
Bias-regularised Neural-Network Metamodelling of
Insurance Portfolio Risk

Wei Luo∗, Akib Mashrur†, Antonio Robles-Kelly‡ and Gang Li§
School of Information Technology

Deakin University
Geelong, Australia

Email: ∗wei.luo@deakin.edu.au, †amashrur@deakin.edu.au, ‡antonio.robles-kelly@deakin.edu.au, §gang.li@deakin.edu.au
ORCID: ∗0000-0002-4711-7543 †0000-0002-4404-7471 ‡0000-0002-2465-5971 §0000-0003-1583-641X

Abstract—Deep learning models have attracted considerable
attention in metamodelling of financial risks for large insurance
portfolios. Those models, however, are generally trained in dis-
regard of the collective nature of the data in the portfolio under
study. Consequently, the training procedure often suffers from
slow convergence, and the trained model often has poor accuracy.
This is particularly evident in the presence of extreme individual
contracts. In this paper, we advocate the view that the training of
a meta-model for a portfolio should be guided by portfolio-level
metrics. In particular, we propose an intuitive loss regulariser
that explicitly accounts for the portfolio-level bias. Further, this
training regulariser can be easily implemented with the minibatch
stochastic gradient descent commonly used in training deep
neural networks. Empirical evaluations on both simulated data
and a benchmark dataset show that the regulariser yields more
stable training, resulting in faster convergence and more reliable
portfolio-level risk estimates.

Index Terms—variable annuity metamodelling, expected bias,
percentage error

I. INTRODUCTION

Hedging is a widely used strategy for reducing the invest-
ment risk where the individual financial products are put in a
portfolio so as to diversify risk profiles. This helps offset the
overall risk arising from price fluctuations of securities, com-
modities, assets and liabilities. This is particularly important
for the insurance industry, where traders often manage large
portfolios of contracts which require constant monitoring and
re-balancing based on the real-time estimate of the overall risk
exposure.

Although the risk of individual contract can be estimated
through Monte Carlo simulation, such kinds of processes
cannot scale to the whole portfolio. According to [1], it can
take more than 100 hours of CPU run-time to valuate a
portfolio of 190,000 variable annuity contracts. As a result,
metamodelling techniques, such as that in [2] are commonly
used. These methods are based upon the assumption that the
risk of a contract depends on a set of features or variables of
the variable annuity contracts. Thus, a metamodel captures
the relationship between the features and the Monte Carlo
estimates through an interpolation based on the simulation
results on a handful of contracts.

Although kriging is traditionally used to estimate the fair
market value [3], recently meta-models based on deep neural
networks have shown great promise [4], [5]. This is mainly

because deep networks have the advantage of exhibiting a
strong interpolation capability and, if properly trained, can
achieve very high accuracy. On the other hand, training a
deep network often requires a large training set. This is one of
the main drawbacks of deep networks for portfolio modelling
since a large training set is rarely available in metamodelling
due to the high computational cost of the Monte Carlo runs.
Moreover, training a deep network can be difficult, especially
when outliers exist in the training set.

In this paper, we note that a real need exists to improve the
training process so as to make deep learning more applicable
for metamodelling of insurance portfolios. Moreover, here we
argue that treating metamodelling as a predictive modelling
task actually makes the problem harder than it should be. Thus,
instead, we advocate that training a meta-model for a portfolio
should be guided by portfolio-level metrics. In particular, we
propose an intuitive loss regulariser that explicitly accounts
for the portfolio-level bias.

At the centre of the proposed method, is the observation that
metamodeling can be viewed as a multitask learning problem:
a primary task of estimating the portfolio aggregate and an
auxiliary task of optimising individual prediction which in
general consistent with the primary task.

In this paper, we make the following contributions:

• We point out one major issue with the current practice
in metamodelling: the models are trained but ignoring
the collective nature of a portfolio, and hence, tend
to disregard valuable information that can simplify the
solution of the problem in hand.

• We propose a new loss function that directly targets the
portfolio-level quantity of interest, be it fair market value
(FMV) or the Greek value.

• We evaluated the new loss function on both a simulated
data set and a benchmark variable annuity (VA) data
set. Our results demonstrate a significant gain in the
convergence speed and the accuracy of the estimates yield
by the model. To our knowledge, this translates into the
first deep-learning meta-model that achieves consistently
high performance on a very small training set in this
benchmark problem.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. BACKGROUND

In this section, we present the background and notations
used throughout the paper. Here we also elaborate upon the
use of the mean-squared error as a surrogate metric for the
loss function and its connection with the prediction bias.

To commence, let

P = {ci, i = 1, . . . , N}

be a portfolio of insurance contracts. Here, we assume that
each contract ci has a quantity of interest yi. Throughout
the paper, yi denotes a partial dollar Delta 1, which is a
risk measurement calculated making use of Monte Carlo
simulation (See [2] for more details).

In hedging, we are mostly interested in the portfolio delta

N∑
i=1

yi.

If a portfolio Delta is close to zero, it is said to be delta
neutral. This is important since insurance companies monitor
and re-balance their product portfolios daily according to the
estimated Delta value.

A. Metamodelling and the Mean-squared Error

The calculation of the contract Delta value is computation-
ally expensive, involving complex Monte Carlo simulation
often taking long CPU run times. For a large portfolio,
calculating all contract Delta yi’s is, hence, computationally
infeasible. If, however, each contract can be described by a
set of features xi, then we can build a model to infer yi
from xi. This rationale is the essence of metamodelling. In
metamodelling, we first obtain a small subset

T = {cik , k = 1, . . . ,K}

of contracts in the portfolio P . From T , the corresponding
Delta values

{yik , k = 1, . . . ,K}

are calculated via Monte Carlo simulation. Finally, a regres-
sion model f̂ is trained using the small training set

{(xik , yik), k = 1, . . . ,K}

and their available Delta values so as to estimate the portfolio
Delta

N∑
i=1

ŷi,

where ŷi = f̂(xi).
In metamodelling, since the problem is cast as regression

one, the mean squared error (MSE)

1

N

N∑
i=1

(ŷi − yi)2

1Here we consider the dollar Delta as the value of the contract so as to
hedge one dollar of liability.

is the most commonly used loss function in metamodelling
[2]. This is the case for methods based on neural networks
such as that in [6]. It is important to note that minimising the
MSE requires the model to accurately predict the risk of each
individual contract at the same time. Although accurate predic-
tion for each individual contract Delta automatically implies
accurate prediction of the overall portfolio, the accuracy of the
individual predictions is often hard to guarantee in practice.

B. Percentage Error and Prediction Bias

Recall that, for portfolio monitoring and re-balancing, the
primary concern is the overall portfolio delta. Hence the
most commonly used evaluation metric for meta-models is
the percentage error given by:

PE =

∑N
i=1 ŷi −

∑N
i=1 yi∑N

i=1 yi
,

which measures the aggregated accuracy.
From the regression modelling point of view, the PE can

be viewed as a normalised estimate of the model’s prediction
bias, that is, the expected value E [ŷ − y] for an unseen data
point (x, y). It is worth noting that this bias, as yield by the
fitted model, is often different from the true expected bias for
a family of unfitted models in the well-known bias-variance
decomposition of the expected MSE for the test set [7]:

E
[
(ŷ − y)2

]
=Variance + Bias2

+ Intrinsic Prediction Uncertainty.
(1)

Strictly speaking, Bias in Equation (1) is determined by the
capacity of the model family. In the context of deep learning,
this is computed through marginalisation over the training
samples and the optimisation. In portfolio metamodelling,
this is mainly induced by the randomness of the contract
selection process [8]. In other words, from a single training set,
we cannot estimate Bias. However, as mini-batched gradient
descent is commonly used in training neural networks, we can
view ŷ − y computed on mini-batches as a rough estimate of
the true test-set bias.

III. BIAS-REGULARISED METAMODELLING

As shown above, the current practice treats metamodelling
as a standard regression problem minimising the mean squared
error. As mentioned earlier, this is particularly problematic
when the metamodel takes the form of deep neural networks,
as such models often require a large training data set.

To tackle the problem of the small sample size, we follow
Vapnik [9] by noting that the restricted amount of information
available from the small subset of contract features and Delta
values may be sufficient to solve the problem directly rather
than tackling a more general problem as an intermediate
step. As Vapnik argues, it is often possible that the available
information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem. This is
particularly pertinent towards existing metamodelling practice,
whereby these approaches often try to first solve a more
general intermediate problem, predicting the fair value or

Greeks of the individual contracts as a means to the prediction
of the portfolio-level value.

Note that, as percentage error (PE) is the primary metric for
metamodelling, it’s somewhat natural to attempt to directly
optimise the absolute PE or its squared amount as an aim
of computation in training of the model. Doing this directly,
however, is not a straightforward task. This is mainly because,
given a training set, there may be too many solutions that
minimise the PE loss (for instance, the empirical risk). This is
in contrast with the mean-squared error (MSE), where we can
often find a unique global minimum, for example, that given
by the least-squares solution for the linear regression.

To show this, we now provide a theoretical foundation in a
linear regression setting using the following Theorem:

Theorem 1. Let {(xi, yi) : 1 ≤ i ≤ N} be a training set with
a non-constant least-squares solution. Then there is more than
one model that minimises the PE squared on the training set:(∑N

i=1 ŷi −
∑N

i=1 yi∑N
i=1 yi

)2

.

Moreover, the empirical PE is 0 for these models.

Proof. This directly follows Lemmas 1 and 2 below.

Lemma 1. Let {(xi, yi) : 1 ≤ i ≤ N} be a training set. The
linear model y = β·x+b that minimises

∑N
i=1(β·xi+b−yi)2

also minimises (
N∑
i=1

(β · xi + b)−
N∑
i=1

yi

)2

.

Proof. This follows from the well-known result that the sum
of residuals from the least-square regression is always 0. More
specifically, as β and b minimise

∑N
i=1(β ·xi + b− yi)2, we

have

∂
∑N

i=1(β · xi + b− yi)2

∂b
= 2 ·

N∑
i=1

(β · xi + b− yi) = 0.

which directly implies

N∑
i=1

(β · xi + b)−
N∑
i=1

yi = 0.

Lemma 2. Let {(xi, yi) : 1 ≤ i ≤ N} be a training set. The
constant model ŷ = 1

N

∑N
i=1 yi minimises(

N∑
i=1

ŷi −
N∑
i=1

yi

)2

.

Proof. This follows from

N∑
i=1

ŷi −
N∑
i=1

yi = N

(
1

N

N∑
i=1

yi

)
−

N∑
i=1

yi = 0.

As a result, the PE-based loss favours a constant model.
This has the consequence that the model fitted using the PE
is unlikely to generalise well on not observed data, especially
when the portfolio Delta, i.e. the mean value of the response
y, deviates from the data set used for training. Furthermore,
this may be even more problematic when stochastic gradient
descent (SGD) or minibatch SGD is used in training, which,
in turn, may result in a lack of converge or very slow training.

A. Bias-regularised MSE loss

To tackle these drawbacks, we note that metamodeling can
be viewed as a multitask learning problem. The primary task is
to minimise the PE. An auxiliary task of optimising individual
prediction is not identical but is in general consistent with the
primary task. This motivates us to propose the following Bias-
regularised MSE (BRMSE) loss function

BRMSE = MSE + λ · EB2, (2)

where λ is a constant that measures the influence of the second
term on the left-side of the equation which measures the
expected prediction bias and corresponds to the mean square
root of the equivalence term in Lemma 2. We call this the
expected bias:

EB =
1

N

(
N∑
i=1

ŷi −
N∑
i=1

yi

)
.

In the loss function above, the use of the mean-squared error
MSE ensures that the model fits individual training instances
and, hence, has a well-defined minimum and can generalise to
other contracts in a portfolio. The additional term EB2, which
we name EBS, provides a collective measurement that aims at
ensuring the model is optimising the portfolio PE. Although
the global minimum for MSE also minimises EBS, as we
shall see in Section IV, the inclusion of EB leads to faster
model training and a more accurate PE estimate. Moreover,
the regularisation term improves training in the presence of
extreme outliers, which are very common in a large portfolio
of insurance contracts.

Note that EB2 is likely to be more stable than MSE during
the training. Therefore it is likely to regularise learning (e.g,
avoiding local minimums), similar to how momentum is used
in many learning problems.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the new loss function defined
in Eq (2) on typical metamodelling tasks. We evaluate the
effectiveness of the BRMSE loss function first on a simulated
data set in Section IV-A. We then turn our attention to a
benchmark data set for metamodelling in Section IV-B.

In view of the prohibitive cost of obtaining training exam-
ples in real-life applications, the experiments focus primarily
on the setting where the training set is very small (fewer than
500 training examples). In such small training sets, existing
neural-network meta-models (e.g., [6]) do not easily converge.
And when they converge, the performance is often poor. Due
to such difficulty in producing consistent baseline results, we

0 25 50 75 100 125 150 175 200

50

100

150

200

M
SE

 C
om

po
ne

nt

0 25 50 75 100 125 150 175 200
Batch Training Steps

5

0

5

10

15

EB
 C

om
po

ne
nt

Fig. 1. Comparison of the convergence of Expected Bias Squared (EBS) and MSE in mini-batched gradient descent. The MSE component of the loss has a
high variance across different mini-batches. In contrast, the EBS component is smoother and converges faster during training.

0 25 50 75 100 125 150 175 200

100

200

M
SE

 C
om

po
ne

nt MSE loss
BRMSE loss

0 25 50 75 100 125 150 175 200
Batch Training Steps

5

0

5

10

15

EB
 C

om
po

ne
nt

Fig. 2. The effect of adding the EBS loss. Explicitly optimising the expected bias leads to faster reduction in both the EBS and the MSE.

do not compare explicitly with some existing meta-modeling
models. Instead, we focus on measuring the performance gain
of the new loss function in controlled settings. With that said,
the proposed models clearly achieved very competitive per-
formance, even in comparison with some more sophisticated
models involving transfer learning [4].

A. Bias Regularisation Evaluation

We first simulate a regression data set (X,y) of 10,000
instances so as to better understand how the bias regulari-
sation improves with the training process. To this end, we
have used a vector X comprised of five 10-feature isotropic
Gaussian blobs generated using the make_blobs function
from sklearn Python library.

Recall that make_blobs generates both the features and
the cluster labels. For the purposes of our evaluation, we have
only kept the feature vectors. This gives us clustered features.
This was done following the notion that, in real-world settings,
the insurance portfolios tend to form clusters, reflecting the
discrete nature of product and client types.

Thus, making use of the vectors X , we generate the target
vector y using the following function adapted from [10]:

y = 10 sin(πx0x1) + 20 (x2 − 0.5)
2
+ 10x3 + 5x4 + 104ε,

where ε is the standard Gaussian noise. Since in metamod-
elling the training set is often small, we split the 10,000

instances into a training set of 5%, a validation set of 5%,
and a testing set of 90%.

Due to the size of the training set and in order to provide
a better baseline for comparison of the effects of our regular-
isation term, we consider only standard neural networks with
a relatively small number of dense layers. For the synthetic
data, we use a dense network with two hidden layers and
ReLU activations. The first hidden layer consists of 50 nodes,
followed by another dense hidden layer consisting of 20 nodes.
The network was trained using both the standard MSE loss and
the proposed BRMSE loss. The training was effected making
use of stochastic gradient descent with the minibatch size set
to 100.

For purposes of evaluating the effect of the regulariser, we
consider two performance measures. These are the MSE and
the expected bias (EB). Both of these are computed within
the training batch. Figure 2 shows how these training errors
change during the course of training as a function of mini-
batch index. From the figure we can appreciate the following:

1) The EB (and hence the EBS) is more stable during the
training compared to the MSE. This can be seen in both
performance measures, with the trace as a function of
batch training steps.

2) An improved EB component convergence when the
BRMSE loss is used. Moreover, the MSE also converges
more quickly, as shown in the comparison of the red line

and the blue dashed line. This is particularly evident in
the first 100 training batches.

The additional EBS component not only reduces the bias, but
also stabilises the overall loss, and leads to faster training con-
vergence. This is consistent with the prior discussions which
suggest that optimising the MSE alone may be inefficient in
minimising the bias and, hence, the PE for the whole portfolio.

We now turn our attention to the validation error. To this
end, in Figure 3 we show the plots for the validation error, as
evaluated on the validation set, as a function of training epochs
for the network when both loss functions are used. The traces
in the plots have been generated using the 5% validation set
where the error is given by the average over the batches at the
end of each epoch, yielding smooth curves for both choices
of the loss function.

Again, in a consistent trend with respect to that shown in
Figure 2, we can see that both the MSE and the EB are reduced
at a faster speed on the validation set. Moreover, as expected,
the convergence improvement is even more pronounced for
the PE.

Sensitivity of the regularisation weight λ : In Equation (2),
λ determines how heavy the bias regularisation is applied.
Figure 4 shows the effect of λ on the final PE on the simulated
dataset. Here a λ value between 0.1 and 0.6 seems to work
best. The optimal range of λ may depend on the dataset.

B. Application to variable-annuity portfolio metamodelling

We now turn our attention to the application of our BRMSE
loss to the variable annuity VA benchmark dataset provided
by Gan [11]. This dataset has been used in several VA
metamodelling studies [6], [12]. The dataset consists of 38,000
variable annuity contracts described by 44 features. These
features are mainly related to the investment funds and the
policyholders. For more details about the dataset, we suggest
the interested reader see [2]. The response variable is the
partial first-order Greeks given by the Delta. The dataset
contains the Delta evaluated monthly for a period of 30 years
under 100 market scenarios. Here, we have used the Delta for
the first month of the first year, i.e. the initial Delta, for one
of the fixed market scenarios.

In most metamodelling settings, a very small proportion
of the portfolio is used to calculate to different measures
of risk, i.e. Greeks, via Monte Carlo Simulation. Once these
Greeks are in hand, a regression model is fitted to estimate
the full-portfolio. Note that, in [13] a sophisticated setup
to split the dataset into training, testing and validation was
employed using k-means clustering. Here, however, we have
opted to randomly use 1% sample for training, 1% sample for
validation and the full portfolio for testing. This yields only
380 contracts for training and another 380 for validation.

For our experiments using the benchmark VA dataset, we
have added a hidden layer with the ReLU activation to the
network presented in the previous section. This makes the
network relatively more complex, with 200 nodes in the first
hidden layer, 100 nodes in the following layer and 20 nodes
in the final hidden layer. Each of the first two hidden layers is

penalized with L2 regularization and are followed by dropout
layers to avoid over-fitting.

In training, 1000 epochs were run. To measure the conver-
gence, we recorded the number of epochs before reaching the
target validation-set PE of 0.1. The final PE is evaluated on
the whole portfolio, using the best performing model within
the 1000 epochs.

To demonstrate the generalisability of the BRMSE loss, we
examine various combinations of the optimisers and learning
rate schedules. For the optimisers, we have tried several alter-
natives. These are vanilla Stochastic Gradient Descent (SGD),
AdaGrad, RMSProp and Adam. For learning rate schedules,
we have considered both a fixed learning rate and the Cyclic
Learning Rate (CLR) schedule described in [14]. For the CLR,
the learning rate loops from 0.001 to 0.005 in 100 steps.
In addition to implementing CLR with the vanilla stochastic
gradient descent optimiser, we have also tested the suitability
of our loss function under an experimental setting combining
both CLR and the adaptive gradient optimiser (Adagrad). The
Cyclic Learning Rate was not used with RMSProp due to the
incompatibility described by the authors in [14].

For our experiments, we considered two of the mainstream
error metrics used in the literature for the evaluation of the
trained meta-model. First and foremost, we calculated the
portfolio percentage error:

PE =

∑
ci∈P ŷi −

∑
ci∈P yi∑

ci∈P yi
.

Additionally, we also calculate the regression R2:

R2 = 1−
∑

ci∈P (ŷi − yi)2∑
ci∈P (yi − µ)2

,

where
µ =

1

n

∑
ci∈P

yi.

Note that both PE and R2, are evaluated on the full portfolio,
and, to gauge the convergence speed, we also track the number
of training epochs until the target absolute PE is reached on
the validation data. Also, we have fixed the learning rate for
SGD and, in the case of the adaptive-learning-rate optimisers,
the global learning rate. We have done this so as to reduce the
effect of a changing learning-rate schedule in the experiments
shown here.

In Table I, we show the results for SGD and Adagrad. In the
table, we show the PE, R2 and the number of epochs to reach a
validation PE of less than or equal to 0.1. For all the optimisers
and evaluation metrics, we have compared our BRMSE loss
against the MSE loss. Note that our loss consistently requires
fewer training epochs to reach the target validation PE of 0.1.
Moreover, our BRMSE loss provides a margin of advantage in
the final PE and R2 as tested on the full portfolio as compared
to that based on the MSE.

Finally, we focus on the results yielded by our loss and
the alternative when the Cyclic Learning Rate (CLR) is
used on all compatible optimisers. Recall that the CLR is

0 5 10 15 20 25 30 35 40

50

100

Va
lid

at
io

n
M

SE MSE loss
BRMSE loss

0 5 10 15 20 25 30 35 40
5

0

5

10

15
Va

lid
at

io
n

EB

0 5 10 15 20 25 30 35 40
Epochs

0

2

4

6

Va
lid

at
io

n
PE

Fig. 3. The proposed loss converges both squared error and expected bias faster than MSE loss, which results in faster and more stable PE optimization

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

0.030
0.035
0.040

Te
st

 a
bs

ol
ut

e
PE

Fig. 4. The effect of λ on the final portfolio PE (evaluated on the whole dataset) for the simulated regression data. In training, the Cyclic Learning Rate
was used. In the figure, λ = 0 indicates the standard MSE loss. Clearly, the absolute PE dropped once λ becomes nonzero. After passing a relatively stable
region from 0.1 to 0.6, over-regularisation slowly took effect, causing poorer fit and bigger absolute PE values.

Fig. 5. Validation PE convergence trained with MSE and BRMSE, with both a fixed learning rate (FLR) and a cyclic learning rate (CLR) schedule. The stars
(in both the original plot and the inset) indicate the first time the target absolute PE of 0.1 was reached.

generally believed to be incompatible with several optimisers
with adaptive learning rate, including RMSProp and Adam.
Nonetheless, as shown in [14], for the compatible optimisers,
applying CLR can lead to much faster convergence and a
more accurate final model. For the CLR, we have used a
standard triangular schedule with learning rate fluctuating over
a full cycle every 100 training steps. This allows for the
training process to prevent falling into saddle point plateaus
and improves overall performance. As shown in figure 5, the

proposed BRMSE loss function leads to faster convergence
and a more accurate estimate, with or without CLR.

In Table II we show the results yielded by CLR in a manner
akin to that in Table I. Moreover, as compared with the results
in Table I, we can see that the PE results are greatly improved
when CLR is used. This is somewhat expected and consistent
across both loss functions. That said, again, the proposed
BRMSE leads to a better estimation of the portfolio PE.

TABLE I
PE PERFORMANCE ON VA DATASET WITH A FIXED GLOBAL LEARNING RATE.

Optimizer SGD Adagrad

PE† R2 #epochs PE R2 #epochs*

training loss function
MSE 0.231 0.799 42 0.184 0.815 5

BRMSE 0.211 0.811 25 0.182 0.815 4

Optimizer RMSprop Adam

PE R2 #epochs PE R2 #epochs

training loss function
MSE 0.283 0.746 5 0.234 0.787 5

BRMSE 0.203 0.759 2 0.190 0.798 4
† PE evaluated on the whole portfolio.
* The number of epochs before the target validation |PE| < 0.1 is reached.

TABLE II
PE PERFORMANCE ON VA DATASET FOR DIFFERENT OPTIMIZERS WITH THE CYCLICAL

LEARNING RATE.

Optimizer SGD Adagrad

PE R2 #epochs PE R2 #epochs

training loss function
MSE 0.071 0.797 11 0.052 0.743 20

BRMSE 0.051 0.803 10 0.029 0.811 6

V. CONCLUSIONS

In this paper, we have proposed a new approach to train a
neural network for metamodelling of a large insurance portfo-
lio. Our method is based upon a bias-regularised loss function
which employs the mean-squared error and a regulariser given
by the expected bias. In this context, the mean-squared error
enforces a good fit towards individual contracts whereas the
expected bias provides a measure regarding the portfolio
percentage error. We have evaluated our loss function on a
simulated evaluation dataset and a variable annuity benchmark.
The simulated data has been used to assess the effect of the
regulariser on both the training convergence and performance
of the trained network. We have used the benchmark to
evaluate our loss across different optimisers and learning rate
strategies, including the cyclical learning rate. We have also
compared our approach to that often used elsewhere based
upon the mean-squared error alone. In our experiments, our
method yielded a margin of improvement in both convergence
and performance. Additional experiments have been planned
to further validate our results with multiple independent runs
and additional baseline models such as tree-based machine
learning models [15].

To our knowledge, this is the first work applying collective
loss on portfolio metamodelling. Unlike previous research,
our experiments focus on the setting of very small training
sets (fewer than 500 training examples), showing that highly
accurate PE estimate can be achieved even with a small
training set. A natural next step is to better understand the loss
landscape of this new type of loss functions, probably through
recently proposed visualisation tools (e.g., [16]). Another line

of future work is to integrate the new loss function in the
transfer-learning metamodelling approach (e.g., [4], [5]).

REFERENCES

[1] G. Gan and E. A. Valdez, “Valuation of large variable annuity portfolios:
Monte carlo simulation and synthetic datasets,” Dependence Modeling,
vol. 5, pp. 354–374, 2017.

[2] ——, Metamodeling for Variable Annuities. CRC, 2019.
[3] G. Gan, “Application of data clustering and machine learning in variable

annuity valuation,” Insurance: Mathematics and Economics, vol. 53,
no. 3, pp. 795–801, 2013.

[4] X. Cheng, W. Luo, G. Gan, and G. Li, “Deep neighbor embedding
for evaluation of large portfolios of variable annuities,” in KSEM 2019,
2019, pp. 472–480.

[5] ——, “Fast valuation of large portfolios of variable annuities via transfer
learning,” in PRICAI 2019, 2019, pp. 716–728.

[6] S. A. Hejazi and K. R. Jackson, “A neural network approach to efficient
valuation of large portfolios of variable annuities,” Insurance: Math. and
Eco., vol. 70, pp. 169–181, 2016.

[7] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Comput., vol. 4, no. 1, pp. 1–58, Jan.
1992.

[8] B. Neal et al., “A modern take on the bias-variance tradeoff in neural
networks,” arXiv preprint arXiv:1810.08591, 2018.

[9] V. N. Vapnik, Statistical learning theory. Wiley, 1998.
[10] J. Friedman et al., “Multivariate adaptive regression splines,” Ann. Stat.,

vol. 19, pp. 1–67, 1991.
[11] G. Gan and E. A. Valdez, “Nested stochastic valuation of large variable

annuity portfolios: Monte carlo simulation and synthetic datasets,” Data,
vol. 3, no. 3, p. 31, 2018.

[12] W. Xu et al., “Moment matching machine learning methods for risk
management of large variable annuity portfolios,” JEDC, vol. 87, pp.
1–20, 2018.

[13] G. Gan and J. Huang, “A data mining framework for valuing large
portfolios of variable annuities,” in SIGKDD, 2017, pp. 1467–1475.

[14] L. N. Smith, “Cyclical learning rates for training neural networks,”
in 2017 IEEE Winter Conference on Applications of Computer Vision.
IEEE, 2017, pp. 464–472.

[15] Z. Quan, G. Gan, and E. A. Valdez, “Tree-based models for the
efficient valuation of large variable annuity portfolios,” Available at
SSRN 3247100, 2018.

[16] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” in Neural Information Processing Systems,
2018, pp. 6389–6399.

