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Abstract—Natural language processing and text mining ap-
plications have gained a growing attention and diffusion in
the computer science and machine learning communities. In
this work, a new embedding scheme is proposed for solving
text classification problems. The embedding scheme relies on a
statistical assessment of relevant words within a corpus using
a compound index originally proposed in ecology: this allows
to spot relevant parts of the overall text (e.g., words) on the
top of which the embedding is performed following a Granular
Computing approach. The employment of statistically meaningful
words not only eases the computational burden and the embed-
ding space dimensionality, but also returns a more interpretable
model. Our approach is tested on both synthetic datasets and
benchmark datasets against well-known embedding techniques,
with remarkable results both in terms of performances and
computational complexity.

Index Terms—Text Classification, Natural Language Process-
ing, Granular Computing, Support Vector Machine, Explainable
Artificial Intelligence, Supervised Learning, Embedding Spaces.

I. INTRODUCTION

One of the most relevant problems in automated Pattern
Recognition approached through Machine Learning is the
’representation’, that is finding the right method to represent
real-world objects, often heavily structured, in such a way
that they can be elaborated by standard Machine Learning
algorithms. This is even more true when dealing with Natural
Language Processing and related text mining techniques, due
to the structured nature of text as source of meaning produced
by a really complex machinery – the brain. In turn, ’meaning’
emerges in a not yet well-understood way from its underlying
complex and hierarchical structure. In fact, in textual data we
can find a growing granulation starting from atomic objects,
such as letters grouped in words and words suitably grouped in
sentences that, in turn, are grouped in paragraphs, documents
and corpora.

Within this setting, Granular Computing (GrC) can be
conceived as a suitable toolbox convenient also for solving text
mining problems such as text classification. In fact, in GrG,
thanks to the notion of ’information granule’, systems (and
related data) can be perceived at different levels of specificity
(detail), depending on the complexity of the problem [1]
and the objectives of the analysis. Moreover, ’information
granules’, which arise in the process of data abstraction, allow
discovering regularities in data, climbing the so-called pyramid

of knowledge [2], thus transforming raw data in knowledge
and, hopefully, in wisdom.

One of the appealing characteristics related to GrC paradigm
is the possibility of building classifiers, as input-output pro-
cessing systems, that are interpretable and comprehensible.
In other words, not only GrC allows building a system where
inputs are mathematically mapped to outputs (interpretability),
but the adoption of information granules, as abstract but
interpretable entities, also increases the comprehensibility of
the model, since information granules can be semantically
associated to well-defined concepts [3]. These features are in
sound with that corpus of practices and leading methodologies
recently studied and developed by the scientific community, to-
gether with industry and government entities (such as DARPA
in USA) under the term “explainable AI” (or XAI) umbrella
[4]. Consequently, the possibility of working with XAI models,
together with user knowledge about clear rationales behind
the machine’s decision-making process, opens to automatic
knowledge discovery paradigms.

Hence texts, as structured objects, need a way to be em-
bedded in a well-suited algebraic space before feeding any
automatic learning procedure. Traditionally, the essence of
such algebraic space, capturing some kind of co-occurrence
between words and contexts, is built on the top of Distri-
butional Semantics (DS). DS is grounded, in turn, on the
distributional hypothesis, that is the similarity of meaning
correlates with the similarity of distribution. After all, Amer-
ican linguist Z.S. Harris sustained [5] that ’words that are
used and occur in the same contexts tend to purport similar
meanings’. Based on this concept, a traditional representation
of text documents is known as Bag of Words (BOW). The
BOW paradigm discards the information related to the order
of words and suggests to represent a text document as an
array of occurrence frequencies of vocabulary words, leading
to the possibility of defining a (semantic) dissimilarity mea-
sure between documents or even between words. The vector
representation of documents has been traditionally adopted in
Information Retrieval with the so-called Vector Space Model
[6], where document vectors are arranged in columns of the
term-document matrix. There are a number of techniques to
improve the power of this embedding. For example, instead
of the raw word frequencies, a weighted version known as
Term Frequency-Inverse Document Frequency (TF-IDF) [7],
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[8], can be adopted, capturing the fact that words occurring
roughly uniformly in the corpus tend to be less discriminatory.
Hence, they will receive a lower weight. Even if the BOW
embedding is highly adopted for its intrinsic simplicity, it has
a number of drawbacks, such as the impossibility of capturing
synonymy, the sparsity of the representation and the dimension
of the feature space that is equivalent to the cardinality of
the vocabulary words (often very large). A partial solution is
offered by the Latent Semantical Indexing technique [9], [10],
grounded on the SVD decomposition of the term-document
matrix, where documents are embedded in a low dimensional
latent feature space. Recently, many authors have proposed
a different family of text embedding techniques based on
shallow and deep (recurrent) neural networks, such as skip-
gram and CBOW [11] and the more advanced BERT [12],
that uses an attention mechanism and is able to embed even
sentences.

In this paper, a novel lightweight embedding procedure is
proposed which, similarly to BOW, TF-IDF and LSA, provides
an explicit embedding space for text classification while, at
the same time, leading to a drastically smaller feature space.
The GrC paradigm acts as driving force behind a suitable
choice of pivotal items on the top of which the embedding
is performed by relying on statistical measures inherited from
ecology. The resulting model is comprehensible, as common
in GrC-based advanced pattern recognition systems, further
pushing the boundary towards XAI.

The remainder of the paper is structured as follows: in
Section II the proposed embedding procedure is described,
along with few remarks on the following classification stage; in
Section III the competing embedding techniques, datasets and
computational results are shown; finally, Section IV concludes
the paper, remarking future research endeavours.

II. PROPOSED METHODOLOGY

In order to embed text documents towards real-valued
embedding spaces, a procedure for extracting meaningful
information granules (i.e., words) thanks to a sensitivity-vs-
specificity integrated evaluation is investigated. This approach,
inherited by a classical ecological method originally proposed
in [13], was developed in order to spot ’signature species’ in
a given environment. The logic at the basis of this method
(INDVAL) is straightforward: a given species s is ’represen-
tative’ and therefore useful for the recognition of a given
environmental condition ec if it satisfies both of the following
properties

1) s must be present only (or almost only) in the ec-positive
objects

2) s must be present in all (or the great majority of) the
ec-positive cases.

Rather than individuating ’signature species’ belonging to
different environments, in [14] the INDVAL has been used to
spot ’signature substructures’ in structured data. Specifically,
the INDVAL has been used for individuating relevant edges
(chemical reactions) in graphs (metabolic networks) belonging
to different organisms properly divided in groups (classes)

thanks to the Linnaeus’ taxonomy. Under the graphs view-
point, the INDVAL has been formally defined as:

Ai,j =
# graphs having edge i in group j

# graphs having edge i
(1)

Bi,j =
# graphs having edge i in group j

# graphs in group j
(2)

Ii,j = Ai,j ·Bi,j · 100 (3)

By definition, since Ai,j ∈ [0, 1] and Bi,j ∈ [0, 1], then
Ii,j ∈ [0, 100]. The two supporting scores A and B have a
straightforward interpretation: the maximum value of A is
obtained when the ith edge can be found only in patterns
(graphs) belonging to class j, whereas the maximum value
for B is obtained if all patterns of class j have edge i.
Finally, the maximum INDVAL I corresponds to the maximum
sensitivity and specificity for the ith edge within group j: all
patterns of class j have edge i and no patterns belonging to
other classes have edge i. This approach has been successfully
applied for the definition of GrC-based embedding spaces
in the context of metabolic networks analysis and, alongside
remarkable performances in classification, the resulting infor-
mation granules (i.e., relevant edges) have been analysed by
field-experts (i.e., biologists) and gave rise to further research
and overall considerations on the subject matter [15].

A. Embedding Procedure

In the context of text classification, Eqs. (1)–(3) can be
restated as:

Ai,j =
# documents having word i in group j

# documents having word i
(4)

Bi,j =
# documents having word i in group j

# documents in group j
(5)

Ii,j = Ai,j ·Bi,j · 100 (6)

More in detail, let us consider a dataset S = {D1, . . . ,Dn}
of n documents and let L be the set of corresponding ground-
truth labels for the classification problem at hand. Further,
consider S to be split into three non-overlapping training,
validation and test sets (STR, SVL, STS, respectively) with
pairwise empty intersection and whose union returns S. Fi-
nally, consider L to be split accordingly (LTR, LVL, LTS,
respectively). Let W be the set of unique words in STR∪SVL,
then one can figure A,B, I ∈ R|W|×p as a compact matrix
representation of Eqs. (4)–(6) in which the three scores A, B
and I are evaluated for each word in W against each of the
p classes (groups) for the classification problem at hand.

The next step is to filter only relevant words for the embed-
ding stage: given a threshold T ∈ (0, 100), words inW having
INDVAL score greater than (or equal to) T for at least one of
the p classes are retained: the set of resulting words build up
the alphabet A, with M = |A| for the embedding stage. The
latter is performed thanks to the symbolic histograms paradigm
[14], [16] according to which each pattern (a document D,
in this case) is transformed into an M -length integer-valued



vector h that counts, in position i, the number of times the ith

symbol from the alphabet appears in D:

h = [count(A1 → D), . . . , count(AM → D)] (7)

The above mapping is individually performed on each docu-
ment belonging to STR, SVL and STS, returning three instance
matrices STR ∈ R|STR|×M , SVL ∈ R|SVL|×M , STS ∈ R|STS|×M .

B. Classification

The embedding space spanned by the three instance ma-
trices STR, SVL and STS can be equipped with algebraic
operators such as the dot product or the Euclidean distance
and any classification system can be used without alterations.
However, it is possible to further shrink the set of meaningful
words (symbols) by a suitable optimisation procedure, possibly
leaded by a genetic algorithm [17]. In a general sense, let H
be the set of hyperparameters for the classifier at hand and let
w ∈ {0, 1}M be a boolean vector, acting as a selection mask.
Hence, the genetic code reads as [H,w].

Each individual from the evolving population strips columns
from STR and SVL corresponding to 1’s in w. The filtered
STR trains the considered classification model using the hy-
perparameters written in the H portion of the genetic code.
Its performance π is then evaluated on the filtered version of
SVL and serves as (part of) the fitness function F :

F = α · π + (1− α) · κ (8)

where κ takes into account the sparsity of the feature selector
w and α ∈ [0, 1] is a user-defined parameter weighting the two
contributions. At the end of the evolution, the best individual
is retained and evaluated on the filtered version of STS.

This optimisation procedure not only takes into account an
automatic tuning of the classifier hyperparameters, but also
allows to select a suitable subset of features deemed useful by
the classifier itself. Having a small, yet informative, subset of
resulting features (alphabet symbols) is crucial in GrC-based
classifiers, as it fosters the interpretability of the trained model.

III. EXPERIMENTS

A. Datasets Description

In order to show the effectiveness of the proposed embed-
ding procedure, three synthetic datasets of progressively harder
text classification have been manually built:
TOY: 57 scientific paper abstracts for three different topics:
Anatomy, Information Theory, String Theory.
ABS2: 460 scientific paper abstracts for four different topics:
Anatomy, Information Theory, String Theory, Semiconductors.
ABS4: 575 scientific paper abstracts for five different topics:
Anatomy, Information Theory, Smart Grids, String Theory,
Semicondutors.
These three datasets show perfectly balanced classes. Along-
side these sets, which will mainly be useful for addressing
the knowledge discovery phase of the proposed system, the
following benchmark datasets have been used as well for a
thorough investigation and comparison:

REUTERS8: collection of documents appeared on the Reuters
newswire in 1987. The documents were assembled and in-
dexed with categories by personnel from Reuters Ltd.. The
adopted splitting is the “ModApte” split1 on 7674 documents
and 8 classes.
WEATHERREPORTS: dataset included in the standard MAT-
LAB® suite that contains text description from weather reports.
Only the top 10 classes have been retained, leading to a dataset
composed by 24176 documents.
TDT2: corpus coming from different sources (e.g., newswires,
TV and radio shows) for semantic classification. Only the top
30 classes are retained for a total of 9394 documents.
20NEWS: dataset gathered from newsgroups, grouped by
topic. There are 20 classes, for a total of 18774 documents.
At odds with their synthetic counterpart, these four datasets
show unbalanced classes. All datasets except for TDT2
and 20NEWS, for which preprocessed versions are freely
available2, went through a common pre-processing phase
consisting of tokenisation, uppercase-to-lowercase conver-
sion, punctuation removal, stop-words removal and stem-
ming/lemmatisation. The STR, SVL and STS splits have been
built in a label-aware stratified fashion with a ratio of 50% in
STR and 25% in both SVL and STS.

B. Competing Embedding Techniques

The proposed INDVAL-based strategy has been bench-
marked against three well-known explicit matrix-based em-
bedding strategies, already mentioned in Section I.
BOW: also known as Term Frequency (TF) [18], BOW con-
sists in evaluating the raw counts of unique words in the
corpus (vocabulary) against each document in the corpus. The
embedding via BOW leads to a matrix, say B, with as many
rows as documents and as many columns as items in the
vocabulary, where Bi,j scores the number of times the jth word
from the vocabulary appears in the ith document. For the sake
of consistency with the INDVAL technique, the vocabulary is
built by considering the set of unique words in STR ∪ SVL.
TF-IDF: alongside B, TF-IDF considers another (row) vec-
tor, say t, whose ith item is given by log(n/ci), where ci
is the number of documents in which the ith item from
the vocabulary appears. Multiplying B and t returns the
embedding matrix.
LSA: obtained by means of SVD decomposition. This means
that given a distributional representation through the generic
matrix M ∈ Rm×n with m being the dimension of the
vocabulary – i.e. the BOW matrix BT , it can be decomposed
into the product of three matrices: M = UΣVT . However,
since the decomposition scales as the number of documents, a
reduced version of the SVD (truncated SVD) can be provided:
M̂ = U(m×k)Σ(k×k)V

T
(k×n), where k � rank(M). In LSA,

the matrix V is discarded and the new reduced representation
is given by: M̂′ = U(m×k)Σ(k×k). The row vectors of
M̂′ are distributional vectors with latent semantic dimensions

1https://link.springer.com/content/pdf/bbm:978-3-642-04533-2/1.pdf
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

https://link.springer.com/content/pdf/bbm:978-3-642-04533-2/1.pdf
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html


SD = {d1, d2, ..., dk}, while the row vectors of U represent
the target terms. Sometimes, even the singular value matrix
Σ is discarded, simplifying the representation. The above-
described transformation provides a dense representation that,
due to the lower number of features compared to the plain
BOW, generally reduces the noise in data. While, for ex-
ample, in sparse representation, automobile and car (that
are synonyms) are represented in two distinct dimensions,
LSA may capture the synonymy modelling the relationship
of the similarity between a word with car as a neighbour
and a word with automobile as a neighbour. Moreover, the
reduced representation may avoid overfitting providing a better
generalisation capability. Due to its interesting and (in some
ways) unexpected properties, LSA has also been proposed as
a cognitive model for human language use [19].

C. Experimental Setup

Two classification systems have been considered for com-
parison: ν-SVM [20] and `1-SVM [21]. The former minimise
the 2-norm of the separating hyperplane, whereas the lat-
ter minimise the 1-norm of the separating hyperplane. Two
version of ν-SVMs are considered: the former is equipped
with the radial basis function kernel, therefore the set of
hyperparameters H of the genetic code reads as H = {ν, γ},
where ν ∈ (0, 1] is the regularisation term and γ ∈ (0, 100]
is the kernel shape parameter, whereas the latter is equipped
with the linear kernel, hence H = {ν}.

In the fitness function (Eq. (8) – to be minimised), π has
been defined as

π = 1− J = 1− ((J + 1)/2) (9)

where J is the informedness [14], [16], in turn defined as:

J = Sensitivity + Specificity− 1, J ∈ [−1,+1]

The affine normalisation in Eq. (9) ensures that J ∈ [0, 1],
hence π ∈ [0, 1]. κ is defined as the ratio of selected symbols:

κ =
‖w‖0
|w|

(10)

and since κ ∈ [0, 1], they can be fairly combined in Eq. (8).
The set of hyperparameters in the genetic code for `1-

SVMs reads as H = {C,C−, C+}, where C ∈ (0, 10] is the
regularisation term and C−, C+ ∈ (0, 10] are two additional
weights in order to adjust C in a class-aware fashion. It
is worth stressing that the two additional weights are not
mandatory for `1-SVMs to work, yet they can be useful
in case of unbalanced classes. Since `1-SVMs automatically
perform feature selection during training due to the 1-norm
minimisation (i.e., sparse hyperplane coefficient vector), the w
portion of the genetic code has been discarded and the genetic
algorithm takes care of optimising only the hyperparameters3.
κ sees the hyperplane coefficient vector rather than w in its
definition, see Eq. (10).

3Despite this small set of hyperparameters can also be optimised via lighter
heuristics such as grid search or random search, a genetic algorithm has been
employed for the sake of comparison with the ν-SVMs case.

For all classifiers, a value of α = 0.5 has been considered
in the fitness function (Eq. (8)) in order to give the same
importance to sparsity and performances. The genetic algo-
rithm driving the model synthesis has been configured to host
100 individuals for a maximum number of 100 generations
with a rigid early-stop criterion if the average change in the
fitness function over 1/3rd of the generations is below or equal
to 10−6; the elitism is set to the best 10% individuals per
generation, the selection follows the roulette wheel heuristic,
the crossover operator generates new offsprings in a scattered
(uniform) fashion, the mutation acts in a flip-the-bit fashion
for Boolean genes (w) and adds to real-valued genes (H) a
random number drawn from a zero-mean Gaussian distribution
whose variance shrinks as generations go by. Software setup
includes MATLAB® R2019b and its toolboxes for text analysis
and optimisation, with LibSVM and LibLINEAR as external
dependancies for ν-SVM and `1-SVM, respectively.

As regards the embedding procedure parameters, namely the
threshold T for INDVAL and the number of components k for
LSA, the following values have been set:
• T = 20 for TOY, ABS2 and ABS4; T = 10 for REUTERS8

and TDT2; T = 5 for 20NEWS and WEATHERREPORTS
• k = 30 for TOY; k = 250 for ABS2 and ABS4; k = 1000

for REUTERS8; k = 4000 for WEATHERREPORTS and
20NEWS; k = 3500 for TDT2.

Values for k have been estimated by plotting the normalised
cumulative eigenspread and selecting the value where the
curve flattens. Values for T have been estimated using this
simple, yet effective, heuristic: recall I ∈ R|W|×p be the
matrix containing the INDVAL scores for each word in W
against each of the p classes. For each word (row), consider the
maximum INDVAL score amongst the p columns and plot the
distribution of the resulting INDVALs. For the sake of exam-
ple, Fig. 1 shows the distribution for TOY and REUTERS8. For
TOY, the vast majority of the words have maximum INDVAL
lower than 20, whereas for REUTERS8 the elbow disappears at
T ' 10, so we do not expect to have highly discriminant words
in these respective ranges. The same analysis has been carried
on the remaining five datasets, returning the above thresholds.

Fig. 1. Distribution of the highest INDVAL scores.



D. Computational Results on Synthetic Datasets

Fig. 2–4 show the results for TOY, ABS2 and ABS4, respec-
tively, when using both `1-SVM and ν-SVM (both linear and
non-linear). SVMs are trained (and optimised) in a one-vs-all
fashion: in this way, each class has its own feature selection
mask. Heatmaps are normalised row-wise (i.e., for each class).
Results include the accuracy on the test set and the resulting
number of relevant features after feature selection, whereas
Table I shows the starting embedding space dimensionality.

TABLE I
STARTING EMBEDDING SPACE DIMENSIONALITY (SYNTHETIC DATASETS).

BOW INDVAL TF-IDF LSA

TOY 1200 45 1200 30
ABS2 4848 24 4848 250
ABS4 5618 29 5618 250

Due to the intrinsic randomness in the overall procedure, re-
sults herein presented have been averaged across five different
STR−SVL−STS splits. In order to ensure a fair comparison, the
same splits have been fed to all classifiers. A first comparison
regards the dimensionality of the embedding space (Table I),
with the INDVAL strategy greatly outperforming the three
competitors on ABS2 and ABS4, with TOY being the only
exception since the suitable number of components for LSA
is below the number of relevant words at T = 20. After the
feature selection phase (Fig. 2–4, bottom panels), the INDVAL
strategy also leads to the smallest set of meaningful words for
all datasets and for all classifiers: LSA has comparable results
with the INDVAL strategy in this regard, yet features for LSA
do not correspond to meaningful words. As for classification
performances (Fig. 2–4, top panels), the INDVAL strategy
outperforms the three competitors when using RBF ν-SVMs,
whereas it results to be the least performing strategy on ABS2
and ABS4 when using `1-SVMs or linear ν-SVMs: this is
coherent with current knowledge on large-scale classification
[22], where linear classification is particularly suited for high
dimensional and sparse data (e.g., BOW, TF-IDF).

A second aspect regards the knowledge discovery phase.
Indeed, recall that the INDVAL has the potential to spot
relevant words within the corpus. In order to discard spurious
selections due to intrinsic randomness in the procedure and
focus the analysis only on words that classifiers persistently
consider important, let us consider only words that survived
the feature selection phase for all of the five STR−SVL−STS
splits. Furthermore, let us consider `1-SVMs since they greatly
outperform ν-SVMs in terms of selected features, albeit their
slight performance decay. Nonetheless, similar knowledge
discovery results hold for ν-SVMs as well. Results for TOY:

• class ’Anatomy’: TF-IDF, BOW and INDVAL selected
only one word (disease)

• class ’Information Theory’: BOW selected shannon,
patient and disease; TF-IDF and INDVAL selected only
shannon

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Accuracy on Test Set [%]

92.86

94.29

94.29

92.86

88.57

85.71

97.14

97.14

100

97.14

100 97.14

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Embedding Space Cardinality after Feature Selection

7

14

1

6

3

1

3

4

5

23

27

11

(a) `1-SVM

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Accuracy on Test Set [%]

81.43

84.29 85.71

92.86

80

92.8697.14

85.71

97.14

87.14

90 88.57

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Embedding Space Cardinality after Feature Selection

2

3

1

1

1

2

53

55

63

62

51

73

(b) ν-SVM

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Accuracy on Test Set [%]

81.43

81.43

80

72.86

70

81.43

82.86

92.86

91.43

88.57

100

90

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Embedding Space Cardinality after Feature Selection

2

2

1

22

21

1

1

2

20

138

29

21

(c) RBF ν-SVM

Fig. 2. Results on TOY.

• class ’String Theory’: TF-IDF, BOW and INDVAL se-
lected only one word (string).

For the sake of completeness, the INDVAL strategy assigned
(on average) I = 100 for string in class ’String Theory’,
I ' 80 for shannon in class ’Information Theory’ and I ' 47
for disease in class ’Anatomy’. Whilst for a simple dataset
such as TOY results are rather comparable also in terms of
knowledge discovery, the same is not true for slightly more
complex problems such as ABS2 and ABS4: Fig. 5 and 6



BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Semiconductors

Accuracy on Test Set [%]

93.91

94.61

89.91

91.3

91.83 94.26

98.61

96.35

97.91

98.61

96.7

97.91

98.09

96.7

98.43

96.35

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Semiconductors

Embedding Space Cardinality after Feature Selection

80

32

9

8

6

10

3

5

3

4

73

89

117

74

69

77

(a) `1-SVM

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Semiconductors

Accuracy on Test Set [%]

94.43

93.04

97.91

92

87.65

88.35

97.57

93.04

93.91

93.57

93.57

98.09

98.43

95.83

98.09

96

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Semiconductors

Embedding Space Cardinality after Feature Selection

3

2

1

1

11

9

10

13

421

442

348

415

397

389

324

307

(b) ν-SVM

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Semiconductors

Accuracy on Test Set [%]

86.78

82.61

91.3

86.26

79.83

78.78

80.7

86.09

80.17

88.52

74.96

90.78

89.74

97.57

93.04

91.13

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Str. Theory

Semiconductors

Embedding Space Cardinality after Feature Selection

3

2

1

1

214

166

177

8

7

8

4

316

487

226

267

233

(c) RBF ν-SVM

Fig. 3. Results on ABS2.

show the selected words for the two datasets, respectively,
in which the INDVAL ability of selecting a small subset of
relevant words is striking. In ABS2, all competitors agree that
the class ’String Theory’ is the easiest to characterise, whereas
for the other three classes it is possible to notice that not only
the INDVAL strategy selects the smallest subset of relevant
words, but the selected words perfectly fit with the positive
class (e.g., disease and patient for ’Anatomy’, information

for ’Information Theory’). The same is not true for BOW and

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Smart Grids

Str. Theory

Semiconductors

Accuracy on Test Set [%]

94.27

87.27

99.44

93.71

92.59

99.3

98.18

94.97

99.58

97.06

95.52

98.04

96.22

99.58

96.92

96.5

98.32

96.64

97.34

96.5

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory

Smart Grids

Str. Theory

Semiconductors

Embedding Space Cardinality after Feature Selection

72

61

4

93

6

6

6

9

3

5

11

3

3

6

81

102

88

23

63

130

(a) `1-SVM

BOW INDVAL TF-IDF LSA

Anatomy

Inf. Theory
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Fig. 4. Results on ABS4.

TF-IDF, in which also words related to negative classes are
selected (e.g., information for ’Anatomy’), along with words
that apparently do not characterise neither the positive nor the
negative class (e.g., result for ’Anatomy’ and conflict for
’Information Theory’). Similar observations hold for ABS4
(Fig. 6), in which ’Smart Grid’ seems the easiest class to
characterise (one word needed). The average INDVAL scores
for ABS2 are: disease (I ' 35) and patient (I ' 50) for
class ’Anatomy’; information (I ' 54) for class ’Information
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Fig. 6. Knowledge discovery results on ABS4. Left to right: Anatomy, Inf. Theory, Smart Grid, String Theory, Semiconductors.

Theory’; string (I ' 90) for class ’String Theory’; semi-

conductor (I ' 77) for class ’Semiconductors’. Conversely,
the average INDVAL scores for ABS4 are: disease (I ' 37)
and patient (I ' 52) for class ’Anatomy’; information

(I ' 41) for class ’Information Theory’; grid (I ' 95) for
class ’Smart Grid’; string (I ' 89) for class ’String Theory’;
semiconductor (I ' 77) for class ’Semiconductors’.

E. Computational Results on Benchmark Datasets

Tables II–III show the average results for `1-SVMs and ν-
SVMs for the remaining four benchmark datasets, respectively.
As for the above discussion on large-scale classification,
RBF ν-SVMs have been tested on INDVAL only. Results
on benchmark datasets are rather in line with those obtained
on synthetic datasets. The INDVAL strategy again leads to
the smallest embedding space (a few dozens against a few
thousands). For `1-SVMs there are, however, non-negligible
shifts in terms of average accuracy, e.g. for 20NEWS the

INDVAL method scores 85% against 91% (LSA, the second
least performing method), whereas for WEATHERREPORTS
and REUTERS8 the accuracy shifts with respect to the sec-
ond least performing methods are around 4%. TDT2 is the
only dataset in which the INDVAL performs rather equally
with respect to the three competitors. By using ν-SVMs,
performances are clearly improved and perfectly in line with
competing techniques.

IV. CONCLUSIONS

In this paper, we proposed a novel approach for building an
embedding space for text classification. Conversely to common
techniques, which use all of the available words in the corpus,
this technique leverages on a statistical index which quantifies
the relevance of each word within each problem-related class
and, by thresholding these scores, one gets a drastically re-
duced set of meaningful words. Under the GrC viewpoint, the
latter can be interpreted as meaningful information granules



TABLE II
RESULTS ON BENCHMARK DATASETS (`1-SVMS). IN BRACKETS, THE RATIO OF SELECTED FEATURES.

BOW INDVAL TF-IDF LSA

WEATHERREPORTS 95.37% (88/14426) 90.17% (3/119) 95.41% (88/14426) 94.34% (59/4000)
REUTERS8 98.37% (106/20728) 91.83% (8/164) 98.56% (158/20728) 95.56% (28/1000)
20NEWS 93.71% (344/61188) 85.11% (24/424) 94.64% (303/61188) 91.48% (228/4000)

TDT2 99.51% (88/36771) 98.39% (8/855) 99.59% (111/36771) 99.26% (17/3500)

TABLE III
RESULTS ON BENCHMARK DATASETS (ν-SVMS). IN BRACKETS, THE RATIO OF SELECTED FEATURES.

BOW INDVAL INDVAL (RBF) TF-IDF LSA

WEATHERREPORTS 96.59% (2281/14426) 94.63% (6/119) 95.28% (11/119) 96.54% (2261/14426) 95.56% (998/4000)
REUTERS8 97.97% (2964/20728) 96.36% (14/164) 95.33% (8/164) 98.14% (3514/20728) 97.29% (210/1000)
20NEWS 97.17% (9255/61188) 95.93% (85/424) 96.09% (107/424) 97.11% (11041/61188) 95.62% (1069/4000)

TDT2 99.55% (5915/36771) 99.52% (91/855) 98.98% (115/855) 99.51% (6441/36771) 99.47% (992/3500)

and can be analysed a-posteriori (XAI). The embedding space
can be optimised by means of an evolutionary metaheuristic
(a genetic algorithm, in this work) in order to simultaneously
tune the classifier (SVMs, in this work) and further reduce
the set of meaningful granules. Our approach has been tested
on three synthetic, yet realistic, datasets and four well-known
benchmark datasets against three other explicit embedding
techniques (BOW, TF-IDF and LSA): especially when using
ν-SVMs, the proposed method has comparable performances
with respect to the three competitors, whilst strikingly outper-
forming them in terms of complexity of the embedding space.
This can be interpreted as a further demonstration of how the
INDVAL method is able to spot meaningful words that carry
pretty much the same information with respect to the entire
dataset. Whilst in this work we considered words (1-grams)
as atomic information granules, one can extend the proposed
method to general n-grams by properly tweaking Eqs. (4)–(6)
in order to explore higher levels of granularity as well.

However, a major (intrinsic) drawback regards the enumer-
ation of all words (or n-grams, in a general sense) within the
corpus for evaluating A, B and I: this stage can be computa-
tionally demanding for very large corpora (e.g., Wikipedia)
and future research avenues can investigate the possibility
of a distributed implementation of the proposed method for
building the embedding space for large corpora.
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