An Optimized Modularity-Based High Level
Classification Model

1% Tiago Colliri
Dept. of Computer Science
ICMC - University of Sao Paulo
Sao Carlos, Brazil
tcolliri @usp.br

Abstract—In this paper, we introduce a network-based classi-
fication model which, instead of mapping each data instance as a
node in a network, as usual, it maps each data instance attribute
as being a node. This procedure allows the model to preserve
more information from the input dataset when building the
network, specially for datasets with a larger number of features,
and thus to make use of this extra information during the training
phase. In addition, we also introduce a technique intended to
generate a network with one component per class in the dataset
while keeping the threshold parameter, which is responsible for
determining the edges among the nodes, at a minimum value. In
this way, the network emerging from this process is more sensitive
to the insertion of new instances, during the testing phase, in
terms of its modularity measure, which allows the classifier to
infer the new labels based mainly on this measure. We evaluate
the model by applying it to both artificial and real benchmark
classification datasets, and have its performance compared to
those obtained by other traditional classification models on the
same data. The preliminary results are encouraging, with the
proposed model being ranked on second place among the 10
classifiers considered, on the selected datasets.

Index Terms—complex networks, classification, high level,
modularity

I. INTRODUCTION

The term complex network refers to a graph generated by
a large quantity of nodes (or vertices) joined by links (or
edges), with a non-trivial topology [1]. The study of complex
networks is inspired by empirical examples from the real-
world, such as the internet [2], biological neural networks [3],
social networks among individuals [4], food chains [5], blood
distribution networks [6] and power grid distribution networks
[7]. This framework has also been applied successfully to
perform different types of machine learning oriented tasks,
such as clustering [8], classification [9], [10] and regression
[11]. One of the main advantages of the use of complex
networks for accomplishing these tasks is the possibility of not
only analyze physical features of the input data (e.g., distance
or distribution), as in traditional machine learning techniques,
but to also consider the pattern formation in their topological
properties [9], [12]. Such type of approaches, which take into
account not only physical features, but also the organizational
structure of the data, are referred to as high level machine
learning techniques.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

2" Weiguang Liu
School of Computer Science
Zhongyuan University of Technology
Zhengzhou, China
weiguang.liu@zut.edu.cn

3" Liang Zhao
Dept. of Computing and Mathematics
FFLCRP - University of Sao Paulo
Ribeirao Preto, Brazil
zhao@usp.br

One of the key aspects when employing a graphical ap-
proach to a classification problem lies in how the network
is built from the information provided by the input dataset
[13]. Usually, for this process, each data instance is mapped
as a node in the network, and the edges among them are
generated according to the distance they are from each other,
pairwise, based on a threshold parameter. This threshold can
be set either as a fixed value, thus assuming the form of a
radius in the dimension space, for example, or it can also be
based on a KNN algorithm, where we hence have that a node
will be connected to its k nearest neighbors in the network,
disregarding how far they are from each other. However,
although the procedure of mapping every data instance as
a node in the network is still the most adopted one, it has
the drawback of, oftentimes, discarding useful information
from the dataset during the mapping process. Specially when
the number of features in the dataset is larger, which turns
more difficult to transfer all these information to the network
without any loss, since some simplifications are required for
the mapping process.

In this work, we introduce a different technique for building
the network, where, instead of mapping each instance of the
dataset as a node, as usual, we map each of the instance’s
attributes as being a node. Although this procedure will overall
require more memory consumption from the part of the model,
it has the important advantage of allowing to preserve more
information from the dataset when building the network, and
hence to also make use of this extra information for improving
its learning process, during the training phase. In addition, we
also introduce a technique for building the network which aims
to minimize the value of the threshold parameter responsible
for determining the edges among the nodes, while still yielding
a network with only one component per class. This technique
is used in our model for the sake of turning the network
more sensitive to the addition of new instances, in terms of
its modularity measure, during the testing phase.

The proposed model is evaluated by applying it to bench-
mark artificial and real classification datasets, as well as by
comparing its performance with the ones achieved by other
traditional classification models on the same data. The results
obtained are encouraging, with the model being ranked on
second place among the 10 classifiers considered, both for the

artificial and real selected datasets.

Besides this introduction, this paper is organized as follows.
In subsection II-A, there is an overview of the proposed model.
In subsection II-B, we provide a detailed description of the
model’s training phase, showing how it maps the input dataset
to an attributes network. In subsection II-C, we describe
the model’s testing phase, explaining how the probabilities
for a new testing instance of belonging to each class are
calculated. In section III, we list the datasets and models used
for evaluating and comparing the model’s performance with
those obtained by other traditional classification models. In
section IV, we present the obtained results, along with some
discussions. At the end, in section V, we conclude this study
by adding some final remarks.

II. MODEL DESCRIPTION

In this section we start, in subsection II-A, by providing an
overview of the model. In subsection II-B, we have a detailed
description of the model’s training phase, explaining how it
builds the attributes network and how it calibrates the threshold
parameter. In subsection II-C, there is the description of the
testing phase, explaining how the new instances are classified.

A. Model overview

In supervised learning, initially we have an input dataset
comprising m instances and n features, in the form of
X = {x1,29,...,4m}, Where each instance ¢ consists of n
dimensions, such that z; = (z;1,%;2,...,%in), as in the
following 2d array:

11 T12 T1,3 Ti,n
Z2,1 T2,2 T23 T2.n (1)
Tm,1 Tm,2 Tm,3 LTm,n

The labels for each instance ¢ are usually provided in the form
of Y = {y1,v2, ..., ym}, such that y; € £ = {iy...,1,}, which
represent the n classes in the dataset. The objective of the
training phase is to explore the correlations and to identify
possible patterns in the dataset, in order to learn the mapping
X 2 Y. To measure the level of learning, in the testing
phase, normally we make use of a second dataset. In the
absence of a second dataset, then the initial dataset can be
split into two subdatasets: X¢,qining and Yirqining, t0 be used
for training the classifier, and X;.s; and Yy, whose values
of Y are suppressed so they can be used for evaluating the
classifier’s performance.

A network can be defined as graph G = (V, £), where V is
a set of nodes and £ is a set of tuples representing the edges
between each pair of nodes (i,7) : 4,5 € V. In the proposed
model, each node in the network represents an attribute d of
an instance x; in the dataset, such that the size of G is always
equal to m-n. The connections (or edges) between nodes from
different instances are created based on how far they are from
each other, in the spacial dimension formed by each attribute
d, according to a threshold parameter c.

The main novelty introduced by the proposed model lies in
its network formation algorithm, which involves a calibration
process that aims to output a network with one component for
each class in the dataset, while still keeping a minimum value
for the threshold parameter «. In this way, the network resulted
from the training phase will be more sensitive, in terms of
its modularity measure, to the insertion of new instances
during the testing phase, which is expected to contribute for
increasing the performance of a classification method which is
solely based on this measure, as it is the case of the rationale
behind the model proposed in this work. In the training phase,
the attributes network is built by using the minimum possible
values for the parameter «, adjusted to each dataset. In the
testing phase, new instances are then inserted in the network
and its label will be yielded basically by the class which results
in the higher positive impact on the network’s modularity
measure, weighted by two other parameters, v and p. Below,
we provide more details about the training and testing phases
of the model, along with examples of the application of its
training phase on four benchmark classification datasets.

B. Description of the training phase

The training phase starts by generating the initial values of
the parameter «, used for creating the edges in the network.
Afterwards, it generates the attributes network G, while it
calibrates the values of « in order to keep them at a minimum
necessary value to obtain one component for each class in the
dataset. For each class [, the parameter O‘fi yields the maximum
difference between the values of attributes x; 4 and x; 4, with
i # j, in order to connect their respective nodes by a link in
the network. Its initial values are given by:

afi _ 9\/2211(551‘@ - Xd)Q @)

m—1 ’

which yields the standard deviation of the sample comprising
all m values for the attribute d in Xy,q;ning multiplied by a
predefined value 6, such that § € [0,1]. Note that those are
the initial values for «, which oftentimes will change later,
during the calibration of the parameter o when generating
the attributes network. Therefore, as lower the value of 6, the
lower will be the initial values of o and more changes are
expected to occur for its values during the calibration process.

After generating the initial values for «, the next step in
the training phase is to create the network from the training
dataset, in which every attribute will become a node in the
network and the edges between them are defined by the
parameter «. We start by generating a new graph G, with
m - n vertices, where m is the number of instances and n
is the number of dimensions in Xi,qining. Then, we create
the “intra-item” edges, by taking all nodes representing an
attribute x; 4, from the same instance 4, and connecting them,
pairwise, such that any attribute ; 4, will be connected to the
attribute x; 4,, except when dy = dp. At this point, we will
already have a network as it is shown in Figs. 1(a), 1(c), 1(e)
and 1(g), with each node representing an attribute and still
without any edges connecting nodes from different instances.

Afterwards, the model starts to calibrate the parameter « by,
at each iteration, setting its values as the minimum distance
between the components from a same class in the network and
connecting then by new edges, correspondingly, until we have
only one component per class, as it is shown in Figs. 1(b),
1(d), 1(f) and 1(h).

The complete process for generating the network is outlined
in Algorithm 2. On lines (2:5), we create the network, add the
vertices and the intra-item edges. On lines (6:28), there is the
« calibration process, when the “inter-edges”, i.e., the edges
connecting attributes from different instances, are created, by
determining the minimum values for « such that, at the end,
we have one component for each class in the network.

The Algorithm 1 shows how the edges for connecting nodes
from different instances in the network are created, according
to the current values of the parameter «. In this case, the model
will generate edges between each pair of nodes z; ¢ and x; 4
representing a same attribute d and a same class [, where ¢ # j,
whenever the distance between them are within the range .
In this way, the total number of edges between two instances
will range from O until the number of dimensions n in the
dataset.

Algorithm 1 Inter-items edges generation
1: procedure GETINTEREDGES(X, 1)
2: es + ||
3 combs < combinations of indexes in X, pairwise
4 for 7 in indexes of X' do
5: pairs < combsP¥ro=i

6: for p in pairs do

7

8

9

for d =0 to n do
c vl l
dist = |Xp0,d — Xp17d|
if dist < o, then

10 es < add pair p
return es

The last step in the training phase consists of generating the
final values of the parameter «, to be used in the testing phase.
These values are given by the arithmetic mean of the current
values of « at each iteration during the calibration process.
Hence, for testing purposes, the values of « are yielded by:

no 1
aly = Dic1 Y ’ 3)
n

where n is the number of changes occurred for ail during its
calibration process, d is one of the dimensions in the dataset
and [€ L. In this way, for testing purposes, the values of o
will be somewhere between its initial values, when generally
only a few edges are generated or even none of them, and its
final values in the calibration process.

C. Description of the testing phase

In the testing phase, a new instance is inserted in the
network G and the model then needs to assign it a label,
according to its attributes values. To accomplish this task,
the model starts by simulating its insertion on each of the

(e) Iris (intra-item edges)

(h) Zoo (final network)

(g) Zoo (intra-item edges)

Fig. 1. Examples of networks generated by following the steps in the training
phase for four datasets. (Left) network with only edges between attributes of
a same instance, and (Right) final attributes network for: (a) and (b) Circles_0
dataset (2 classes and 2 features), (c) and (d) Moons_0 dataset (2 classes and
2 features), (e) and (f) Iris dataset (3 classes and 4 features), and (g) and (h)
Zoo dataset (7 classes and 16 features). The number of training instances is
reduced for the Zoo dataset only for the sake of visibility.

Algorithm 2 Attributes network G generation
1: procedure GENERATE G(X,Y)
2: VS —m-n
3 G < new graph with vs vertices
4 G < add intra-item edges
5: es_list <+ ||
6: while [en(Geomronents) > p do
7
8
9

for class in set(Y) do
es < GetInter Edges(X, a, class)
es < e in es if e not in es_list
G <+ add edges es

11: es_list < add es

12: comps <— components in G

13: classes + [l if len(comps@ss=t) > 1]

14; C < largest component in compscless in classes
15: others < [other components in comps®@ss=C""""
16: difmin < [oo] - n

17: for nodel in C' do

18: i1 <= X values for nodel

19: for node2 in others do

20: 12 <= X values for node2

21: dif < [0]-n

22: for d =0 to n do

23: dlfd = |i1d — i2d| — OzdcdasS

24: if maz(dif) < max(difmin) then

25: difmin = dif

26: for d =0 ton do

27: if di fming > 0 then

28: adCCMS—I— = difming

return GG

network’s components, generating edges according to the
values of the parameter «, and then calculates the impacts
of this insertion on the network’s modularity measure (), for
each component, i.e., for each class. The probabilities for the
new instance to belong to each class [are yielded based on the
number of edges generated for each attribute d, weighted by a
respective parameter 7,4, and on the impacts on the modularity
(Q, weighted by a respective parameter p!, such that the higher
is the positive impacts on) when the instance is inserted on
the component from class [, the higher will be its probability
to belong to this class.

The modularity measure, broadly speaking, compares the
number of connections between vertices which share a same
characteristic with the expected number of connections when
occurred randomly, and it is often used for detecting com-
munities in a network. The fast greedy algorithm [14], for
example, determines the optimal number of communities in
the network by maximizing the modularity score of the graph.
For the classification task proposed in this work, we take
into account two other factors regarding this measure, which
are: (1) How meaningful is each of these new connections
(or edges) induced by the insertion of the new instance in
the network and (2) The ratio between the respective number

of new connections generated and the size of the network
component, since, overall, larger components tend to receive
more links from the new instance, which would incur in biased
estimations from the classifier. Therefore, for the testing phase,
we adopt two parameters, v and p, for managing these two
mentioned factors in the model.

The parameter 7 has the role of yielding the correla-
tions between each attribute in Xy,4;ning and the classes in
Yiraining.- These values are used for weighting the number
of edges generated between a new instance and the already
existing nodes in the network, such that attributes which are
more correlated t0 Yi,qining have higher weights on the final
probability scores yielded for each class. In order to determine
these weights, we opt for making use of the Ridge Regression
[15], with the values of 7 hence assuming the values of
the coefficients w returned by this linear regression model.
Ridge Regression reduces the standard errors by minimizing
the following loss function:

Y — Xw|® + Aw|* 4)

where A\ is a term to control the regularization strength.
The main distinction of Ridge Regression among other linear
regression models is that it enforces the coefficients w to be
lower, as in the first term of (4), by introducing a constraint as
the second term in (4) which penalizes large values for w. So
the lower is the value of constraint A on the features, the more
the model will resemble an Ordinary Least Squares model. In
our adaptation, the values of ~ are yielded by:

V wadl
Yooy VIwal

where |wg| is the absolute value of the coefficient returned
by the Ridge Regression model for attribute d and n is the
number of dimensions in the dataset. The root square in (5)
is inserted for the sake of balancing the values of 7 in cases
when the differences between them become too large.

The third parameter of the model p is responsible for bal-
ancing the impacts on the network’s modularity measure, when
inserting new instances during the testing phase, according to
the ratio of the number of instances per class in the training
dataset. This is necessary for dealing with cases of unbalanced
datasets. Its values are given by:

Ya =)

o= :Xiraining ’

training

(6)

where | € £ and X/, ,;.;,| stands for the length of all
instances in X¢rqining from class [. The final values of p must
also be normalized, hence assuming the form p;/)", p1.
Likewise in the training phase, the new instance has its
attributes mapped as n nodes in the network, where n is the
number of dimensions in the dataset, and the edges among its
nodes (intra-item edges) are created according to the same rule
used in the training phase, with all its pairs of attributes x; 4,
and z; 4, being connected, pairwise, as long as d; # ds. The
generation of edge (z; 4, x;4) between the node representing

attribute d of the new instance ¢ and any already existing node
in the network j, also representing attribute d, from class [, is
yielded by:
1, if |$id*xjd| < Oéfi

Tid,Tjd) = . T 7

(¥id25.0) 0, otherwise |, @
where [€ L. The total number of edges created are then
averaged by each attribute d and weighted by the respective
parameter ~y, providing us with the indicator E, for each class
l, according to:

ni €
E' =vd% : (8)

where €4 represents the total number of edges generated for
attribute d between the new instance nodes and the other nodes
in the network and n is the number of dimensions in the
dataset. These values are later normalized, by:

El
=< 5 >
Y B
where n is the number of classes in L. Next, the overall
impacts I' of the new instance insertion on the network’s
modularity measure @, for each class [, is calculated and

has its value weighted both by E and by the parameter p,
according to:

E)

I'=p Elw

Qo
with @y being the value of the network’s modularity measure
@ at the end of the training phase. These values are also later
normalized, providing us with what will be the probabilities
P(i¢'55=1) of the new instance 7 to belong to each class [, in

the form of:

, and (10)

1 1 I
P ~Class—=— —

(i) S
At the end, the final label [to be assigned to the new instance
i will be the one among [€ £ which maximizes P(i°/@5=),
being yielded by:

(1)

12)

g
= ,Cargmaxl P(iclass=l)

Therefore, the new instance ¢ will belong to the class ! which
results in the highest positive impact on the network’s modu-
larity measure (), when weighted by the balancing parameter
p and also by the indicator E, which, by its turn, measures the
level of “meaningfulness” of its connections in the network,
so to speak, by weighting the number of edges generated per
attribute by the respective correlation between each feature
and the labels in the dataset.

III. MATERIALS AND METHODS

We evaluate the efficiency of the proposed modularity-based
high level model, hereafter to be mentioned as MBHL, by
applying it to artificially generated data and also to well-
known benchmark datasets intended for machine learning
classification tests. A succinct meta-information of the selected
datasets used for testing purposes is given in Table I. For a

Circles (noise = 0.0) Circles (noise = 0.1)

-100 -0.75 -050 -025 000 025 050 075 100 -10 -05 00 05 10

(a) Circles_0 (b) Circles_01

Moons (noise = 0.0) Moons (noise = 0.1)

et

(c) Moons_0 (d) Moons_01

Fig. 2. Artificial datasets generated for the evaluation and comparison of the
model. Above: (a) two concentric circles without noise and (b) two concentric
circles with a noise of 0.1. Below: (¢) two moons without noise and (d) two
moons with a noise of 0.1.

detailed description of the real datasets, one can refer to [16].
Examples of the artificial datasets generated for the tests are
provided in Fig. 2. For splitting each dataset into 2 subdatasets,
for training and testing purposes, we made use of a function
which shuffles the data, through a random seed value, and
returns a train-test split with 75% and 25% the size of the
inputs, respectively. As preprocessing, all real datasets have
their features treated through a quantile transformation, such
that their values are adjusted to follow a uniform distribution,
ranging from O to 1.

TABLE I
META INFORMATION OF THE CLASSIFICATION DATASETS USED FOR
EVALUATING AND COMPARING THE MBHL MODEL

N of Samples | N¢ of Features | N° of Classes

= Circles_0 100 2 2
E Circles_01 100 2 2
‘B Moons_0 100 2 2
< | Moons_01 100 2 2
Bankruptcy 250 6 2
Haberman 306 3 2

6 Hayes-roth 132 5 3
~ Iris 150 4 3
Wine 178 13 3

Zoo 101 16 7

For the sake of comparison, the following traditional clas-
sification models are applied on the same datasets listed
in Table I: Decision Tree [17], Logistic Regression [18],
Multilayer Perceptron [19], Support Vector Machines with an
RBF kernel [20] and Naive Bayes [21]. We also apply the
following ensemble methods: Bagging of Decision Tree and
Bagging of MLP [22], Random Forest [23] and AdaBoost
[24]. All traditional models are implemented through [25]

and we keep their respective default parameters values, in
all tests performed. As for the proposed MBHL model, we
set the parameters § = 0.1 for tests with artificial datasets
and # = 0.5 for tests with real datasets. The value of A,
for the Ridge Regression, was set to 1.0. For the tests with
artificial datasets, the model generates edges among nodes
from different instances only when all distances between them
are within the respective range yielded by «4. Each dataset is
processed 50 times by all models, each time having their data
items shuffled by using a different randomly generated seed.
The final accuracy scores are the averaged ones achieved by
each model, on each dataset.

IV. RESULTS AND DISCUSSION

In this section, we present the obtained results when apply-
ing the proposed MBHL model to artificial and real benchmark
classification datasets, along with a comparison of its per-
formance with the ones achieved by traditional classification
models on the same data.

The results obtained from the application of the proposed
MBHL model, along with other traditional classification mod-
els, both on real and artificial datasets, are summarized in
Table II. The Average Rank, in the last row, indicates the
averaged rank position achieved by each model considering
all datasets, according to their respective rank achieved on
each of them, in terms of mean accuracy values.

Regarding the results obtained on artificial datasets, al-
though the MBHL model was not ranked so well for the Cir-
cles_01 dataset (two concentric circles with 0.1 noise), being
ranked on fifth place, it was still able to achieve the second
place in the average rank. This is because its performance
on the other three datasets was very stable, having achieved
second place in all of them. Note that, for this database, the
RBF SVM model is ranked as first, in all datasets, and the
MBHL model is ranked right after it in the average rank,
followed by the AdaBoost model, on third place.

Both Circles and Moons datasets can be challenging to
classify due to their non-linearity property, specially when
noise is inserted in the problem. Classifiers which are based
mainly on the linear distance among instances tend to perform
poorer in this type of scenario, since testing instances from
different labels get more mixed, and the classes oftentimes
overlap each other in the decision space. In this sense, the
relative good performance of MBHL on these type of datasets,
finishing on second place overall, indicates that the model
is able to correctly detect the topological patterns formation,
for the selected datasets, and to adjust its inference process
according to these identified patterns.

If we look at Figs. 1(b) and 1(d), which show the attributes
networks resulted from the training phase for Circles_0 and
Moons_0 datasets, respectively, we can note that only the
nodes representing instances which are immediately adjacent
to each other in these datasets become connected in the
training phase. This happens due to two factors: (1) The form
with which the parameter « is calibrated when building the
network, by keeping it at a minimum value in order to generate

only the enough number of edges for allowing the connection
between all components from a same class in the network,
and (2) The rule where the model will connect the nodes
of different data instances only if all distances between them
are within their respective thresholds yielded by the parameter
«, for all dimensions considered. Hence, the capacity of the
model to identify the topological patterns in a dataset comes
from these two factors combined. In this way, the network is
more sensitive to the disturbances in its topology provoked
by the insertion of new instances during the testing phase.
Also, nodes representing instances which are close from each
other in one of the dimensions, but are far from each other in
other dimensions, do not get connected, since all features of
the dataset are considered when generating the edges between
different instances.

As for the obtained results when applying the proposed
MBHL model on real datasets, we can note, in Table II, that
it achieves its best relative performance on Zoo dataset, being
ranked as second best, right after the Logistic Regression
model and followed by Random Forest model. Likewise it
happened on the tests with artificial datasets, although its
relative performance do not really stand out from the other
classifiers, when it comes to another real datasets, it was still
able to achieve second place in the average rank since it was
overall more stable than the other models, in terms of relative
performance, having always being ranked as 4th or 5th on the
other datasets.

The good relative performance of the MBHL model on the
Zoo dataset — which has a total of 16 features, with most of
them being binary ones — is a sign that the parameter vy is
properly fulfilling its role, of measuring the “meaningfulness”
of each attribute in the classification task. For this specific
dataset, for example, the 16 values for this parameter were:
(0.07, 0.09, 0.07, 0.1, 0.03, 0.06, 0.05, 0.03, 0.11, 0.08, 0.03,
0.04, 0.07, 0.11, 0, 0.07). Therefore, as we can note, none
of the weights is higher than 0.11, and only one of them is
set as 0, which means that the model identified this attribute
as not meaningful for the classification task. It is also worth
noting that the Zoo dataset has 7 classes and only 101 samples,
which indicates that the model can also learn well even when
the number of data instances per class is limited. As for the
results obtained on the Haberman dataset, we would like to
point out that, after 50 random train-test data splits, half of
the models (5 out of 10) still achieved a mean accuracy of
less or equal to 50% on it. Considering that this dataset has
only 2 classes, then it means that this classification problem
is a challenging one, and that the mean accuracy achieved by
the MBHL model on it, of 59.4%, is quite satisfactory.

V. FINAL REMARKS

In this work, we introduce a high level classification model
which maps each attribute of the dataset as a node of a
network, and the labels assigned to testing instances are
based mainly on the modularity measure. For its evaluation,
the model was applied on both artificial and real bench-
mark datasets, and had its performance compared to the

TABLE II
RESULTS: MEAN ACCURACY RATES FOR EACH DATASET OBTAINED BY THE FOLLOWING MODELS, IN THAT ORDER: MBHL, ADABOOST, BAGGING OF
DECISION TREE, BAGGING OF MLP, DECISION TREE, LOGISTIC REGRESSION, MLP, NAIVE-BAYES, RANDOM FOREST AND SVM. THE VALUES
BETWEEN PARENTHESIS INDICATE THE RANK ACHIEVED BY EACH MODEL ON EACH DATASET.

MBHL Ada BagDT BagMLP DT LR MLP N-B RF SVM
Circles_0 0.985 (2) 0.983 (3) 0976 (50 0.725(9) 0982 (4) 0.388 (10) 0.797 (7) 0.784 (8) 0.969 (6) 1.0 (1)

% Circles_01 0.796 (5) 0.820 (3) 0.818 (4) 0.696 (9) 0.795 (6) 0.396 (10) 0.750 (8) 0.762 (7) 0.831 (2) 0.896 (1)

& | Moons_0 0.988 (2) 0.979 (3) 0.922 (6) 0.857(8) 0933 (5) 0.844 (10) 0.855(9) 0.864 (7) 0.968 (4) 0.998 (1)

E Moons_01 0.973 (2) 0.955 (3) 0912 (5) 0.852(9) 0.909 (6) 0.845 (10) 0.860 (7) 0.859 (8) 0.951 (4) 0.976 (1)
Average Rank 2nd 3rd 5th 9th 6th 10th 8th 7th 4th st
Bankruptcy 0.993 (4) 0.996 (2) 0.995 (3) 0.961 (8) 0.995 (3) 0.962 (7) 0.963 (6) 0.957(9) 0.997 (1) 0.986 (5)
Haberman 0.594 (4) 0.465 (9) 0.496 (7) 0.651 (2) 0.489 (8) 0.700 (1) 0.649 (3) 0.534(5) 0.500 (6) 0.496 (7)

_ | Hayes-roth 0.651 (4) 0592 (7) 0.712 (2) 0553 (9) 0.690 3) 0.513 (10) 0.569 (8) 0.633 (5) 0.721 (1) 0.613 (6)

E Iris 0.938 (5) 0.930 (7) 0.950 (2) 0918 (8) 0930 (6) 0913 (10) 0918 (9) 0.945(3) 0.940 (4) 0.965 (1)
Wine 0.961 (5) 0.700 (10) 0.927 (8) 0.932(7) 0.894 (9) 0.964 (3) 0.940 (6) 0.961 (4) 0971 2) 0977 (1)
Z00 0.927 (2) 0.801 (9) 0.904 (7) 0925 (4) 0.860 (8) 0.928 (1) 0925 (5) 0.925(5) 0.926 3) 0.918 (6)
Average Rank 2nd 9th 4th 8th 7th 6th 7th 5th 1st 3rd

ones achieved by other traditional classification models. The [4] P. J. Carrington, J. Scott, and S. Wasserman, Models and methods in
obtained results on artificial datasets indicate that the model social network analysis. Cambridge: Cambridge University Press, 2006.
. bl v d logical in the d [5] J. M. Montoya and R. V. Sol, “Small world patterns in food webs.”
?S a e to CorreCt. y eteC.t tOp.O ogica p.atterns In t e aFa’ Journal of Theoretical Biology, vol. 214, no. 3, pp. 405-412, 2002.
including those with non-linearity properties, and to adjust its ~ [6] G. B. West, J. H. Brown, and B. J. Enquist, “A general model for the
inference process accordingly. The results obtained from its structure, and allometry of plant vascular systems.” Nature, vol. 400, pp.
.. . . 125-126, 2009.
app llcathn on real datasets were al?? encouraging, with the [71 R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of the
model being able to achieve competitive mean accuracy rates north american power grid.” Physical Review, vol. 69, no. 2, p. 025103,
when compared to traditional classifications models. 2004
As future research. we plan to work on the improvement [8] T. C. Silva and L. Zhao, “Stochastic competitive learning in complex
’ p p . networks,” Neural Networks and Learning Systems, IEEE Transactions
of some of the model’s current features, such as: (1) Possibly on, vol. 23, no. 3, pp. 385-398, 2012.
eliminate or automatize the parameter 0, so that the model [9] , “Network-based high level data classification.” Neural Networks
may be able to learn and to infer the information regarding ‘9‘% I‘Z%ﬁr;’"g Systems, IEEE Transactions on, vol. 23, no. 6, pp. 954~
this parameter directly from the characteristics of each dataset, [10] T. Colliri and L. Zhao, “Analyzing the bills-voting dynamics and
during the training phase, (2) Although our current choice predicting corruption-convictions among Brazilian congressmen through
. . . . temporal networks,” Scientific Reports, vol. 9, no. 1, pp. 1-11, 2019.
for adopting the Ridge Regression for the sake of generating [11] X. Gao, H. An, W. Fang, X. Huang, H. Li, W. Zhong, and Y. Ding.
the values of the parameter v has demonstrated, based on “Transmission of linear regression patterns between time series: From
the obtained results, to be quite fair so far, we still consider relationship in time series to complex networks,” Physical Review E,
. . vol. 90, no. 1, p. 012818, 2014.
that other forms of generating these values should definitely) 7% e s B by “and L. Zhao, “A network-based high level
be explored in the future, and (3) Optimize the model’s data classification technique,” in 2018 International Joint Conference
memory consumption and its processing time, specially in the on Neural Networks (IJCNN). 1EEE, 2018, pp. 1-8.
« calibration process since, at the way it is now, this process [13] L. Berton, A. de Andrade Lopes, and D. A. Vega-Oliveros, “A com-
. . parison of graph construction methods for semi-supervised learning,
can take too long as the number of attributes in the dataset in 2018 International Joint Conference on Neural Networks (IJCNN),
increases, hence such optimizations would allow testing the 2018, pp. 1-8.
model with larger datasets, such as images, for example. [14] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6,
p- 066111, 2004.
ACKNOWLEDGMENTS [15] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
This work is supported in part by the Sdo Paulo for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55-67,
. 1970.

State Research Foundation (FAPESP) under grant ~num_ [16] M. Lichman, “UCI machine learning repository,” 2013. [Online].

bers 2015/50122-0 and 2013/07375-0, the Coordenagdo de Available: http://archive.ics.uci.edu/ml

Aperfeicoamento de Pessoal de Nivel Superior - Brasil [17] S. R. Safavin and D. Landgrebe, “A survey of decision tree classifier

(CAPES) - Finance Code 001, and the Brazilian National gﬁh(igglf gy IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3, pp. 660-

Council for Scientific and Technological Development (CNPq) [18] A. Gelman and J. Hill, Data analysis using regression and multilevel-

under grant number 303199/2019-9. hierarchical models. Cambridge University Press New York, NY, USA,
2007, vol. 1.

REFERENCES [19] G. E. Hinton, “Connectionist learning procedures,” Artificial intelli-

gence, vol. 40, no. 1-3, pp. 185-234, 1989.

[1] R. Albert and A. L. Barabdsi, “Statistical mechanics of complex net- [20] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
works.” Reviews of Modern Physics, vol. 74, pp. 47-97, 2002. Springer, 2000.

[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation- [21] I. Rish, “An empirical study of the naive bayes classifier,” IJCAI 2001
ships of the internet topology.” ACM SIGCOMM Computer Communi- workshop on empirical methods in artificial intelligence, vol. 3, no. 22,
cation Review, vol. 29, no. 4, 1999. 2001, IBM New York.

[3] O. Sporns, “Network analysis, complexity, and brain function.” Com- [22] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.

plexity, vol. 8, no. 1, pp. 56-60, 2002.

123-140, 1996.

(23]

[24]

[25]

——, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,
2001.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in European Conference
on Computational Learning Theory. Springer, 1995, pp. 23-37.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

