
Controllable Question Generation via
Sequence-to-Sequence Neural Model with Auxiliary

Information
Zhen Cao

School of EEE
Nanyang Technological University

Singapore
caoz0008@e.ntu.edu.sg

Sivanagaraja Tatinati
School of EEE

Nanyang Technological University
Singapore

tatinati@ntu.edu.sg

Andy W. H. Khong
School of EEE

Nanyang Technological University
Singapore

andykhong@ntu.edu.sg

Abstract—Automatic question generation (QG) has found ap-
plications in the education sector and to enhance human-machine
interactions in chatbots. Existing neural QG models can be
categorized into answer-unaware and answer-aware models. One
of the main challenges faced by existing neural QG models
is the degradation in performance due to the issue of one-to-
many mapping, where, given a passage, both answer (query
interest/question intent) and auxiliary information (context infor-
mation present in the question) can result in different questions
being generated. We propose a controllable question generation
model (CQG) that employs an attentive sequence-to-sequence
(seq2seq) based generative model with copying mechanism. The
proposed CQG also incorporates query interest and auxiliary
information as controllers to address the one-to-many mapping
problem in QG. Two variants of embedding strategies are
designed for CQG to achieve good performance. To verify
its performance, an automatic labeling scheme for harvesting
auxiliary information is first developed. A QG dataset is also
annotated with auxiliary information from a reading compre-
hension dataset. Performance evaluation shows that the proposed
model not only outperforms existing QG models, it also has the
potential to generate multiple questions that are relevant given
a single passage.

Index Terms—question generation, deep learning, seq2seq, one-
to-many, natural language processing

I. INTRODUCTION

Over the past decade, automatic question generation (QG)
has gained profound interest in a wide variety of applications
including the creation of question-answering datasets [1], [2],
generation of practice questions for e-learning platforms [3]–
[5], and that of chatbots [6]. Achieving effective QG, however,
requires a thorough understanding of a given passage before
generating relevant and answerable questions.

An end-to-end sequence-to-sequence (seq2seq) approach
that leverages on deep learning techniques has recently been
proposed for QG in order to address issues associated with
conventional rule-based QG technique [7]. Despite being capa-
ble of generating questions with the neural models, most of the
generated questions are neither accurate nor answerable. This
is due to the fact that, in a human setting, question generation
is a one-to-many mapping task, i.e., given a passage (as input)
the asker may generate a number of questions with variations

Fig. 1. Question formulation is controlled by query interest and auxiliary
information.

in either answers, structure, or nature of the question. Figure 1
shows an example of four possible questions that can be
derived from a given passage.

Due to the above one-to-many mapping problem, deep
learning techniques, which are primarily designed for learning
one-to-one mapping, yields limited performance. To address
ambiguities brought about by the diverse set of possible
answers, answer-aware QG models have been developed.
Despite these models outperforming answer-unware QG mod-
els [8]–[10], the one-to-many mapping problem still exist since
questions can also be asked in different ways based on the
context that is chosen to form specific questions. For instance,
while both questions “Where was Disney’s first successful
film released?” and “Where was Mickey Mouse released?”
are valid (and share the same answer), these two questions
are constructed via two different auxiliary information —
“Disney’s first successful film” and “Mickey Mouse”. This
illustrative example also highlights the potential of using
auxiliary information to increase the specificity of generated
questions.

In the context of QG, auxiliary information is defined as the
semantic content bearing practical information that flows from
the source passage to the target question for the formation of
a characteristic utterance [11]. Therefore, asking a question
given a passage and an answer is a one-to-many mapping

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

task since different questions can be posed depending on a
given auxiliary information. The use of auxiliary information
to generate a variety of questions (with the same answer) has
several promising applications. For instance, in the design of
assessment questions, instructors may wish to prepare different
questions for learners within the same topic-of-interest [12]–
[14]. In addition, multiple generated questions can enhance
diversity when building question-answering datasets, and such
diversity can be exploited to train more robust question an-
swering models with better generalization.

As opposed to existing works that do not take auxiliary
information into account, we propose a neural model based
on auxiliary information and answer information to generate
a variety of questions given a passage. This proposed paradigm
is named as the controllable question generation (CQG) tech-
nique. This technique employs seq2seq with attention [15]
and copying mechanism [16] to encode a passage, an answer
and any auxiliary information, and to decode the question.
We propose two variants of input representation layers that
incorporate answer and auxiliary information with different
embedding techniques to increase specificity of the generated
questions. To further enrich features for encoding, linguistic
features including word case, part-of-speech (POS) and named
entity tags (NER) are provided to the encoder. The proposed
CQG technique is evaluated on the SQuAD dataset annotated
with auxiliary information. Results highlight that encoding
auxiliary information significantly improves the question gen-
eration accuracy.

II. RELATED WORK

Neural network models for QG offer an end-to-end solution
that is data-driven and does not rely on hand-crafted rules.
Existing neural QG models employ attentive seq2seq model
that reads the input text via an encoder before generating the
question sequentially via a decoder [1], [7]–[9], [17]–[19]. A
technique that learns factual embedding for logic triples before
generating question via an attentive gated recurrent unit (GRU)
decoder has been proposed [1], while the algorithm presented
in [7] generates questions from passages by learning passage-
to-question mapping via a seq2seq model with attention mech-
anism.

It is useful to note, however, that given an input passage,
multiple questions can be generated depending on query
interests pertaining to the passage. Therefore, QG is a one-
to-many mapping task and purely relying on a seq2seq model
may not result in good performance [20]. To address this
problem, recent works exploit a given query of interest (e.g.,
answer), and such a model is enriched with an embedding that
incorporates an answer position indicator and copying mech-
anism to copy out-of-vocabulary (OOV) words from the input
passage to generate questions [8]. A separate encoder was used
to read the answer before fusing with the passage information
for question generation [21]. To address challenges associated
with generating questions from a long text, a seq2seq model
with gated attention encoder and a maxout pointer decoder
has been proposed [18]. In addition, target answer in the

Fig. 2. Automatic labeling scheme for extracting auxiliary information.

input passage has been replaced by a token to avoid words
from answers being included in the generated questions [10].
A multi-task learning strategy to identify whether a question
word should be copied from the input passage or be generated
with an overlap between input passage and output question has
also been proposed [9].

III. METHODOLOGY

Let P,Q,A, I denote a passage, the question to be gen-
erated, answer and auxiliary information, respectively. Both
P = (p1, p2, p3, ..., p|P |) and Q = (q1, q2, q3, ..., q|Q|) are
sequences of an arbitrary length, where pi and qi denote a
word at position i of the sentence or paragraph and question,
and |P |, |Q| are the number of words in P and Q, respectively.
The QG task is defined as that of generating the most probable
question Q̂ conditioned on P , A and I , i.e.,

Q̂ = argmax
Q

Prob(Q|P,A, I). (1)

It is important to note that both the answer and auxiliary
information are subset of the given input passage.

A. Dataset Creation

The SQuAD dataset [22] contains more than 100,000
questions and, to the best of our knowledge, there exists
no dataset with quadruplets that include passage, question,
answer, and auxiliary information. As such, we first define
rules for extracting the auxiliary information given the triplets
comprising input passage, question, and answer. These rules
are derived in accordance to the structure of the question, and
auxiliary information in QG should satisfy all the following
criteria:
• semantic content carrying practical information;
• occurs in both source passage and target question; and
• must not overlap with words from the provided answer.
To extract auxiliary information for each data point in the

SQuAD dataset, the labeling scheme depicted in Fig. 2 is
implemented. Given a passage-question pair in the dataset

Fig. 3. The proposed controllable question generation (CQG) model, where LF, CF are linguistic and controller features, respectively.

(such as SQuAD), each overlapping word that appears in both
passage and question is first identified. From all the identified
words, content word—typically a noun, verb, adjective, or
adverb—that carries semantic content bearing reference to the
world independently of its use within a particular sentence will
be retained. Each content word is identified via POS tagging.
Heuristically, words with POS “ADJ”, “ADV”, “NOUN”,
“NUM”, “PROPN” or “VERB” are selected as content word.
In the “VERB” tagged content words, all words corresponding
to auxiliary verb (e.g., be, do) [23] are rejected since these
words can only provide functional or grammatical meaning
to the main verb, and they possess minimal or no semantic
content. In addition, if the identified content word is labeled
as the named entity in the source passage, the named entity
is regarded as auxiliary information. The underlying rationale
is that context information may be rephrased while posing a
question. Therefore, some of the shared semantic content may
be missed if one is to limit only to the identical words that
only occur in both the passage and question. Otherwise, if the
identified content word is not a named entity, the overlapping
content words are themselves regarded auxiliary information.

B. Input Representation Layer

With reference to Fig. 3, the architecture of the proposed
CQG technique comprises an input representation layer, a
feature-rich encoder and a copy-enhanced decoder. The pro-
posed model employs three sets of tokens as the source—
input passage, answer and auxiliary information. For a given
passage, the answer and auxiliary information control what
question should be generated such that the former decides
the question type (e.g. what, when, where), while the latter
determines the specificity of the expected question. Therefore,
both the answer and auxiliary information are regarded as
controllers CA and CI , respectively.

In this work, we designed a “Y/N” (Yes/No) tagging strategy
to the input passage where a word is tagged with a “Y” if it
is part of the answer CA or auxiliary information CI . We
propose two variants of embedding strategies to incorporate
CA and CI information:

• Strategy 1: For passage P , the tag set {YA, YI , N}
is applied to mark each word pi in a passage, where
pi is tagged with YA if it is part of CA, while words
belonging to CI are marked with YI , and N represents
common words. Therefore, a sequence of YA, YI , N is
obtained to represent what the word at each position is
in terms of controllers. This concept is illustrated in the
left-most portion of Fig. 3 described by the controller
feature (CF) column. A controller embedding matrix is
then employed to map each tag as a real-valued vector.
For the ith position in a passage P , the tag is mapped
to controller embedding wc

i . This method makes use of
the fact that there is no overlap between answer A and
auxiliary information I .

• Strategy 2: Two separate tag sets {YA, N} and {YI , N}
are employed to represent the word at each position. Here,
YA is defined for the word that is being part of CA and YI
is the tagger of words belonging to CI . The CA and CI

embedding matrices are employed to map two groups of
taggers into real-valued vectors independently. Thereafter,
two vectors at each position are concatenated to obtain
controller embedding vci .

Along with the above controller tagging, each word in the
passage is also represented by its linguistic features. For each
word in P , feature vectors corresponding to that word and the
word vector are concatenated to form a full vector. Each word
pi in the passage is subsequently mapped into a real-valued
vector vwi via a word embedding matrix Wword ∈ Rdw×|V |,
where dw is the dimension of word embedding, V is a fixed
vocabulary and |V | denotes the number of most-frequent
words in the training set. The word embedding matrix is
initialized by pre-trained Glove embedding [24], and the out-
of-vocabulary words are represented with an OOV token.
In addition, word case, POS and NER tags are selected as
linguistic features. Similarly, each linguistic feature is mapped
to a real-valued vector through an embedding matrix, followed
by concatenation to form linguistic features embedding vli
for each position in the passage. Finally, word embedding,
controller embeddings and linguistic features embedding are

concatenated to obtain the final word representation, given as

vi =
[
vwi , v

c
i , v

l
i

]
. (2)

C. Feature-Rich Encoder

With the input representation layer, input passage
(p1, p2, p3, ..., p|P |) is converted into a sequence of vectors
(v1, v2, v3, ..., v|P |). A bidirectional GRU (Bi-GRU) is em-
ployed to encode the feature-rich input vectors as a sequence
of hidden states (e1, e2, e3, ..., e|P |). These states are regarded
as the contextualized representations of the input passage.
Each hidden state et is obtained by concatenating the forward
and backward hidden states as

−→e t =
−−−→
GRU(vt,

−→e t−1), (3)
←−e t =

←−−−
GRU(vt,

←−e t+1), (4)
et = [−→e t;

←−e t], (5)

where vt, −→e t and ←−e t are the input word representation, the
forward and backward hidden states of the tth token in P ,
respectively.

D. Copy-enhanced decoder

In the decoding stage, a GRU with copying mechanism is
employed to generate question words one at a time based
on the contextualized representations and the prior decoded
question word. At the decoding time step t, the decoder GRU
computes the hidden state using

dt = GRU([vwt−1, ct−1], dt−1), (6)

where dt−1, vwt−1, ct−1 are the previous hidden state, previous
word embedding and previous context vector, respectively.

The context vector ct is computed through the additive
attention mechanism [15] given by

st,i = kTtanh(Wddt +Weei), (7)

at,i =
exp (st,i)∑
j exp (st,j)

, (8)

ct =
∑

i=1,...,|P |

at,iei, (9)

where kT, Wd and We are vector and matrices to be learned.
Therefore, the probability distribution over the decoder vocab-
ulary is given by

rt = W c
r ct +W d

r dt +Ww
r v

w
t−1, (10)

p(t) = softmax(Wort), (11)

where W c
r , W d

r , Ww
r and Wo are weight matrices to be

learned. Instead of using p(t) for training/generating with
the fixed vocabulary, copying words from the source passage
is also considered via the copying mechanism [16]. At the
decoding time step t, the gate switch probability gt of copying
a word from source sentence (instead of generating a word
from the vocabulary) is given by

gt = σ(W c
g ct +W d

g dt), (12)

TABLE I
HARVESTING STATISTICS OF AUXILIARY INFORMATION (I)

Item train set development set test set
Original numbers 86,635 8,965 8,964

Missing I numbers 4,207 426 454
Missing I rate 4.86% 4.75% 5.06%

where σ is sigmoid function, W c
g , W d

g are the learnable
matrices. The “copy” probability distribution Pcop over the
input word is obtained from (8), where the computed attention
weight ai is regarded as the probability of ith word to be
copied. We note that the “generating” probability distribution
Pgen over the vocabulary is computed using (11). Therefore
the final probability Pf distribution over the dynamic vocab-
ulary (i.e., union of original vocabulary and input passage
vocabulary) is computed using

Pf = gtPcop + (1− gt)Pgen. (13)

IV. EXPERIMENTS

A. Dataset and Data Pre-processing

SQuAD is one of the largest reading comprehension datasets
derived from Wikipedia with over 100,000 questions. Since
the original test set is not publicly available, the development
set of SQuAD is randomly split into a development and
a test set of equal size. In this work, 82,428 train, 8,539
development and 8,510 test sets comprising sentence-answer-
auxiliary information-question samples are harvested. Statis-
tical information pertaining to auxiliary information (that has
been extracted via the automatic labelling scheme shown in
Fig. 2) is listed in Table I. Auxiliary information is labelled
for most of the original samples. This verifies the practicality
of the automatic labeling scheme and that there is information
dependency between the source passage and the target question
in QG.

Before performing experiments on the modified SQuAD
dataset, the following pre-processing tasks are performed:
• SpaCy [25] is used to extract linguistic features (POS,

NER, word case) for each instance;
• Each word in a sequence is converted to lowercase;
• Tokens SOS and EOS are added to all questions to signify

the start and end of question, respectively.

B. Experiment Setup

All the models in this work are implemented in PyTorch
0.4.1 and trained with an Nvidia GTX 1080Ti. For the vo-
cabulary V , the 20,000 most-frequent tokens in the training
set are kept. All other tokens outside the vocabulary are
replaced by an UNK symbol. Dimension of word embed-
ding is set to 300 and word embeddings are initialized by
glove.840B.300d pre-trained word vectors. Words that
are not contained in GloVe but in the vocabulary are initialized
randomly. The controller features are embedded as sixteen-
dimensional vectors, and linguistic features including POS,
NER, lower case are embedded as eight-dimensional vectors.

TABLE II
EVALUATION RESULTS OF DIFFERENT MODELS BY BLEU 1–4, METEOR AND ROUGE-L

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Learn2Ask∗ [7] 43.09 25.96 17.50 12.28 16.62 39.75

NQG++ [8] - - - 13.27 - -
s2sa-at-mp-gsa [18] 44.51 29.07 21.06 15.82 19.67 44.24

ASs2s [10] - - - 16.17 - -
CGC-QG [9] 46.58 30.90 22.82 17.55 21.24 44.53

CQG1 52.90 36.13 26.79 20.56 24.85 49.56
CQG2 54.88 38.50 29.00 22.48 26.09 52.28

CQG1+L 52.96 36.34 27.04 20.75 24.85 49.98
CQG2+L 54.97 38.80 29.42 22.97 26.30 52.60

A single-layer Bi-GRU and GRU of hidden size 300 are
used for feature-rich encoder and copy-enhanced decoder,
respectively. Dropout with a probability of 0.3 is applied to
the models. Hyperparameters are selected by grid search and
by comparing with results in the development set.

During training, cross-entropy loss function for question
generation is optimized via Adam [26] with a learning rate
of 1× 10−3 and two momentum parameters of 0.8 and 0.999.
In addition, optimization is performed across a mini-batch
of thirty-two samples and gradient clipping is utilized when
gradient norm exceeds 5. During testing, beam search with a
beam size of 3 is performed and decoding stops when EOS
token that represents the end of sentence is generated. Model
parameters are obtained from the best performing model on
the development set and its performance is reported on the test
set.

C. Evaluation Metrics

All QG models are evaluated with BLEU-n [27], METEOR
[28] and ROUGE-L [29]. BLEU measures the overlap of n-
gram words between the generated question and the reference
at the corpus level, where 1 ≤ n ≤ 4. METEOR is based
on the precision of uni-gram taking synonyms, stemming and
paraphrases into account, while ROUGE-L measures the recall
of how word in reference questions appear in generated ques-
tions based on longest common sub-sequence (LCS) based
statistics. Higher scores denote better generation quality for
all metrics.

D. Baselines and CQGs

The baseline neural QG models chosen for comparison with
the proposed CQG methods are:
• Learn2Ask which is the first neural question generation

model that employs attention-based seq2seq model to
map a passage to a question [7];

• NQG++ which is a seq2seq model with an encoder that
incorporates answer, POS and NER information [8];

• s2sa-at-mp-gsa which contains a gated attention encoder
and a maxout pointer decoder to address challenges
associated with processing long text inputs [18];

• ASs2s which employs two encoders to learn the feature
of answer span and the remainder of the passage sepa-
rately [10];

• CGC-QG which is a seq2seq model with an encoder to
merge rich features including linguistic information and
model generated clue word information [9].

Several variants of the proposed CQG technique are evaluated:

• CQG1 which is a seq2seq model with both controllers
being embedded in the same feature space (Strategy 1);

• CQG2 which is similar to CQG1 except that controllers
are embedded in two different feature spaces (Strategy
2);

• CQG1+L which is CQG1 with linguistic features being
added;

• CQG2+L which is CQG2 with linguistic features being
added;

• CQG-I where the best model of the aforementioned CQG
models is chosen and hereafter named as CQG. In this
variant, auxiliary information I is removed from CQG;

• CQG-A where answer information A is removed from
CQG.

E. Comparison with Baselines

Table II lists the performance of all QG models (evalu-
ated on the SQuAD dataset) in terms of various evaluation
metrics. Baselines can be categorized into two types, namely
answer-unaware QG models (annotated by ∗ in Table II) and
answer-aware QG models. Compared with baselines, CQG
models outperform existing models across all metrics; CQG1
surpasses state-of-the-art system CGC-QG by 17.2%, 17.0%
and 11.3% in terms of BLEU-4, METEOR and ROUGE-
L, respectively. Compared to CQG2+L, the performance im-
provement increases to 30.9%, 23.8% and 18.1%, for BLEU-
4, METEOR and ROUGE-L, respectively. These results affirm
that the proposed model which takes both answer and auxiliary
information into account can better model QG. This improve-
ment in modeling is due to the fact that providing answers
addresses the first-level one-to-many issue (by highlighting
the intention of the generated question), while the introduction
of the auxiliary information handles the second-level one-to-
many issue (by identifying context information that enhances
specificity of the generated question).

These results further show that models with linguistic fea-
tures exhibit modestly higher performance than models that do
not consider linguistic information. This is because linguistic

TABLE III
NUMBER OF DIFFERENT TYPES IN EACH LINGUISTIC FEATURE AND

NUMBER OF DIFFERENT WORDS

feature word case POS NER word
number 2 50 18 20,000

feature embedding represents each token from different as-
pects. In addition, the number of different linguistic features
is far smaller than the number of different words (vocabulary
size) as shown in Table III. Therefore, it is less challenging to
learn patterns from linguistic feature than the word embedding.
Although a well-trained word vector may contain information
pertaining to linguistic features (such as POS or NER), explic-
itly concatenating these feature embedding vectors can assist
the model by capturing patterns to generate a question more
easily.

It is useful to note that the proposed CQG2+L model, which
incorporates controller information in two separate feature
spaces and takes linguistic features into account, achieves
the best performance across all metrics. In addition, CQG2
outperforms CQG1 by 9.3%, 5.0% and 5.5% in terms of
BLEU4, METEOR and ROUGE-L, respectively. The fact that
CQG1+L performs worse than CQG2+L across all metrics
confirms the advantage of Strategy 2. This is expected since
it is more challenging for the model to differentiate two
controllers information when embedding them within a single
feature space. Furthermore, incorporating controller informa-
tion within two separate feature spaces occupies twice the
embedding dimension than in a single feature space resulting
in better learning.

F. Ablation tests analysis

Two ablation tests are performed to evaluate the impact of
incorporating answer information and auxiliary information
in CQG and results are tabulated in Table IV. Without the
auxiliary information, the performance of CQG-I is reduced
significantly by 9.14, 7.52, and 10.62 in terms of BLEU-4,
METEOR and ROUGE-L, respectively. This result is expected
and is consistent with that report in [8], [18] since QG models
encounter difficulty in modeling semantic content within the
passage that otherwise would have been exploited to generate
the question.

To highlight the effect of removing query interest, CQG
model is trained without answer information in this ablation
test. It is interesting to note that while the performance of
CQG-A is reduced by 1.89, 1.38, and 2.19 in terms of BLEU-
4, METEOR and ROUGE-L, respectively, it still outperforms
the state-of-art as presented in [9]. This enhanced performance
may be attributed by the fact that additional information
arising from auxiliary information is significantly substantial
compared to the answer, and that auxiliary information en-
hances the specificity of the question.

TABLE IV
EVALUATION RESULTS OF ABLATION TESTS

Model BLEU4 METEOR ROUGE-L
CQG 22.97 26.30 52.60

CQG-I 13.83 18.78 41.98
CQG-A 21.08 24.92 50.41

V. CONCLUSION

We present results highlighting that QG is, in essence, a
two-level one-to-many mapping task. We propose an end-to-
end neural framework CQG to model question generation from
a passage controlled by query interest and auxiliary informa-
tion. An automatic auxiliary information labeling scheme is
developed to harvest a QG dataset to verify the proposed tech-
nique. Experiment results show that our framework improves
the performance of question generation and outperforms ex-
isting neural QG models.

ACKNOWLEDGMENT

This work was conducted within the Delta-NTU Corporate
Lab for Cyber-Physical Systems with funding support from
Delta Electronics Inc. and the National Research Founda-
tion(NRF) Singapore under the Corp Lab@University Scheme.

REFERENCES

[1] I. V. Serban, A. Garcı́a-Durán, C. Gulcehre, S. Ahn, S. Chandar,
A. Courville, and Y. Bengio, “Generating factoid questions with re-
current neural networks: The 30M factoid question-answer corpus,” in
Proc. Assoc. Comput. Linguistics, 2016, pp. 588–598.

[2] X. Du and C. Cardie, “Harvesting paragraph-level question-answer pairs
from Wikipedia,” in Proc. Assoc. Comput. Linguistics, 2018, pp. 1907–
1917.

[3] M. Heilman and N. A. Smith, “Good question! Statistical ranking for
question generation,” in Proc. Human Lang. Technologies: Annu. Conf.
North American Chapter Assoc. Comput. Linguistics, 2010, pp. 609–
617.

[4] M. Heilman, “Automatic factual question generation from text,” Ph.D.
dissertation, Carnegie Mellon University, 2011.

[5] D. Lindberg, F. Popowich, J. Nesbit, and P. Winne, “Generating natural
language questions to support learning on-line,” in Proc. Eur. Workshop
Natural Lang. Gener., 2013, pp. 105–114.

[6] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He, and L. Vander-
wende, “Generating natural questions about an image,” in Proc. Annu.
Meeting Assoc. Comput. Linguistics, 2016, pp. 1802–1813.

[7] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural question
generation for reading comprehension,” in Proc. Annu. Meeting Assoc.
Comput. Linguistics, 2017, pp. 1342–1352.

[8] Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, “Neural
question generation from text: A preliminary study,” in Proc. Nat. CCF
Conf. Natural Lang. Proc. and Chin. Comput., 2017, pp. 662–671.

[9] B. Liu, M. Zhao, D. Niu, K. Lai, Y. He, H. Wei, and Y. Xu, “Learning
to generate questions by learning what not to generate,” in Proc. World
Wide Web Conf., 2019, pp. 1106–1118.

[10] Y. Kim, H. Lee, J. Shin, and K. Jung, “Improving neural question
generation using answer separation,” in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 6602–6609.

[11] E. Lepore and B. C. Smith, The Oxford Handbook of Philosophy of
Language. Oxford University Press, 2009.

[12] N. R. Council et al., Learning and understanding: Improving advanced
study of mathematics and science in US high schools. National
Academies Press, 2002.

[13] S. Supraja, K. Hartman, S. Tatinati, and A. W. H. Khong, “Toward the
automatic labeling of course questions for ensuring their alignment with
learning outcomes,” in Proc. Educational Data Mining, 2017, pp. 56–63.

[14] S. Supraja, S. Tatinati, K. Hartman, and A. W. H. Khong, “Automatically
linking digital signal processing assessment questions to key engineering
learning outcomes,” in Proc. IEEE Intl. Conf. Acoust., Speech, Signal
Process., 2018, pp. 6996–7000.

[15] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2015, pp. 1412–1421.

[16] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the
unknown words,” in Proc. Annu. Meeting Assoc. Comput. Linguistics,
2016, pp. 140–149.

[17] L. Song, Z. Wang, W. Hamza, Y. Zhang, and D. Gildea, “Leveraging
context information for natural question generation,” in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguistics: Human Lang. Tech-
nol., 2018, pp. 569–574.

[18] Y. Zhao, X. Ni, Y. Ding, and Q. Ke, “Paragraph-level neural question
generation with maxout pointer and gated self-attention networks,” in
Proc. Conf. Empirical Methods Natural Lang. Process., 2018, pp. 3901–
3910.

[19] X. Sun, J. Liu, Y. Lyu, W. He, Y. Ma, and S. Wang, “Answer-focused
and position-aware neural question generation,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2018, pp. 3930–3939.

[20] Y. Gao, L. Bing, W. Chen, M. Lyu, and I. King, “Difficulty controllable
generation of reading comprehension questions,” in Proc. Int. Joint Conf.
Artif. Intell., 2019, pp. 4968–4974.

[21] W. Hu, B. Liu, J. Ma, D. Zhao, and R. Yan, “Aspect-based question gen-
eration,” in Proc. Int. Conf. Learning Representations, (ICLR) Workshop
Track, 2018.

[22] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2016, pp. 2383–2392.

[23] P. W. Culicover, Natural language syntax. OUP Oxford, 2009.
[24] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for

word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2014, pp. 1532–1543.

[25] M. Honnibal and I. Montani, “spacy 2: Natural language understanding
with bloom embeddings, convolutional neural networks and incremental
parsing,” To appear, 2017.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learning Representations, ICLR, 2015.

[27] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proc. Annu. Meeting
Assoc. Comput. Linguistics, 2002, pp. 311–318.

[28] M. Denkowski and A. Lavie, “Meteor universal: Language specific
translation evaluation for any target language,” in Proc. Workshop on
Statistical Mach. Transl., 2014, pp. 376–380.

[29] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Proc. Text Summarization Branches Out, 2004, pp. 74–81.

