolkit
(S-NLTK): NLP library for R6RS and racket,” in 4th ELS, 2011, pp.
58–61.

[26] X. Li, Z. Wang, and et.al, “Relationship-aware code search for javascript
frameworks,” in 24th ACM SIGSOFT, FSE, 2016, pp. 690–701.

[27] F. Lv, H. Zhang, and et.al, “Codehow: Effective code search based
on API understanding and extended boolean model (E),” in 30th
IEEE/ACM, ASE, 2015, pp. 260–270.

[28] M. Raghothaman, Y. Wei, and et.al, “SWIM: synthesizing what i mean:
code search and idiomatic snippet synthesis,” in 38th ICSE, 2016, pp.
357–367.

[29] X. Ye, R. C. Bunescu, and et.al, “Learning to rank relevant files for bug
reports using domain knowledge,” in 22nd ACM SIGSOFT (FSE-22),
2014, pp. 689–699.

[30] E. Grave, T. Mikolov, and et.al, “Bag of tricks for efficient text
classification,” in 15th EACL, 2017, pp. 427–431.

[31] H. Husain, H.-H. Wu, and et.al, “Codesearchnet challenge: Evaluating
the state of semantic code search,” arXiv preprint arXiv:1909.09436,
2019.

[32] C. McMillan, M. Grechanik, and et.al, “Portfolio: finding relevant
functions and their usage,” in 33rd ICSE, 2011, pp. 111–120.

[33] M. M. Rahman and C. K. Roy, “Effective reformulation of query
for code search using crowdsourced knowledge and extra-large data
analytics,” in 2018 IEEE,ICSME, 2018, pp. 473–484.

[34] F. Zhang, H. Niu, and et.al, “Expanding queries for code search using
semantically related API class-names,” IEEE Trans. Software Eng.,
vol. 44, no. 11, pp. 1070–1082, 2018.

[35] L. Mou, R. Men, and et.al, “On end-to-end program generation from
user intention by deep neural networks,” CoRR, vol. abs/1510.07211,
2015.

