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Abstract—In recent times deep neural networks have become
very successful in solving traditionally hard problems in Com-
puter Vision such as Object Detection. This is due to their
ability to find hidden patterns in high dimensional data such
as images. But if there is a known structure within data that
can be accurately represented by a pre-defined model, then by
merging this model based algorithm and deep neural network,
overall system accuracy can be increased. We apply this idea for
solving the task of flash lidar object detection and tracking.
Flash lidar is an emerging lidar sensing technology which is
getting a lot of attention lately due to their lack of moving parts
compared to prevalent scanning lidars. Samples from flash lidar
suffer from both spatial and temporal noise which coupled with
low angular resolution and FoV lead to low accuracy in object
detection.
In this paper we present a data driven deep learning based
flash lidar object detector and tracker. To our knowledge, this is
the first work to use deep learning for flash lidar object detec-
tion/tracking. Our tracker has two detectors- 1. supervised object
detector and 2. unsupervised class agnostic foreground/moving
object detector which are merged to achieve multi-object tracking
accuracy of 47.9% on CAMEL dataset.

Index Terms—Flash Lidar, Object Detection, Object Tracking

I. INTRODUCTION

Lidar cameras are being increasingly used in autonomous
systems to create a 3D map of the world around. Most com-
mon lidars used in both academic research and AV industry
are scanning lidars, especially Velodyne HDL-64 [1], which
has fine angular resolution and 360◦ FoV. While such scanning
lidars are very effective for creating accurate 3D point clouds,
they are not ideal for long life and real-time applications due to
presence of moving parts such as vertical sensor array which
affect durability and fps. In order to address these concerns,
there has been interest towards flash lidars [2], which operate
on time-of-flight principle and do not have moving mechanical
parts. Real-time tracking of objects is a critical computer
vision task in many autonomous systems. Consequently, there
is a strong interest in developing object tracker for flash lidar
data. While there have been many works on object tracking
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Fig. 1. Sample Image from extended CAMEL dataset. RGB Image(Top) has
been cropped to cover area of intersection between FoVs of RGB camera and
flash Lidar. Flash lidar Image with intensity channel is shown in middle row
and depth channel in bottom row. Subjects of interest such as car, van and
person are annotated in flash lidar image.

based on scanning lidars [3], [4], there are relatively few works
on flash lidars [5] [6].
Many state-of-the-art object detectors are based on tracking-
by-detection. Prior work on flash lidar object detection and
tracking [5] [6], use 3D point clustering with prior object
model to detect objects of specific domain such as person
or drogue(part of an aircraft). This static nature of object
model makes it difficult to extend these techniques to be used
ubiquitously across multiple object categories in real-world
scenarios. A data-driven deep learning based object detector
for flash lidar can overcome this challenge. But due to low an-
gular resolution and noise in flash lidar, feature quality is bad,
creating a challenge for using deep learning based detector.
Hence, to successfully track objects of multiple categories in
a flash lidar mode, we need to develop a data-driven detection
technique that is robust to inherent shortcomings of the sensor.
This paper, for the first time, to the best of our knowledge,

presents a data driven deep learning based object detector and
tracker operating on a flash lidar. The underlying hypothesis of
our approach is that when detection accuracy is low, relying on
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a single detection algorithm will lead to low tracking accuracy.
Hence, we propose to use multiple detection algorithms to
infer state of a target to enhance tracking accuracy in flash
lidar. The additional algorithm does not depend on the same
features as primary detector and does not add excessive
computational overhead. In particular the paper makes the
following key contributions:

• We present a Detection and Tracking of Multiple Objects
(DATMO) system for flash lidar that hybridizes super-
vised and un-supervised deep learning with model-based
computer vision to improve tracking accuracy.

• We present a fully supervised deep-learning based base-
line object detector for flash lidar.

• We develop an unsupervised method to create fore-
ground/moving object mask. We first present a model-
based approach for unsupervised detection; which is next
used to self-supervise a full convolutional network(FCN)
to develop a reduced complexity detector.

• We develop a tracking approach that improves accuracy
by merging outputs from both supervised and unsuper-
vised modules during ambiguity between tracker and
detector.

Our system was evaluated on CAMEL [7] muti-spectral
dataset which contains over 8000 flash lidar images collected
from 13 sequences. We observe that by adding model-based
foreground object detector to our DATMO system, tracking
accuracy improves by 9.6% over a detector based only on
a Deep Neural Network(DNN), however computational load
increases from 0.08 GFLOPs to 0.43 GFLOPs. Replacing
model-based foreground detector with self-supervised FCN,
computational load reduces to 0.26 GFLOPs but we also
observe a decrease in accuracy.

II. DATASET

Popular datasets with lidar data e.g. KITTI [1], APOLLO
[8], nuScenes [9] capture scenes for AV using Velodyne
HDL-64 scanner. Such detectors cannot be directly ported to
flash lidars which have different angular resolution, operating
wavelength, FoV etc. Therefore, we extended CAMEL [7]
multi-spectral dataset by adding flash lidar data. This dataset
has scenes of traffic and cluttered urban scenes with heavy
pedestrian traffic.
The lidar data was captured from an ASC Peregrine Flash
Lidar, operating laser wavelength is 1570 nm and has a
maximum frame rate of 25 fps. It has an FoV of 30◦ azimuth
and 7.5◦ elevation, frame rate of capture was 5-10 fps.
Lidar frames were annotated using CVAT [10] annotation
tool. There are 5 classes annotated- person, car, van, bus,
and bike. This dataset contains 8,282 annotated frames, out
of which 6,876 frames are in training data and 1,406 frames
are in validation data. We collected 13 sequences containing
374 unique tracks acquired from urban campus environments.
Sample image from extended CAMEL dataset is shown in
Figure 1.
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Fig. 2. System architecture of proposed DATMO system

III. PROPOSED FLASH LIDAR DATMO SYSTEM

A. Overall System Architecture

Most existing single modality trackers use object detector
as their only source of input for creating and updating new
tracklets. This limits performance of tracking as it is limited
by accuracy of object detector. We propose hybrid detection
system that judiciously integrates multiple detection sources
to enhance tracking accuracy (Figure 2). We first design a
supervised object detector by adapting existing DNN-based
object detector architecture for flash lidar dataset. We next
design two class agnostic unsupervised foreground/moving
object detectors using model-based vision algorithms and fully
convolutional networks. Finally, we develop a tracking system
that couples the detection from two different detectors. These
multiple sources of detection help tracker to confirm or reject a
hypothesis during periods of ambiguity and improve accuracy
by a significant margin over single detector system.

B. Supervised Object Detector

For object detection we created a real time CNN based
object detection network. Similar to SSD [11] and YOLO
[12], we created an FCN with route connections, and then
added 2 object regression layers at different depths (YOLO
Layers in figure 3) to capture objects with different sizes.
The choice of hyper-parameters and network parameters was
obtained via grid search. Unlike SSD, which has 6 object
regression layers, our architecture has 2 object regression
layers (similar to YOLO) because the dimension of flash lidar
image (32x128) is much smaller than typical RGB image
(greater than 300x300) and we observed 2 YOLO layers are
sufficient to detect objects of different sizes. Our supervised
network has 25 layers with 102,460 parameters and has a
computational cost of 0.08 GFLOPS. Network architecture
of this object detector is shown in Figure 3 and detailed
layer-wise parameter distribution is shown in Table I. This
network was trained for 50 epochs with initial learning rate
set to 0.01 and decayed by factor of 10 at epochs 20, 30 and
40. Sample outputs of supervised object detector are shown
in Figure 4. Source code and training data for this network
is available at- https://gitlab.com/deepsamal/flash-lidar-object-
detection-and-tracking.

C. Unsupervised Object Detection

In addition to the supervised object detector, we created
two unsupervised object detectors which do not depend on



Fig. 3. Network Architecture of Supervised Object Detector.

Layer # Layer Type No. of Parameters Size
0 Conv weight 576 [32, 2, 3, 3]
1 Batch Norm weight 32 [32]
2 Batch Norm bias 32 [32]
3 Conv weight 9216 [32, 32, 3, 3]
4 Batch Norm weight 32 [32]
5 Batch Norm bias 32 [32]
6 Conv weight 9216 [32, 32, 3, 3]
7 Batch Norm weight 32 [32]
8 Batch Norm bias 32 [32]
9 Conv weight 2048 [64, 32, 1, 1]

10 Batch Norm weight 64 [64]
11 Batch Norm bias 64 [64]
12 Conv weight 18432 [32, 64, 3, 3]
13 Batch Norm weight 32 [32]
14 Batch Norm bias 32 [32]
15 Conv weight 960 [30, 32, 1, 1]
16 Conv bias 30 [30]
17 Conv weight 4096 [64, 64, 1, 1]
18 Batch Norm weight 64 [64]
19 Batch Norm bias 64 [64]
20 Conv weight 55296 [64, 96, 3, 3]
21 Batch Norm weight 64 [64]
22 Batch Norm bias 64 [64]
23 Conv weight 1920 [30, 64, 1, 1]
24 Conv bias 30 [30]

TABLE I
NETWORK LAYER DETAILS OF SUPERVISED NETWORK (LEARNABLE

PARAMETERS ONLY)

Fig. 4. Output of Supervised Object Detector(Right column). RGB Im-
ages(Left column) are for reference only

Fig. 5. Flash lidar range image(top). Foreground mask predicted by spatio-
temporal foreground detector(bottom)

the same architecture or training method as that of supervised
detector.
Spatio-Temporal Object Mask: We use ground removal
[13] followed by DBSCAN clustering [14] on point cloud
generated from depth map to create object candidates. This
clustering algorithm is robust against noisy and low density
data. Using local convexity criterion for clustering [13] is not
optimal here as quality of neighborhood graph will suffer due
to low angular resolution. After DBSCAN clustering, all points
belonging to dominant clusters are projected back on depth
map to create a spatial saliency map.
We use a Mixture of Gaussian (MOG) based background
subtraction [15] to create temporal saliency map. This mask is
noisy as MOG uses per pixel statistics to create a background
model, and flash lidar images contain substantial amount of
random noise.
Finally we combine both spatial and temporal saliency maps
by selecting spatial clusters which have large number of
moving points to create a spatio-temporal object mask. Figure
5 shows output of this algorithm, here detected foreground
pixels are highlighted in green. Architecture diagram of this
module is shown in figure 6.
While this method helps in creating good quality foreground
object masks, computational cost is high due to O(N2) ‘3D



Layer # Layer Type No. of Parameters Size
0 Conv weight 576 [32, 2, 3, 3]
1 Batch Norm weight 32 [32]
2 Batch Norm bias 32 [32]
3 Conv weight 9216 [32, 32, 3, 3]
4 Batch Norm weight 32 [32]
5 Batch Norm bias 32 [32]
6 Conv weight 36864 [128, 32, 3, 3]
7 Batch Norm weight 128 [128]
8 Batch Norm bias 128 [128]
9 Conv weight 8192 [64, 128, 1, 1]

10 Batch Norm weight 64 [64]
11 Batch Norm bias 64 [64]
12 Conv weight 36864 [64, 64, 3, 3]
13 Batch Norm weight 64 [64]
14 Batch Norm bias 64 [64]
15 Conv weight 4096 [64, 64, 1, 1]
16 Conv bias 64 [64]
17 Conv weight 73728 [128, 64, 1, 1]
18 Batch Norm weight 128 [128]
19 Batch Norm bias 128 [128]
20 Conv weight 46080 [32, 160, 3, 3]
21 Batch Norm weight 32 [32]
22 Batch Norm bias 32 [32]
23 Conv weight 18432 [32, 64, 3, 3]
24 Conv bias 32 [32]
25 Batch Norm bias 32 [32]
26 Conv weight 64 [2, 32, 1, 1]
27 Conv bias 2 [2]

TABLE II
NETWORK LAYER DETAILS OF UNSUPERVISED FCN (LEARNABLE

PARAMETERS ONLY)

euclidean distance’ operations in ‘nearest neighbor search’
during clustering. For each frame, worst case number of
FLOPS in nearest neighbor search is 0.35 GFLOPs.
Self-Supervised FCN: We present a light weight FCN with
encoder-decoder architecture(System architecture in Figure 8)
to generate foreground object mask(Figure 7). Similar to U-
NET [16], this FCN has upconvolutional layers (convolutional
layer followed by nearest-neighbour upsampling layer) in
decoder to increase feature map size. Route connections that
concatenate feature maps from early stages with output of
later stages are added to retain small object and low level
information(detailed network architecture in Figure 9). This
network has 28 layers with 235,202 parameters (layer and
parameter details in Table II) consuming 0.26 FLOPS. Instead
of using labelled foreground mask, we use spatio-temporal
object mask generated by the model-based algorithm presented
in Section III-C as supervisory signal during training. This
strategy lets us train on unlabelled data. Training epochs,
learning rate and momentum of this network is same as
supervised network presented in Section III-B. Our FCN was
trained on 32,358 samples which is almost four times the
number of labelled samples in CAMEL dataset. This strategy
is similar to work presented by Pathak et. al. [17], which uses
motion as a pretext task to pre-train convolutional weights of
a supervised object detection network. However, their method
uses Non-Local Consensus voting [18] to create object mask
from RGB video which cannot be extended to streaming lidar
data.

D. Proposed Tracking Approach

Our tracking method is based on SORT [19] algorithm
which is a detection based tracker with linear velocity Kalman
filter as state predictor. At any given time-step, it takes detec-
tions from object detector and associates them with existing
tracklets using Hungarian Association. Cost matrix of this
hungarian association uses intersection-over-union of observed
bounding box and expected bounding box of existing tracklets.
The state of a tracklet in our system is modelled as:

x = [u v s r d u̇ v̇ ṡ ḋ]T (1)

Here, u and v represent horizontal and vertical position, s and
r represent scale and aspect ratio of the target’s bounding box,
d represents target depth.
Our baseline DATMO system has supervised object detector
as the only source of detection. This system has high false
negatives during tracking, as inconsistency in detector is
directly reflected in tracking.
Therefore, we merge detections from supervised detector with
foreground object mask generated from spatio-temporal mask
generator. This hybrid system refers to foreground mask when
there is an absence of detection from supervised detector at
predicted tracklet position. Figure 10 shows output of this
system. At time t=T, all tracklets are dependent on supervised
module for detection, but at t=T+1 and t=T+2, detection
for tracklet 30(green) is switched to foreground mask as
there is no corresponding detection from supervised detector.
Following are conditions for assuming supervised detector
made false negative when there is no corresponding detection
for a tracklet:
• Foreground probability at predicted box position should

be greater than fgthr.

fg probability =

∑
x,y∈B fg mask(x, y)

n(B)
(2)

where B is a set of all (x,y) positions within predicted
bounding box.

• Observed depth at predicted box position is similar to
predicted depth.

|depth map(xc, yc)− d| < dthr (3)

Where (xc, yc) is the co-ordinate at predicted bounding
box center, depth map is depth channel of current lidar
image, ’d’ is depth element in target state and dthr is
depth threshold.

Here, fgthr and dthr are determined empirically.

IV. EXPERIMENTAL RESULTS

We evaluated proposed DATMO system on test sequences
of CAMEL dataset using CLEAR MOT metrics [20], and
supervised detector was evaluated on validation set of CAMEL
dataset (see table III). Results are shown in table IV. We
observe an increase in MOTA by 9.6% and 28% decrease in
false negatives between baseline and hybrid system. Replacing
spatio-temporal mask module with FCN, we observe a fall in



Fig. 6. Architecture for spatio-temporal object detector

Fig. 7. FCN generated mask(bottom) is noisier than Spatio-temporal object
mask(top)

Fig. 8. System Architecture of FCN. Only FCN module used during operation,
dotted box for training only.

MOTA due to rise in false positives as masks generated by
FCN are not accurate, but FCN consumes significantly less
computational resource compared to spatio-temporal algorithm
(see ’Load’ column in table IV).
In scenarios where a tracked object goes behind occlusion,
ideally tracker should trust missing detection from supervised
detector, but instead it trusts foreground mask, which is noisy
and target agnostic. Thus if there are foreground pixels at
expected position of an occluded object but they do not belong
to the same tracked object, tracker maintains the tracklet

Fig. 9. Detailed Network Architecture of FCN.

instead of deleting it, this increases false positive. There
are also scenarios where detector outputs a false positive,
usually such detections are not consistent, it is expected in
subsequent frames when object detector stops detecting the
false positive, tracker will delete corresponding track. But
in our proposed approach, when detector stops detecting the
false positive instance, tracker refers to foreground mask for
evidence. In such a scenario, false positive and noise of the
foreground object detector is reflected in tracker performance,
thus increasing false positives in hybrid systems compared to
baseline.
The source code and data for unsupervised object detectors
and proposed tracker will be made publicly available soon.

V. CONCLUSION

In this work we presented a hybrid DATMO system for
flash lidar, which merges deep learning based and model based
object detectors to achieve robust tracking performance. We
observe that due to noise and low feature quality of flash lidar
data, using just data-driven supervised object detector leads to



Fig. 10. Output of DATMO with different tracklets. Tracklets with yellow
box indicate their detection is sourced from unsupervised detector and not
from supervised detector.

Category Precision Recall MAP
all 0.671 0.622 0.592
person 0.726 0.681 0.647
car 0.439 0.444 0.439
bike 0.160 0.165 0.160

TABLE III
SUPERVISED OBJECT DETECTOR ACCURACY

Name FP↓ FN↓ MOTA↑ Load↓
Sup. Only 83 1078 38.3% 0.08
Sup.+ST Mask 199 777 47.9% 0.43
Sup.+FCN Mask 274 772 44.1% 0.25

TABLE IV
TRACKING EVALUATION AND PER FRAME COMPUTATIONAL LOAD OF

BASELINE SYSTEM (TOP 1 ROW) AND PROPOSED SYSTEMS (BOTTOM 2
ROWS).

high false negatives. But when this module is coupled with a
model based class agnostic detector, overall tracking accuracy
improves by a significant margin.
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