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Abstract—Determining an appropriate number of features for
each layer in a neural network is an important and difficult task.
This task is especially important in applications on systems with
limited memory or processing power. Many current approaches
to reduce network size either utilize iterative procedures, which
can extend training time significantly, or require very careful
tuning of algorithm parameters to achieve reasonable results. In
this paper we propose NodeDrop, a new method for eliminating
features in a network. With NodeDrop, we define a condition to
identify and guarantee which nodes carry no information, and
then use regularization to encourage nodes to meet this condition.
We find that NodeDrop drastically reduces the number of features
in a network while maintaining high performance. NodeDrop
reduces the number of parameters by a factor of 114x for a
VGG like network on CIFAR10 without a drop in accuracy.

Index Terms—Machine Learning, Deep Learning

I. INTRODUCTION

A prime difficulty in neural network design is the appropriate
tuning of network architectures. Choosing a size for each
layer of a neural network is usually done by rough estimate,
trial, and error. This imprecise process can often lead to
network designs larger than needed to perform a particular
task. Although the capacity for training large and complex
networks grows with improving graphics processing unit
(GPU) technology, designing too large a network can result in
applications impracticable for general hardware use. Mobile
devices and embedded systems limit compute, memory, and
storage consumption, and as a result can only run small,
minimally designed networks. A designer aiming to create
such a minimal network is faced with the time-consuming task
of manually tuning the number of neurons in each layer. This
tuning process can result in many extended tuning experiments
in order to balance the space and performance of the neural
network.

The issues involved with using deep neural networks (DNNs)
on constrained systems has inspired significant research. One
interesting area of research is the design of systems which
can automatically prune a network’s parameters. Ideally these
techniques can still maintain high performance while pruning
as many parameters as possible, ensuring the network can
fit on smaller systems. Many state-of-the-art methods for
network pruning generally involve an iterative process of
repeatedly pausing training, pruning parameters, and resuming

training in order for the network to reconverge. Such iterative
procedures can lead to long training times. Other techniques
use regularization in order to eliminate nodes. The final
performance of these networks is often highly variable with the
hyper-parameters of the algorithm. Thus, while these techniques
do offer parameter reduction benefits, the network designer
will still be faced with similar difficulties as before: a time-
consuming training process and a potential hyper-parameter
tuning headache.

We address the problem of parameter reduction with our
novel NodeDrop technique, which prunes the network during
training. The NodeDrop technique only drops nodes which
carry no information and drops them fluidly during the training
process.

First, we formally define the conditions necessary to guaran-
tee a neuron carries no information. We then propose a simple
variant of L1 regularization which drives nodes toward this
condition. Second, we extend the NodeDrop technique to net-
works which use batch normalization [1]. We test our technique
on modern architectures for the MNIST, CIFAR10, CIFAR100,
and ImageNet datasets, and show that we are able to drop a
significant number of nodes without a loss in performance.
Our method requires no iterative retraining and only a modest
increase in training time. We demonstrate effective results with
a wide range of hyperparamaters, indicating our method does
not require precise hyperparameter tuning. At best case we
produce a network which reduces the number of parameters by
93.27, 99.12, 87.82, and 83.47 percent for MNIST, CIFAR10,
CIFAR100, and ImageNet respectively.

II. RELATED WORKS

A. Pruning

Network pruning comprises a set of techniques which take
a pretrained network and then prune off connections using
some heuristic. This is usually followed by a retraining of the
network and sometimes by an iterative process of pruning and
retraining the network several times. Pruning techniques first
appeared in the 1990s, with the first instances using second
order gradients of connections to determine which neurons
should be pruned [2]–[4]. More recent approaches have taken
on a wide array of methods for determining which connections
should be pruned. These approaches include correlation [5]–[7],
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regularization [8], [9], particle filtering on misclassification rate
[10], low rank approximation [11], vector quantization [12]
and tensor decomposition [13].

All network pruning techniques suffer from extended training
time due to the iterative retraining of the network. This can
lengthen training times significantly, and often makes tuning
the various parameters in each method a lengthy chore.

B. Regularization

A more recently developed approach to network parameter
reduction is to disable parameters through regularization. A
majority of these techniques have focused on the sparsification
of network connections using a group sparsity approach [14]–
[17]. This involves grouping the weights for every neuron and
attempting to sparsify each group by penalizing its L2 norm.
These techniques require all weights to be driven to zero before
a node can be guaranteed to carry no information. In practice
nodes are removed based on a threshold since this guarantee is
difficult to meet. Because of this, regularization methods can
be difficult to use as they require very precise tuning of the
regularization and threshold terms.

The most similar technique to ours, Liu et al. [18], uses L1

regularization to drive the scale parameter in batch norm, γ,
towards zero. This is similar in principle to our own experiments
with batch norm. However, Liu et al. requires retraining after
pruning in order to reconverge. We provide a more absolute
condition to guarantee a node is off, eliminating the need for
a retraining procedure and making node removal a more fluid
process.

Our technique falls within the regularization category. Key
differences in our approach involve special regularization of
the bias for each neuron and, most importantly, a condition
for node removal which absolutely guarantees no effect on
network output. Our condition is also more relaxed, utilizing
the “dead” region in a node’s activation function, instead of
requiring the node’s weights to be zero.

C. Other approaches

Several other approaches have appeared which do not fit into
the categories of the previous two subsections. Many of these
approaches focus on reducing precision as opposed to reducing
the number of parameters [19]–[22]. As such, these approaches
are largely orthogonal to our own work, and can be used in
conjunction with our work in order to compound the reduction
on memory and computation. One example of this approach
is quantized and binarized neural networks [19], which take
this approach to new levels by using {−1, 1} weights and an
XOR to replace multiplication.

An additional noteworthy paper is that of Molchanov et al.
[23]. They achieve impressive results by sparsifing a network’s
connections during training using variational dropout. Again,
in theory this work should be usable in conjunction with our
own.

III. METHODS

A. NodeDrop Condition

In this section we describe the condition for identifying
useless nodes in a network. Nodes in a neural network carry
information by outputting values from some distribution. A
node can only be useful if that node sometimes outputs a
non-zero value. A node which is guaranteed to always output
a constant value is a node which can only be used as an extra
bias node for future layers, thus to ensure a node is completely
useless it will be important to include bias in our analysis.
Moreover, if a node is guaranteed to always output the constant
zero, this node is entirely useless and can be removed from the
network without impact. This occurs in activation functions
with a flat zero region. The popular rectified linear unit (ReLU)
activation function contains such a flat zero region. This flat
zero region causes the observed “Dying ReLU” effect, in which
nodes become stuck in this flat region with zero gradients. We
can therefore design a condition to identify when a node is
useless by taking advantage of this effect.

We propose the NodeDrop condition.
1) Given a node with input vector ~x ∈ [0, 1]n, a weight

vector ~w ∈ Rn, bias b ∈ R, and an activation function
σ such that σ(v) = 0 ∀v ≤ 0.

2) We wish to find the condition under which this node is
dead, σ(~w · ~x+ b) = 0 for all inputs ~x.

3) Since σ(v) = 0 ∀v ≤ 0, we simply need to find the
condition under which ~w ·~x+b ≤ 0. We have constrained
the inputs to be within [0, 1], ~x ∈ [0, 1]n, so we have:

~w · ~x+ b ≤ ‖max(~w,~0)‖1 + b ≤ ‖~w‖1 + b

4) Then, ‖max(wi, 0)‖1 + b ≤ 0⇒ σ(~w · ~x+ b) = 0

This leaves us with the NodeDrop condition:

‖max(wi, 0)‖1 + b ≤ 0 (1)

This condition can be applied to a fully connected layer, or in
broader contexts such as filter weights of a convolutional layer.
Because nodes which satisfy this condition are guaranteed to
always output zero, they can be dropped from the network
without affecting its output. Note that the weaker condition
‖~w‖1 + b ≤ 0 can also be used, but identifies fewer nodes that
can be dropped.

The constraint on the activation function σ(v) = 0 ∀v ≤ 0
can be achieved using the standard ReLU activation of
max(0, x). However ReLU does not guarantee that the output
will fall between 0 and 1, a necessary condition if we want
to apply NodeDrop to the next layer in the network. In the
following section we will discuss an activation function for
which the NodeDrop condition can be applied to both a layer
and its following layer.

B. Activation Function

Supposing we want to apply NodeDrop to many or all
layers of the network, we must use an activation function
which possesses the appropriate flat zero region (−∞, 0], and
whose outputs are always between 0 and 1. The flat zero region



guarantees the NodeDrop condition can be applied to the layer
preceding activation, and the [0, 1] constraint on the output
allows for the NodeDrop condition to be applied to the layer
immediately following activation. These necessary constraints
are reiterated below.

σ(v) = 0 ∀v ≤ 0 (2)

σ(v) ∈ [0, 1] ∀v (3)

If the outputs of a layer are guaranteed between 0 and 1
after activation, the inputs of the next layer will satisfy the
conditions assumed in proving the NodeDrop condition. Many
activation functions can satisfy these conditions, but none of
the most popular activation functions satisfy both together.
For example, the popular ReLU function satisfies the first
condition in equation 2 but not equation 3. Conversely, The
popular sigmoid activation function satisfies equation 3 but not
equation 2.

One option is a clamped ReLU activation function,
min(1,max(0, x)). This has two flat regions, σ(v ≥ 1) =
1, σ(v ≤ 0) = 0, and an intermediate region where σ(v ∈
[0, 1]) = v. This does satisfy both of the NodeDrop conditions;
however, we found that having two regions with zero gradients
can lead to too many nodes being “stuck” at either 0 or 1 even at
network initialization. Thus, we propose the SoftClampedReLU
activation function, which is a combination between ReLU and
inverted SoftPlus activations:

σ(v) = max(0, 1− 1

β
log(1 + eβ(1−x)) (4)

Intuitively this activation is much like a ClampedReLU, but
has a soft gradient in the upper region. This upper region
is not perfectly flat and so values do not become stuck at
σ(v) = 1. The σ(v ≤ 0) = 0 lower region is still perfectly flat,
satisfying our flat region condition, equation 2. This activation
function is shown in figure 1. In our experiments we used
β = 10.0 and observed no decline in performance with the
SoftClampedReLU activation compared to ReLU.

C. Regularization

The NodeDrop condition for identifying and eliminating
useless nodes is powerful, but without encouragement, most
trained networks will possess very few nodes satisfying
the NodeDrop condition. Therefore, we add regularization
during training to encourage features to satisfy the NodeDrop
condition.

To encourage ‖max(~w,~0)‖1+b = 0 we can directly penalize
its distance from zero:

λ|‖max(~w,~0)‖1 + b|

However, this is too close to the boundary of our dead region.
Alternatively to encourage max(~w,~0) + b ≤ 0, we could
penalize it directly:

λ(‖max(~w,~0)‖1 + b)

Fig. 1. SoftClampedRelu activation function. Shown with β = 10.

However, this causes the bias to tend toward negative infinity.
Instead we penalize the distance from a negative constant,
−C, given:

λ|‖max(~w,~0)‖1 + b+ C| = λ|
∑
i

max(wi, 0) + b+ C|

This encourages ‖max(~w,~0)‖1 + b = −C, safely within the
“dead” region, and without tending to negative infinity. As such,
the choice of C is largely arbitrary; in our experiments we
found a value of 1.0 worked well, though other values worked
just as well.

We can also write our regularization term as a small
modification to standard L1 regularization. For the case where
‖max(~w,~0)‖1+b ≥ 0, when a node is on, λ|‖max(wi, 0)‖1+
b+C| = λ(‖max(~w,~0)‖1 + ‖b+C‖1). We use this modified
L1 regularization given as:

λ(‖max(~w,~0)‖1 + ‖b+ C‖1) (5)

This is normal L1 regularization with two adjustments. We
use the L1 norm of max(~w,~0) instead of ~w since this is a
tighter bound given that x ≥ 0. Instead of penalizing the bias
as ‖b‖1, we penalize ‖b+C‖1. This modified L1 regularization
encourages biases to take bias values near b = −C, and weight
values near 0. It should be noted that penalizing the bias is
important as the bias is a part of the NodeDrop conditions
guarantee.

We use L1 regularization because L2 regularization does
not work well in our context. For L2 regularization on both
the weights and the bias, it is cheaper to use multiple weights
as a bias rather than the bias itself. That is, when

∑n
i wi = b,

then ‖w‖2 < ‖b‖2. This becomes worse when we penalize the
distance of the bias from −C rather than from zero, making
the normal case of an active node with bias around C quite
costly. This encourages the network to use many nodes in the
previous layer as an alternative to a bias, preventing us from



removing those nodes even if they carry no information beyond
that of a bias.

D. Extension to Batch Normalization

Many state of the art networks utilize batch normalization or
one of its alternatives [1], [24], [25]. In the following section we
build upon the NodeDrop condition proposed earlier, designing
a NodeDrop condition which will hold in a network with batch
normalization. Batch normalization is given as follows:

µ =
1

m

m∑
i=1

xi (6)

σ2 =
1

m

m∑
i=1

(xi − µ)2 (7)

x̂i =
xi − µ√
σ2 + ε

(8)

yi = γx̂i + β (9)

where the sum is over the batch of size m, and both γ and β
are learned parameters. Batch normalization is usually applied
between the output of a layer and an activation function.

To achieve a similar NodeDrop condition for batch normal-
ization as in equation 1, we would like to determine when
yi ≤ 0. We similarly require an activation with a flat zero
region, but no longer require an input ~x between 0 and 1.
Therefore, for our batch normalization NodeDrop (NodeDrop-
BN) technique we are able to use the popular ReLU activation
function. Our NodeDrop-BN condition is given in the following
lemma.

Lemma III.1. |γ|
√
m+ β ≤ 0 =⇒ yi ≤ 0.

Proof.

given x̂i =
xi − µ√
σ2 + ε

=⇒ x̂2i =
(xi − µ)2

σ2 + ε

=⇒
m∑
i=0

x̂2i =

∑m
i=0(xi − µ)2

σ2 + ε

=
mσ2

σ2 + ε

=⇒
m∑
i=0

x̂2i ≤ m

=⇒ −
√
m ≤ x̂i ≤

√
m

Together |x̂i| ≤
√
m and yi = γx̂i+β imply yi ≤ |γ|

√
m+β.

Therefore
|γ|
√
m+ β ≤ 0 =⇒ yi ≤ 0

This gives us the NodeDrop-BN condition:

|γ|
√
m+ β ≤ 0 (10)

Traditionally, batch normalization stores a running mean,
µ, and variance, σ2, during training. These stored values are

then used during testing. Our condition guarantees a node is
always off during training, but does not guarantee a node will
always be off during testing. We make the assumption that a
node which is always off during training should also be off
during testing. Thus, we can safely remove these nodes without
impact. We experimentally validate this assumption in section
IV.

The condition in equation 10 implies that so long as we use
an activation function where σ(v) = 0 ∀v ≤ 0 (for example
ReLU), we can determine if a node is off using only the batch
normalization parameters, γ and β, and the training batch size,
m. Following the same methodology for regularization as in
equation 5, we define our NodeDrop-BN L1 regularization
term as:

|γ|
√
m+ |β + C| (11)

L2 regularization is generally applied to the layers before
batch normalization. Unlike the vanilla NodeDrop regular-
ization, L2 regularization does not interfere with NodeDrop-
BN technique, because the L2 regularization applied to
layers before a batch normalization has no effect on the
output of the batch normalization layer. NodeDrop-BN builds
upon the vanilla NodeDrop and is more practically suited
for most applications than NodeDrop due to the power
of batch normalization. Please test the code implementing
both NodeDrop and NodeDrop-BN at the link provided:
https://github.com/ljensen3/NodeDrop.

IV. EXPERIMENTS

Having established a theoretical basis for the NodeDrop
condition and regularization technique, we will now establish
NodeDrop’s practical viability as a method for shrinking net-
works. The NodeDrop technique requires two hyperparameters:
C and λ. The C value is unimportant, and can be set to almost
any positive value without impacting results or parameter
reduction. However, the λ parameter is crucial in determining
the balance between learning the objective and dropping nodes.
Therefore, we closely examine the effect that choosing different
λ values has on both network performance and parameter
reduction. We test many λ values on the MNIST and CIFAR10
datasets. We also test a few λ values on the CIFAR100 dataset.

The network initalization size should affect the number
of nodes dropped. We show that if a network starts near
optimal size, NodeDrop will maintain accuracy and only
drop what few nodes it can. Furthermore, we show that if
a network is grossly oversized at initialization, NodeDrop
will drop many nodes and converge towards the same size
as a smaller network initialization. This result is desirable,
as it demonstrates NodeDrop is largely unaffected by poor
layer size choices. NodeDrop uses λ to determine the balance
between performance and number of nodes utilized. Therefore,
a network architect using NodeDrop can afford to initialize
a large network, and remain confident that NodeDrop will
eliminate needless nodes. Using the MNIST dataset, we
demonstrate this ability by showing that networks will converge
to the same size from multiple initialization sizes, for a fixed
λ.



TABLE I
MNIST NETWORK ARCHITECTURES: NUMBER OF FEATURES BY LAYER

NETWORK NAME LAYER 1 LAYER 2 LAYER 3 LAYER 4 LAYER 5 LAYER 6
CONV2D 3× 3 CONV2D 3× 3 CONV2D 3× 3 CONV2D 3× 3 DENSE OUTPUT

MAXPOOL 2× 2 MAXPOOL 2× 2

DENSE160 16 16 32 32 64 10
DENSE240 24 24 48 48 96 10
DENSE320 32 32 64 64 128 10
DENSE480 48 48 96 96 192 10
DENSE640 64 64 128 128 256 10

Fig. 2. In the right and center figures, the λ parameter values plotted on the y-axis are on a logarithmic scale. We note that the performance and parameter
reduction both maintain desirable levels for a large range of λ values (over several orders of magnitude). This indicates the ease of tuning the NodeDrop
technique. In the leftmost figure, networks of different starting size converge to nearly the same size for a given λ. The dashed diagonal line represents
networks without pruning. Note that increased initialization size has a slight effect on final size, as indicated by the slight upward slopes. This effect is greater
for larger λ. Please note MNIST accuracy’s in the right most figure, demonstrating maintained performance.

Many pruning methods require an increase in training time
to be effective. The NodeDrop technique does not delay
performance or accuracy convergence, but in order to allow
the number of network nodes to converge, one must train for
a longer time. We examine the training time required for this
convergence with experiments on the CIFAR10 datasets.

Most importantly we test to ensure NodeDrop maintains
performance and effectively drops nodes. We find that Node-
Drop regularization does not affect a network’s performance
for a large swath of λ values, only reducing testing accuracy
if extreme λ values are chosen.

Furthermore, we demonstrate that NodeDrop is able to drop
more than 100x parameters from popular networks such as
VGG16, while continuing to maintain classification accuracy on
the CIFAR10 dataset. We test NodeDrop network performance
and parameter reduction on MNIST, CIFAR10, and CIFAR100.

A. MNIST Experiments

The MNIST dataset [26] provides an opportunity to perform
a large number of experiments because of the dataset’s rapid
accuracy convergence. Thus, we used this dataset to sweep
across λ values for five differently sized, but otherwise similar,
network architectures, as shown in table I. We demonstrate

NodeDrop’s ability to rapidly converge to similarly sized
networks from different starting sizes.

For all MNIST experiments we used a simple network design:
four convolution layers and a single fully connected layer. We
used 3x3 filters in all convolution layers, and performed max-
pooling after every second convolution layer. We varied the
width of the layers in order to test the effects of changing
network initialization size. We did not investigate the effects of
changing network depth, but suspect that prudent selection of
network depth remains important. The network architectures are
described in table I. The following consistent hyperparameters
were used across all MNIST runs: learning rate = 1.0× 10−3,
batch size = 1024, optimizer = Adam, loss function=cross
entropy, epochs= 480. Figure 2 shows the relationships found
between accuracy, λ values, and initialization sizes.

1) Choosing Lambda: Choosing an appropriate value for
the NodeDrop’s λ parameter remains an important task. In
order to prove that the NodeDrop technique remains robust
for many selections of λ, we tested five different network
initialization sizes to observe differences in convergence across
λ values. The network architectures and hyperparameters are
discussed in section IV-A. We tested ten different λ values
between λ = 1.0× 10−8 and λ = 1.0× 10−3.

Our results indicate that easy tuning is a benefit of the



Fig. 3. Results on CIFAR10 for VGG with and without Batch Normalization over a spread of λ choices. Top Left: Classification error for VGG without Batch
Normalization. Top Right: Final parameters after training using NodeDrop. Bottom Left: Classification error for VGG with Batch Normalization. Bottom
Right: Final parameters after training using NodeDrop-BN. For both NodeDrop and NodeDrop-BN, a range of λ values are acceptable. Baseline accuracy and
network size is indicated by the dashed lines.

TABLE II
RESULTS FOR CIFAR10 DATASET SHOWN. SEE [9], [18] TO COMPARE SOME SIMILAR EXPERIMENTS FOR OTHER NETWORK REDUCTION TECHNIQUES.

NETWORK λ TEST ERROR PARAMETERS PRUNED % FACTOR NODES PRUNED %

VGG 16 W/O BN

BASELINE 13.01 15.04M 0.0 1.0 4736 0.0
1.0× 10−6 14.14 0.45M 97.00 33.28 1115 76.46
1.0× 10−5 13.27 0.31M 97.96 48.98 859 81.9
3.2× 10−5 13.76 0.13M 99.12 114.00 612 87.08
1.0× 10−4 90.00 0.0M 100.0 - 0 100.0

VGG 16

BASELINE 6.50 15.04M 0.0 1.0 4736 0.0
1.0× 10−6 6.88 8.88M 40.7 1.69 3624 23.48
1.0× 10−5 7.36 1.39M 90.75 10.81 1164 75.42
3.2× 10−5 7.41 0.61M 95.96 24.76 751 84.14
1.0× 10−4 20.16 0.10M 99.35 152.84 308 93.50

DENSENET40 W/O BN

BASELINE 14.94 1.04M 0.0 1.0 456 0.0
1.0× 10−6 15.21 0.66M 35.69 1.55 363 20.39
1.0× 10−5 14.74 0.41M 60.47 2.54 291 36.18
1.0× 10−4 14.99 0.08M 91.96 12.43 154 66.22

DENSENET40

BASELINE 6.80 1.05M 0.0 1.0 456 0.0
1.0× 10−6 7.13 0.99M 4.19 1.04 447 1.97
1.0× 10−5 6.75 0.98M 5.67 1.06 443 2.85
1.0× 10−4 7.79 0.55M 47.12 1.89 333 26.73

NodeDrop technique. We found that λ selections across orders
of magnitude yielded desirable results, as shown in figure 2.
For λ > 10−4 we noticed a drop in MNIST accuracy, and for
λ < 1.0× 10−7 we judged there to be a significant sacrifice
in parameter reduction. Choosing appropriate λ will always
be dependent on both application and loss function. Because
of these MNIST experiments, we expect that the NodeDrop
technique is robust for a large range of λ selections. For a
network designer using the popular cross-entropy loss objective
function, as we did, we would suggest λ = 1.0× 10−5.

2) Network Sizes: In the previous section (IV-A1) we
experimentally observed that tuning the λ parameter of the
NodeDrop technique should not cause a network designer
grief. In this section, we will experimentally observe that
choosing initialization layer sizes should also prove easy. We

use the same experiments from the previous section (IV-A1),
but instead plot the effect of initializing with differently sized
networks. This plot, shown in figure 2, demonstrated that the
NodeDrop technique will converge to a similar “equilibrium”
from many differently sized initialization networks. The size of
the final network is instead mostly dependent on λ. A network
designer should err towards too large a network in order to
ensure desirable performance.

B. CIFAR10 and CIFAR100 Experiments

1) Dataset: The CIFAR dataset [27] consists of 32x32
colored natural images. Both CIFAR10 and CIFAR100 are
designed for classification, containing 10 and 100 classes
respectively. There are 50, 000 training images and 10, 000
testing images for both. We adopt a standard data augmentation



TABLE III
RESULTS FOR CIFAR100 DATASET SHOWN. SEE [9], [18] TO COMPARE SOME SIMILAR EXPERIMENTS FOR OTHER NETWORK REDUCTION TECHNIQUES.

NETWORK λ TEST ERROR PARAMETERS PRUNED % FACTOR NODES PRUNED %

VGG 16 BASELINE 27.65 15.04M 0.0 1.0 4736 0.0
1.0× 10−6 27.69 9.78M 34.99 1.54 3914 17.35
1.0× 10−5 28.04 1.83M 87.82 8.21 1623 65.73
1.0× 10−4 38.49 0.46M 96.93 32.58 729 84.6

DENSENET40

BASELINE 26.5 1.05M 0.0 1.0 456 0.0
1.0× 10−6 26.92 1.05M 2.27 1.02 451 1.09
1.0× 10−5 27.01 1.03M 4.74 1.05 445 2.41
1.0× 10−4 29.38 0.744M 31.12 1.45 376 17.54

TABLE IV
IMAGENET CLASSIFICATION RESULTS

NETWORK λ TEST ERROR PARAMETERS PRUNED % FACTOR NODES PRUNED %

VGG 19 BASELINE 33.79 143.65M 0.0 1.0 14696 0.0
1.0× 10−5 34.85 23.75M 83.47 6.05 6670 54.61

Fig. 4. Accuracy stabilizes after less than 100 epochs in this CIFAR10 run,
indicating the NodeDrop technique does not delay performance convergence.
Training for another 400 epochs helps maximize parameter reduction.
scheme where the training images are shifted and mirrored
horizontally [18], [28].

2) Architectures and Training: We implement our technique
on two standard models, VGG [29] and DenseNet [30]. Our
VGG network is a slight variant of the standard VGG16 model.
We follow the standard modification of VGG for CIFAR [18],
[23], by removing the 3 final fully connected layers of size 4096
and instead using only a single fully connected layer of size 512.
We train the network using SGD with momentum of 0.9. The
network is trained for 200 epochs with an initial learning rate of
0.1 which is decayed by 0.1 at epochs 80 and 130. We tested
both with and without batch normalization, and discovered
that batch normalization is necessary for the large VGG16
initialization when applied to the more difficult CIFAR100
dataset. Therefore results without batch normalization are
excluded for CIFAR100.

For DenseNet we implement the standard DenseNet-40 given
in the original paper with L = 40 and k = 12. We train the
model as per the original paper with SGD and momentum 0.9.

The network is trained for 300 epochs with an initial learning
rate of 0.1 and is decayed by 0.1 at epochs 150 and 225. As
with VGG we found that the CIFAR100 dataset required batch
normalization, but we were again able to train a variant on
CIFAR10 without batch normalization.

3) Lambda Parameter Tests: As with the MNIST exper-
iments, we tested a range of λ’s on CIFAR10 in order to
determine the choices which suit the network and dataset well.
Furthermore, here we test NodeDrop-BN, which was not tested
in the MNIST experiments. Results for VGG on CIFAR10
with varying choices of λ are shown in figure 3.

For the case without batch normalization our network
maintains performance and prunes a large number of nodes
over many choices of λ. As with the MNIST case, this
suggests that choosing λ is relatively easy. All choices of
λ ≤ 3.2 × 10−5 achieved high performance with significant
pruning. For λ ≥ 1.0 × 10−4 the regularization parameter
proved too high, causing an entire layer to turn off, which in
turn caused the network to turn off all other layers.

For NodeDrop-BN, we find that λ ≤ 3.2 × 10−5 is
appropriate for maintaining performance. However, NodeDrop-
BN requires more precise tuning than NodeDrop, as only
λ ≥ 3.2× 10−6 achieved desirable parameter reduction. Based
on the above results we continue to recommend an initial
lambda setting of λ = 1 × 10−5 for the cross-entropy loss
objective function.

4) Network Convergence Time: Sometimes it is important
to avoid needlessly extending training time. In this section we
analyze NodeDrop’s effect on training time. Using λ = 10−5,
we train a network for 2000 epochs in order to observe
network parameter and performance convergence over time.
This experiment used the VGG16 network without batch
normalization on the CIFAR10 dataset. Our results, shown
in figure 4, indicate that while accuracy convergence is not



delayed by the NodeDrop technique, one will need to wait
longer to maximize NodeDrop’s parameter reduction.

5) Parameter Reduction: Results for CIFAR10 and CI-
FAR100 are given in tables II and III respectively. We highlight
the rows which provide the highest parameter reduction while
maintaining high accuracy.

For the VGG network we are able to drop a significant
number of parameters without degradation to the accuracy of
the network. For NodeDrop-BN, we can prune 95 percent of
the parameters for CIFAR10 and 88 percent for CIFAR100. For
vanilla NodeDrop, we can prune 99 percent of the parameters
on CIFAR10. This suggests that VGG is a significantly
oversized network for application to the CIFAR datasets.

It is more difficult to prune nodes from the DenseNet architec-
ture than for VGG. We are only able to prune approximately
5 percent of the parameters from DenseNet on CIFAR100.
We believe this suggests that the DenseNet architecture is
already well sized for CIFAR100. DenseNet starts at around 1
million parameters, which is close to the number of remaining
parameters after our best case pruning of the VGG network.

C. ImageNet Experiments
The ImageNet dataset consists of variously sized images

designed for 1000 classes. For the ImageNet dataset, we used
only the standard VGG19 network with batch normalization.
We trained the networks for 50 epochs with the Adam optimizer
to demonstrate NodeDrop’s effectiveness with equal training
times. Due to the long training time of ImageNet we tested
only the λ = 10−5 value and compared with a similarly trained
baseline model. For the NodeDrop ImageNet experiments we
started with 5 initialization epochs in which λ = 0 before
using λ = 10−5 for the remaing 45 epochs. We used these
initialization epochs in order to allow for some network
convergence before dropping nodes. The results for ImageNet,
shown in table IV, indicate a pruning of 83.47 percent of the
networks initial nodes, but there does seem to be a small one
percent drop in accuracy.

V. CONCLUSION AND OUTLOOK

In this paper, we proposed the novel NodeDrop technique
for reducing parameters in neural networks. The NodeDrop
technique consists of a condition for identifying nodes which
are guaranteed to carry no information, and a regularization
term to encourage this condition to be met. We also propose
a modified version of NodeDrop, NodeDrop-BN, for use
in networks with batch normalization. Experiments on the
MNIST and CIFAR10 datasets show that NodeDrop does
not significantly increase training time, and it facilitates
network design with the easily tuneable hyperparameter λ. With
experiments on MNIST, CIFAR10, CIFAR100, and ImageNet
datasets, using VGG16, VGG19, and DenseNet architectures,
we demonstrate that NodeDrop compares favorably with other
parameter reduction techniques. NodeDrop reduces the number
of parameters in a network by up to a factor of 114x. We hope
that NodeDrop and NodeDrop-BN will prove useful in neural
network design, and will help to make the implementation of
neural networks on constrained systems more practical.
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