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Abstract—The smart grid faces with increasingly sophisticated
cyber-physical threats, against which machine learning (ML)-
based intrusion detection systems have become a powerful and
promising solution to smart grid security monitoring. However,
many ML algorithms presume that training and testing data
follow the same or similar data distributions, which may not
hold in the dynamic time-varying systems like the smart grid.
As operating points may change dramatically over time, the
resulting data distribution shifts could lead to degraded detec-
tion performance and delayed incidence responses. To address
this challenge, this paper proposes a semi-supervised framework
based on domain-adversarial training to transfer the knowledge
of known attack incidences to detect returning threats at
different hours and load patterns. Using normal operation
data of the ISO New England grids, the proposed framework
leverages adversarial training to adapt learned models against
new attacks launched at different times of the day. Effectiveness
of the proposed detection framework is evaluated against the
well-studied false data injection attacks synthesized on the IEEE
30-bus system, and the results demonstrated the superiority of
the framework against persistent threats recurring in the highly
dynamic smart grid.

Index Terms—Adversarial training, false data injection, in-
trusion detection, smart grid security, transfer learning, domain
adaptation.

I. INTRODUCTION

The smart grid is connecting utilities and customers over

two-way, high-speed, and frequently machine-to-machine

communications. Thanks to the cyber-physical integration,

next-generation power and energy systems will empower

modern society with more efficient, resilient, and sustain-

able electricity. However, the growing interconnection among

billions of interacting systems, devices, and processes cre-

ates complex interdependence and vulnerabilities that will

inevitably expose to cyber-attacker in the wild. The threat

of a cyber-attack could be both sophisticated and disastrous,

as demonstrated by recent research efforts [1]–[3], business

studies [4], and real-world incidences [5].

The rapid progress in machine learning (ML) has revealed

the latter’s strength in handling voluminous data streams,

extracting informative features and tackling system complexi-

ties. A rich line of ML approaches has significantly energized

research in the field of smart grid, in particular to enhance its

cyber-physical security monitoring and situational awareness

capacity [6]–[8].

Many machine learning approaches presume that training

and testing data will share the same feature sets and follow

the same or similar distributions [7]. However, in the power

systems, labeled attack data is often limited and data dis-

tribution shift [9] may occur when loads, topology, or other

system dynamics change. They can lead to bias in the training

data and render the machine learning model intractable. This

creates a strong incentive for effective algorithms that can

close up the gap for robust and adaptive intrusion detection

against advanced persistent threats.

A potential solution to the challenge is transfer learning,

which has been proposed to consolidate knowledge learned

from previous domains and tasks (the source) for a new

related domain and/or task (the target). It has been widely

adopted in various image/video applications [10] as a promis-

ing solution to transfer a learned model for new domains

or tasks. Recently, researchers have also started to introduce

transfer learning for anomaly detection in Internet [11] and

cloud [12] applications, which demonstrated strong potential

for cyber-security monitoring in dynamic power systems and

environments [13].

Motivated by the remaining gaps, this paper proposes

a Semi-Supervised Domain-Adversarial Training (SSDAT)

framework based on the latest domain-adversarial learning

technique [14], which extracts novel features to unify data

distributions across two domains and improves classifier

robustness against the shift. We tackle the challenge where

the data of the attack incidence is rare compared to normal

operations and address it by semi-supervised transfer learning

from a single-class target domain where the attack incidence

is absent.

For the threat model, we consider the stealthy false data

injection (FDI) attack [15], which exploits the mathematical

model and topological information to inject false measure-

ments and bypass the traditional residual-based bad data

detection. Existing work has proved the power of machine

learning approaches on FDI detection. Ozay et al. proposed

to utilize kNN and SVM to detect FDI attack built in

measurement space [7].
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To evaluate shifts in realistic cases, we take real-time

load demand from ISO New England to synthesize datasets

with different changing distributions and evaluate the per-

formance of the proposed framework over other baseline ma-

chine learning algorithms. The results have demonstrated that

the effectiveness of the proposed semi-supervised domain-

adversarial training framework against the data distribution

shift, particularly when the attack sample is rare due to its

limited presence.

The rest of this paper is organized as follows: Section

II discusses the related work about domain adaptation and

transfer learning in cyber-secrity. Section III presents the

proposed framework for smart grid intrusion detection. Sec-

tion IV reviews the FDI attack model. Section V presents the

experiment setup and the simulation results. Section VI draws

the conclusions and future works.

II. RELATED WORKS

A. Domain Adaptation

Domain adaptation is a transductive transfer learning tech-

nique, where the marginal probability distributions of input

data from source and target domains are different while the

feature spaces are the same [16]. Existing domain adaptation

approaches can be categorized into unsupervised [14], [17],

[18], semi-supervised [19]–[21], and supervised domain adap-

tation [22]–[24].

Unsupervised domain adaptation leverages labeled source

domain data and unlabeled target domain data to decrease

domain discrepancy or find domain invariant representations.

Thus models trained on the source domain can generalize

well on the target domain. Fang et al. [17] proposed to

reduce distribution discrepancy and increases inter-class mar-

gins via Sphere Retracting Transformation. Ganin et al. [14]

introduced adversarial training into domain adaptation to find

domain invariant features. A domain classifier is utilized to

distinguish data from two domains. A feature extractor is

trained to confuse the domain classifier by reversing the

gradient from the domain classifier. Li et al. [18] proposed

category transfer to improve the adversarial domain adap-

tation. It iteratively estimates and minimizes Wasserstein

distance between categories in multi-category structures to

avoid negative transfer between different category data from

source and target.

Semi-supervised domain adaptation assumes that limited

labeled target data is available and can be used to support

domain adaptation during the training stage. Wang et al. [21]

proposed a transfer fredholm multiple kernel learning ap-

proach. Fredholm integrals from two domains are calculated

by labeled data to learn a kernel predictive model across two

domains. Pereira et al. [20] made use of labeled data from

two domains to minimize squared induced distance between

instances from different classes and different domains and

maximize squared induced distance between instances from

different classes and different domains. Similarly Li et al. [19]

considered to highlight the discrimination information of

the labelled samples, which takes into account the class

connections between source samples and target samples.

Our SSDAT framework belongs to semi-supervised domain

adaptation but differs from traditional works in the sense that

we assume only normal data in target domain is available for

the attack detection. Then normal data from two domains are

leveraged to reduce domain discrepancy. Detailed implemen-

tations will be discussed in section III.

B. Transfer Learning in Cyber-Security

Researchers have recently started to introduce transfer

learning for anomaly detection in cyber-security. Bartos et
al. [25] computed a self-similarity measure of the network

traffic logs for the domain adaptation problems with condi-

tional shift in network security. Juan et al. [26] proposed a

feature-based transfer learning framework that was able to

boost classifier performance on the well-known NSL-KDD

dataset of TCP traffic. D. Nahmias et al. [27] applied feature

transfer learning from pre-trained VGG19 neural network

mode on malware detection. Inspired by the recent research,

we leveraged domain-adversarial training to detect unknown

threats in previous work [13]. In this paper, we make further

contributions in mainly three aspects:

• We consider the situation where attack may happen

at different time during the power system operation,

which may fail the trained model when data distribution

changes accordingly.

• We formulate a transfer learning problem and define the

labeled training data as source domain, labeled normal

data with similar data distribution as target domain. We

address this problem by introducing a semi-supervised

domain-adversarial training framework.

• We set up different cases regarding the trends of power

demand in source domain as well as different time

windows in target domain and evaluate the performance

of the proposed framework with baseline models on

balanced and imbalanced cases.

III. DOMAIN-ADVERSARIAL TRANSFER LEARNING

AGAINST DATA DISTRIBUTION SHIFT

A. Problem Formulation

In this paper, we focus on a scenario where two consecutive

attacks targeted the same grid during different periods when

load demands have changed. In transfer learning, this suggests

a data distribution shift, where the distribution P (X) of

inputs (samples) has changed but the conditional distribution

P (Y |X) of outputs (labels) remains the same.

To elaborate how transfer learning tackles the data distri-

bution shifts, we need to first define several concepts. First,

a domain D consists of two components: a feature space X
and a marginal probability distribution P(X). Given a specific

domain D= {X ,P(X)}, a task consists of two components: a

label space Y and an objective predictive function f(·) from

X to Y that will be learned from the training data.

In this work we consider the binary intrusion detection,

which classifies the data as attack events or normal operations.

With the shift, the source domain DS and target domain DT

will have the same feature space X but different data distri-

butions P(X). We denote the labeled source domain as DS =
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Fig. 1. The proposed semi-supervised domain-adversarial transfer learning framework based on [14] for self-adaptive smart grid intrusion detection.

{(xS1
, yS1

), ..., (xSnS
, ySnS

)}, the labeled target domain as

DT = {(xT1 , yT1), ..., (xTnT
, yTnT

)}, and the unlabeled test-

ing dataset as DTs = {(xTs1
, yTs1

), ..., (xTsn
, yTsn

)}.

The goal of transfer learning is to learn the predictive

function f(·) from the training data to predict labels in the

target and testing data using the mapping to a new feature

space, where the inter-class distance and inner-class similarity

are both retained. The new feature space maps the shifting

data distributions into a single one, where machine learning

algorithms can be trained for better classification. The main

challenge is how to find the best-performing mapping, which

is tackled by the domain-adversarial training as follows.

B. Domain-Adversarial Transfer Learning for Neural Net-
works

The original domain-adversarial transfer learning [14] con-

sists of three neural networks: a feature extractor, a domain

classifier, and a label predictor. Data from source and target

domains will be fed into the feature extractor and mapped

into a same feature space.

The domain classifier is the “domain adversary”, which is

being trained to tell the difference of data from the source and

the target domains and so as to “fail” the feature extractor.

The label predictor is trained to determine the class label,

which can use same soft-max function [28]

Given a sample-label pair (x, y), the loss function of the

binary classification for label predictor is given as Ly(x, y).
The domain adaption loss Ld is given as Ld(x, dx), where

dx = 0 if x ∈ DS and dx = 1 if x ∈ DT .

Finally, the objective of domain-adversarial training can be

then formulated as:

min
W,V,b,c,u,z

[
1

nS

∑
x∈DS

Ly(x, y)− λ

nS

∑
x∈DS

Ld(x, dx)

− λ

nT

∑
x∈DT

Ld(x, dx)

] (1)

Based on (1), the overall loss from both label predictor and

domain classifier will be back-propagated [29] to adjust the

weights of the three neural networks.

C. Semi-Supervised Domain-Adversarial Training

Based on the architecture, the overall framework proposed

in this paper is illustrated in Fig. 1. It consists of three

steps: (1) given the rarity of labeled attack, we first collect

labeled normal and attack data in the source domain, the

labeled normal target data in the target domain, and the

unlabeled target data in the testing dataset; (2) train the three

networks with the source and target domains to obtain a new

feature space via domain-adversarial training, which adapts

the normal data over two domains; (3) map the testing dataset

to the new feature space and predict their class labels.

The design is based on the consideration that in the context

of cyber-physical security monitoring, labeled attack data can

be extremely rare compared to the labeled normal data that are

constantly sampled. We will have to face a rarity of positive

class distribution problem in the target domain.

To address this challenge, after the feature extraction, the

normal data from source domain and target domain will be

fed into the domain classifier. The gradient from domain loss

will be reversed when in the feature extractor to increase

the domain similarity so that the data distribution shift can



be mitigated. Both normal and attack data will be used for

training the label predictor.

Then we follow the same mechanism in [13], we select

the random forest classifier [30] as the new label predictor in

SSDAT framework, which will be trained on the embeddings

obtained from the labeled source data through the feature

extractor after the domain-adversarial training.

IV. ATTACK MODEL

Over the last two decades, various attack models have been

developed to analyze and enhance the cyber-physical security

of smart grid [3]. Among them, the false data injection (FDI)

attack [15] stands out as one of the most studied threat

models. As FDI attacks exploit a mathematical vulnerability

in the residual-based bad data detector (BDD) to inject false

data onto measurements without raising alarms, it posed a

severe threat to power system state estimators (PSSE) and

the energy management systems. Successful FDI attacks can

introduce arbitrary errors into certain state variables and cause

the system operator to perform misinformed control actions,

which may result in physical damage and monetary loss [31].

Specifically, the FDI targets the DC state estimation is defined

as [32]:

z = Hx+ n (2)

where z is the known measurement, H is the Jacobian

matrix of power grid topology and x is the unknown state

variable. To identify corrupted measurements, the BDD uti-

lizes statistical tests based on the residual between observed

and estimated measurements: r = z−Hx̂, where x̂ is the

estimated state variable solved by the weighted least square

method. The normalized L2-norm of r is then compared with

a preset threshold τ to detect the bad data.

The FDI attack model can be written in the following form:

za = z+ a = Hx+ n+ a (3)

where a is the injected attack vector and za is the manipulated

measurements. In the stealthy FDI attack, we assume the

attacker has the knowledge of H. In order to bypass the bad

data detection and manipulate the states of buses, a targeted

false state xa is generated by xa = x+c, where c ∼ N(0, σ2
c )

is the false state error injected into the system. The attack

vector a is computed by a = Hc and injected into the

measurements z by za = z + a. Let r = z − Hx be the

remain residual for bad data detection. Then the new residual

ra will remain the same and bypass the residual-based bad

data detection:

ra = za −Hxa = z+ a−H(x+ c)

= (z−Hx) + (a−HC)

= z−Hx

(4)

The pre-attack measurements are obtained from realistic

load demands over multiple consecutive days, which rep-

resents the challenging data distribution shifts to classic

machine learning and calls for transfer learning against new

attacks occurring at different hours of the day with different

load demands.

Fig. 2. The IEEE 30-bus system by the Illinois Center for a Smarter Electric
Grid (ICSEG) [33].

V. EXPERIMENTS AND RESULTS

A. Normal Data Simulation

We chose the IEEE 30-bus system [33] for simulation and

evaluation of the performance, whose topology is illustrated

in Fig. 2. There are 30 buses and 41 branches with a total

load demand of 189.2 MW. A total 142 measurements are

used to estimate 30 state variables under DC model.

To set up realistic load variation on this static benchmark,

we obtained public data from ISO New England [34] and

synthesized the normal operating points (OPs) over a week.

We selected one week demand from August 24 to 30, 2019,

as shown in Fig. 3, to synthesize a typical weekly load curve

for the IEEE 30-bus system. The demand was reported every

5 minutes, or 288 samples per day. By assuming the default

load of the 30-bus system the peak load of the week (100%),

we calculated all OPs over the 5-minute intervals using the

DC optimal power flow (DC-OPF) solver in MATPOWER to

collect the normal measurement data of the system.

As illustrated in Table I, we followed the load variations

at different hours of the day to create the source and target

domains based on 4-hour time windows to best capture

different patterns of data distribution in the 30-bus system.

We assumed that the attack was launched on Day 0, and

normal operations have been resumed on Day 1. Without loss

of generality, we assumed that by Day 5 the data recording

the attack period on Day 0 have been collected; the data

recording the same period of normal operation on Day 1

have also been collected to form the labelled training set

for the source domain. Then we assumed that day-to-day

domain adaptation is performed until Day 6 when the attack

was launched again but possibly at different hours. The target

domain thus contains data recorded at corresponding periods

on Day 5 when the last domain adaptation was performed.

B. Attack Data Generation

For the attack, We assumed that the attacker aims to ma-

nipulate the states with the least efforts. Since the number of

compromised meters to manipulate the states varies between



buses and depends on the topology H. We searched the num-

ber of compromised measurements when attacking a single

bus and identified three buses (Buses 11, 13, and 26) that

require the minimal number of compromised measurements.

The attack vectors were then generated by the FDI attack

model a = Hc and injected into the measurements z. The

false state c was set with a zero mean and a variance of

σ2
c = 0.1.

C. Data set setup

1) Balanced Case: Considering that attacks may happen

at a different time of the day when the load patterns can be

distinctive, we defined 4 cases according to the variation of

load demand: the valley, the ascending slope, the peak, and

the descending slope. In each case, we assumed that the attack

lasted for 4 hours on Day 0 before the system is restored.

Once the attack period is located, we also extracted 4 hours

of normal operation data on Day 1, recorded during the same

4-hour periods as the attack on Day 0, to create a balanced

binary classification dataset in the source domain for SSDAT.

For the target domain and testing dataset, we also used

the 4-hour time window but divided Days 5 and 6 into

six intervals. On Day 5, we have only recorded normal

operations, which contain natural data distribution shifts from

load variation. The normal data from the target domain

will be used for domain adaptation in SSDAT. For the fair

comparison, target domain data will also be treated as labeled

training data for baseline classifiers. On Day 6, we assumed

that the attack last for 2 hours, which starts at the beginning

of one of the six intervals, and the testing dataset is thus also

a balanced set composed of 2 hours of attack data followed

by 2 hours of normal data.

2) Imbalanced Case: Based on case 1 we further inves-

tigate imbalanced cases to explore the performance when

the attack data has different proportions in testing data. We

choose the same source domain and 4-hour time windows as

the target domain. For the testing dataset, we create cases by

adjusting the percentage of 4-hour time window attack data

as 25% and 75% separately. We shift the one attack hour for

25% cases and one normal hour for 75% cases to generate

4 sub-cases for each time window. In this paper, We use the

F1 score to measure the accuracy of imbalanced cases [35].

To compare classic machine learning classifiers with the

SSDAT framework, we have chosen four baseline classi-

fiers: Artificial Neural Network (ANN) [36], Support Vector

Machine (SVM) [37], Classification and Regression Tree

(CART) [38], and Random Forest (RF) [30]. All classifiers

are implemented in Scikit-learn [39] with manually optimized

parameters releasable upon request.

D. Simulation Results

The detection accuracy for balanced cases of all classifiers

over the 4 cases is shown in Table III. Overall, the framework

shows a robust performance in most of the cases and better

than other baseline classifiers in 19 of the 24 sub-cases. The

best-case improvement reaches +36.0% compared to ANN

during Hours 17–20 in Case 2. The results suggested that

TABLE I
CASE 1 SETUP

#

Source Domain on
Day 0 (attack) and
Day 1 (normal)

Target Domain
on Day 5

Testing Dataset
on Day 6

Cases Hours

1 Valley 2–5 4-hour windows of
normal operations
at different time of
the day.

2 hours of attack
followed by 2
hours of normal
operations.

2 Ascending 11–14

3 Peak 17–20

4 Descending 21–24

Fig. 3. Load demand of ISO New England between Aug. 24 to 30, 2019 [34],
which is scaled down to map to the IEEE 30-bus system as the load curve.

SSDAT can retain the accuracy when the same attack occurs

at different hours while the baseline classifiers fail to adapt.

It is notable that during Hours 1–4 and 5–8 on Day 5, the

performance of some baseline classifiers are better than the

SSDAT. The reason is that most of the load demand of Days 0

and 1 in the source domain has a significant overlap with the

Hours 1–4 and 5–8 on Days 5 and 6. The overlapping demand

suggests limited distribution shifts, which contributes to the

performance of baseline classifiers. Outside of these hours,

however, SSDAT achieves better accuracy. The observation

poses an interesting question on when the adaptation is indeed

needed and how to identify such moments.

The averaged F1 scores over 4 sub-cases of imbalanced

cases with “valley” as source domain are illustrated in Fig. 4.

The results suggest that when the source domain is ”Valley”

data, SSDAT can outperform other baseline classifiers among

6 time windows. Especially when there is limited attack

data, the SSDAT demonstrates significant improvements. The

reason is that the source valley data has no overlap with

the target domain. For other source domains not presented,

there are still some cases in Hours 1–4 and 5–8 when some

baseline classifiers achieve better performance. The reason is

consistent with balanced cases.

TABLE II
CASE 2 SETUP

#

Source Domain on
Day 0 (attack) and
Day 1 (normal)

Target Domain
on Day 5

Testing Dataset
on Day 6

Cases Hours

1 Valley 2–5 4-hour windows of
normal operations
at different time of
the day.

1 hour attack as
25% cases and
3 hours attack
as 75% cases.

2 Ascending 11–14

3 Peak 17–20

4 Descending 21–24



TABLE III
COMPARISON OF DOMAIN-ADVERSARIAL AND MACHINE LEARNING CLASSIFIERS AGAINST RETURNING ATTACKS AT DIFFERENT HOURS

Cases Source Hours Target Hours SSDAT ANN SVM CART RF Best-Case Margin Worst-Case Margin

1
2-5

(Valley)

1-4 82.6% 81.2% 81.3% 77.2% 81.9% +5.4% +0.7%

5–8 88.9% 84.6% 87.5% 76.3% 81.0% +12.6% +1.4%

9–12 86.6% 84.7% 81.3% 71.8% 76.2% +14.8% +1.9%

13–16 86.5% 85.1% 72.9% 69.3% 72.0% +17.2% +1.4%

17–20 82.9% 70.5% 64.6% 67.9% 66.0% +18.3% +12.4%

21–24 80.3% 70.4% 68.8% 68.3% 69.0% +12.0% +9.9%

2
11-14

(Ascending)

1-4 95.3% 91.7% 79.2% 98.1% 99.7% +16.1% -4.4%

5–8 95.9% 95.8% 87.5% 72.5% 87.3% +23.4% -0.1%

9–12 85.5% 58.3% 81.3% 71.0% 79.0% +27.2% +4.2%

13–16 81.6% 54.2% 70.8% 71.7% 78.1% +27.4% +3.5%

17–20 87.7% 51.7% 70.8% 70.1% 74.7% +36.0% +13.0%

21–24 80.2% 50.5% 68.8% 77.1% 79.8% +29.6% +0.3%

3
17-20

(Peak)

1-4 94.4% 93.7% 79.2% 91.2% 95.4% +15.2% -1.0%

5–8 96.4% 91.7% 87.5% 97.2% 97.7% +8.9% -1.3%

9–12 85.3% 75.6% 75.0% 66.8% 76.6% +18.5% +8.7%

13–16 91.1% 70.7% 75.0% 66.9% 78.0% +24.2% +13.1%

17–20 85.1% 68.9% 62.5% 62.9% 74.0% +22.6% +10.1%

21–24 94.3% 74.4% 79.2% 83.0% 84.8% +19.9% +9.5%

4
21-24

(Descending)

1-4 94.9% 97.9% 85.4% 98.1% 99.4% +9.5% -4.5%

5–8 96.9% 100.0% 91.7% 94.0% 96.5% +5.2% -3.1%

9–12 85.6% 79.0% 60.4% 76.3% 83.4% +25.2% +2.2%

13–16 85.4% 82.2% 60.4% 72.2% 83.4% +25.0% +2.0%

17–20 82.2% 63.2% 58.3% 68.0% 78.6% +23.9% +3.6%

21–24 83.6% 69.2% 56.3% 73.2% 80.8% +27.3% +2.8%
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Fig. 4. F1 scores ”Valley” with as the source domain (a) 25% attack data
in testing and (b) 75% attack data in testing.

VI. CONCLUSIONS

This paper proposed a self-adaptive intrusion detection

framework based on semi-supervised domain-adversarial

training. The proposed framework is capable of mapping data

shifting distributions into a unified feature space to improve

attack detection performance under dynamic change load de-

mands. The results have shown that the proposed framework

can effectively tackle the rarity of attack samples and achieve

robust performance against data distribution shifts than classic

machine learning classifiers. In the future, we will further

investigate when to transfer and how to retain the performance

when no transfer is needed as our next research directions.
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