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Abstract—Domain adaptation is an important research topic
in the field of computer vision, where the goal is to solve the
difference of data distribution between different scenarios of the
same task. In recent times, adversarial learning method becomes
a mainstream approach to generate complicated images across
diverse domains through optimizing deep networks, and it can
also improve the recognition accuracy rate of deep networks
despite existing domain shift or dataset bias. However, there are
few effective efforts of domain adaptation for the disease diagno-
sis on fundus images. Fundus images are normally captured on
different medical devices with different rules. When diagnosing
glaucoma, there is a serious homogeneous domain shift, which
means feature spaces between target domain and source domain
images have a distribution shift although they are very similar.
We propose a unified framework to solve this problem. Previous
studies have shown that glaucoma can be monitored by analyzing
the optic disc/cup and its surroundings. So we exploit a novel
reconstruction loss which not only leverages unsupervised data
to bring the source and target distributions closer but also keeps
original target domain images label unchanged. The experimental
results on several public and private datasets demonstrate that
our method could increase the classification accuracy of glaucoma
diagnosis.

Index Terms—domain adaptation, glaucoma diagnosis, image
synthesis, DAGD

I. INTRODUCTION

When trained on large-scale datasets, deep convolutional
neural networks (DCNNs) can learn effective representations
which are largely useful across a variety of tasks and visual
domains [1]–[3]. However, due to a problem known as dataset
bias or domain shift [4], classification models trained along
with the representations on one dataset can not perform equally
well on other datasets or other classfication tasks [1], [5]. The
common solution is to further fine-tune these models on task-
specific datasets. But it is generally difficult and expensive
to obtain enough labeled data to properly fine-tune a large
number of parameters employed by deep multi-layer networks.

Domain adaptation methods try to weaken the harmful
influence of domain shift. Recent domain adaptation methods
try to learn effective transformations that map both source
domain and target domain into a common latent feature space.
Normally, this is achieved by optimizing the representations to
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Fig. 1. Fundus images. (a) Main structure of fundus image and (b) main
structure of optic disc region. An abnormal size of the cup with respect to
the optic disc is a characteristic of a glaucomatous eye.

minimize some measure of domain shift such as the maximum
mean discrepancy [6], [7] or correlation distances [8], [9].
A feasible solution is to reconstruct the target domain from
source representation [10].

embodimentembodimentAdversarial adaptation method has
become a progressively popular embodiment of this approach.
This method attempts to minimize an approximate domain dis-
crepancy distance through an adversarial objective with respect
to a domain discriminator. Normally, adversarial adaptation is
directly bound up with generative adversarial learning [11],
which makes generator and discriminator play against each
other. The generator synthesizes images in a way that deceives
the discriminator, which in turn tries to distinguish them from
real images. In the field of domain adaptation, this theory has
been employed to ensure that the network can not distinguish
between the distributions of its source and target domain
data [9], [12], [13]. However, these algorithms make different
design choices, such as whether to use a generator, or to share
weights across domains and which loss function to choose. For
example, [14] and [12] share weights and learn a symmetric
mapping of both source and target images into a shared feature
space, while [13] separates some layers to learn a partially
asymmetric mapping.

Nevertheless, there are currently no suitable domain adap-
tation methods that adapt to the fundus images for glaucoma
diagnosis. Generally, fundus images are often captured on
different medical devices and the image-level style is basically
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Fig. 2. Fundus images from four different datasets. (a) are non-glaucoma fundus images and (b) are glaucomatous fundus images. Each column of images
comes from different datasets.

similar. For example, as shown in Fig. 2, comparing the fundus
images in the first column and second column, the difference
lies in the position of the optic disc and optic cup. And for
the first and the third column, the most obvious difference
lies in the overall brightness. Various studies have shown that
glaucoma can be diagnosed by analyzing the optic disc/cup
of fundus images, as shown in Fig. 1, so these differences
are not the most important factor to diagnose glaucoma for
an ophthalmologist. But for classification models that trained
on different datasets, these differences have vital influences to
make the classification.

In this paper, we propose an effective framework based
on Generative Adversarial Networks (GAN), named DAGD,
to solve this domain bias problem, which can learn the
distribution of the features of source domain images and apply
to target domain images. Besides, our framework exploits a
novel GAN-loss to try to keep the original target image labels
unchanged. The DAGD is mainly composed of two models.
One is an unsupervised generative adversarial model which
we called UDAGAN, and the other is a classification model
pre-trained with source images. UDAGAN is responsible for
transforming the target domain images into source-like images.
We employed a generator in UDAGAN to synthesize a source-
like target domain image that has the same distribution with
source domain images and keep the original label unchanged.
And the classification model is only used to classify the
source-like fundus image glaucomatous or not. The main
contributions of this paper are summarized as follows:

• We propose a novel domain adaptation method (DAGD)
with an unsupervised generative adversarial network
(UDAGAN) which is effective and suitable for glaucoma

diagnosis on fundus images in unsupervised domain
adaptation.

• We design a new reconstruction loss function that can
not only learn the characteristics of the source domain
but also keep the original label unchanged, in glaucoma
diagnosis of fundus images.

• To our knowledge, our work firstly provides an attempt to
perform domain adaptation on fundus images. Results on
multiple medical image datasets show that our attempts
are effective.

II. RELATED WORK

A. Domain Adaptation

There has been a wide range of previous work on domain
transfer learning, e.g. [15]. Recent work focuses on transfer-
ring deep convolutional neural networks representations from
labeled source domain dataset to target domain, in which
labeled data is scarce or non-existent. For unlabeled target
domain images, the main algorithm is to guide feature learning
by minimizing the difference of data distributions between
source and target domain [9], [10], [12], [14].

To achieve this goal, several methods have used the Max-
imum Mean Discrepancy (MMD) [15] loss. MMD calculates
the norm of the difference between the means of source
domain and target domain. In addition to the common classi-
fication loss of the source, the DDC method [6] uses MMD to
learn a representation that is both domain and discriminative
invariant. Deep Adaptation Network (DAN) [7] applies MMD
to the layers embedded in the regenerative kernel Hilbert
space, effectively matching the higher-order statistics of two
distributions. On the contrary, depth correlated alignment
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Fig. 3. The overview of the proposed framework DAGD and the inner model mainly consisting of two parallel parts. (1) In the training phase, Part 1 is the
classification model training along with the source domain images. Part 2 is the UDAGAN model, which learns the source domain images style features and
transforms target domain images to source-like images while keeping optic disc, optic cup and label unchanged. (2) In the test phase, we use a classification
model to predict the label of input images. Note: our classification model is trained only using source images and labels. The part 2 UDAGAN does not need
the classification model or any labels of source images and target images.

(CORAL) method [9] is proposed to match the mean and
covariance of two distributions.

Other methods have chosen an adversarial loss to minimize
domain shift, learning a representation that can distinguish
between source labels but not domains. [12] proposes increas-
ing a domain classifier (a fully connected layer) that predicts
the binary domain label of the inputs and designs a domain
confusion loss to encourage its prediction to be closer to a
uniform distribution over binary labels. The gradient reversal
algorithm (ReverseGrad) [14] proposes to treat domain invari-
ance as a binary classification issue, but maximizes the loss
of the domain classifier by reversing its gradients directly.
However, these methods tend to focus on the problem of
domain adaptation between two different data distributions,
regardless of how much the original images will change.
This is a serious problem for medical images, and important
diagnostic evidence for medical images may be lost.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [11], [16] have
been the most promising method for image generation [17]–
[19], data augmentation [20] and domain adaptation [21], [22].
GANs are deep learning methods comprised of two networks.
One is called generator and the other is called discriminator.
During the training phase, the generator tries to synthesize
realistic images while the discriminator tries to distinguish the
generated from real data.

With the gratitude to GANs, image-level adaptation methods
have been developed to domain shift at the input stage of
DCNNs. Some methods first train a classification model on the
source domain, and then transform the target domain image
into source-like ones so that it can be tested using the pre-
trained source-task model [23]–[25]. Instead, other methods
try to transfer the source domain images into the appearance
of target images [26]–[28]. Then the transformed target-like
images with source label are used to train a target-task model
which could perform well in the target domain. This has also

been used in medical fundus image analysis [29]. With the
amazing success of unpaired image-to-image transformation,
e.g. CycleGAN [30], many previous image adaptation works
are based on modified CycleGAN with applications in both
domain datasets [23], [27].

At the same time, the feature-level adaptive methods have
also been studied to reduce the domain offset by extracting
domain invariant features in DCNNs. Pioneer works attempt
to minimize the distance between domain statistics, such
as the layer activation correlation [9] and maximum mean
distance [31]. Later, the representative methods of DANN [32]
and ADDA [22] achieve advanced feature adaptation through
adversarial learning and discriminators to distinguish feature
spaces across domains. The image and feature adaptations ad-
dress domain shift from different perspectives to the DCNNs,
which are in fact complementary to each other. Combining
these two adaptive strategies to achieve a stronger domain
adaption technique has made successful progress, e.g. [33].

Considering the homogeneous domain shift in fundus im-
ages, in addition to learning the data distribution of the source
domain, we should keep the label of the original target domain
images unchanged. To tackle this challenging adaptation for
the diagnosis task, we propose to exploit a novel architecture
and a reconstruction loss to constrain the changes during
training.

III. DAGD
In this section, we introduce the unified framework DAGD

and discuss our optimization method in detail. An overview of
our framework is shown in Fig. 3. Our framework is mainly
composed of two parallel parts. One is generative model
UDAGAN (Part 2 in Fig. 3) and the other is the classification
network (Part 1 in Fig. 3). The UDAGAN learns the source
domain style features and transforms target domain images
to source-like images with original image labels unchanged.
The classification model is trained along with the source
domain dataset. In DAGD, we assume that we have access
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Fig. 4. The overview of UDAGAN. The generator encoders architecture and decoder architecture are the same as pix2pix. Encoders and decoder use modules
of the form convolution-BatchNorm-ReLu.

to source images Xs drawn from a source domain distribution
ps(x), as well as target images Xt drawn from target domain
distribution pt(x). Our goal is to learn a mapping function
F which can transform target domain images to source-like
images and assure the main information steady for diagnosis
as well as keep target images label unchanged without any
supervised information. With this approach, we can directly
use the source-task classification model to predict the labels
of target domain images without fine-tuning the model.

A. UDAGAN for Domain Adaptation

An overview of our proposed UDAGAN architecture is
shown in Fig. 4. The generator is mainly composed of two
encoders and a decoder. The target encoder is responsible
for learning latent features from target domain images, and
the source encoder aims to extract style representations from
source domain images. To combine the latent feature of
target images with style representations extracted from source
images, we adopt the Adaptative Instance Normalization
method [34] and residual block used in [35]. We connect an
AdaIn block after every two residual blocks. Finally, a decoder
is responsible for generating realistic source-like images with
representations from the last AdaIn block. According to the
operation of AdaIN [34], we define our AdaIN block as
follows:

AdaIN(xt, xs) = σ(xs)(
xt − µ(xt)
σ(xt)

) + µ(xs) (1)

where xt, xs denotes the image sampled from target domain
and source domain. µ(·) and σ(·) denote mean and variance
across spatial dimensions. Our generator can not only learn
the context features of target samples but also extract the style
information of source samples through AdaIN blocks.

For the discriminator, we use 70 x 70 PatchGANs [35]–
[37] which aims to classify whether 70 x 70 overlapping
image patches are from source domain or target domain. Such

a patch-level discriminator architecture has fewer parameters
than a full-image discriminator and can work on arbitrarily-
size images in a fully convolutional fashion [35].

B. Model Losses

Like regular CGANs [38], the DAGD model emulates a
competition, where the generator attempts to produce realistic
source-like images, while the discriminator classifies between
images from the source domain or the target domain. The
main goal of the UDAGAN model is to maximize the miss-
classification error of discriminator while the generator pro-
duces more realistic source-like images trying to fool the
discriminator. This competition is also called a two-player
minimax game and it can be described as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(2)

where Ex∼pdata(x) is the expectation over the real data
and Ez∼pz(z) is the expectation over the data produced by
generator. D(x) represents the probability that x came from
the real data rather than the data synthesized by the gener-
ator and G(z) represents the probability of z produced by
the generator. Therefore, the system is trained to minimize
log(1−D(G(z))) and maximize log(D(x)).

However, the standard adversarial loss can not guarantee
the target domain images label unchanged and keep diagnosis
information steady. So we introduce a reconstruction loss to
deal with this issue. And the final loss is defined as follows:

min
G

max
D
Ladv(G,D) + γLrec(G) (3)

where Ladv indicates the adversarial loss and we choose
WGAN-GP loss [39] instead of traditional adversarial loss in
Eq. (2), which we find useful to increase training stability. Lrec

is a reconstruction loss and γ is a hyperparameter to balance
the WGAN-GP loss [39] and the reconstruction loss.



a) Overview of WGAN-GP Loss: WGAN-GP [39] is
proposed for overcoming the disadvantages of WGAN [40].
In the actual experimental process of WGAN, there are still
problems with difficult training and slow convergence. So
Gulrajani et al. [39] propose a solution, which is called the
gradient penalty. Adding a gradient penalty term makes the
weight in the middle of the original data and the generated
data as small as possible, which is equivalent to converting
the fixed threshold of WGAN into a variable threshold. This
method makes the training of GANs more stable.

b) Reconstruction Loss: We want to ensure that our
method does not change the target domain images label and
the information for the diagnosis, which will lead to the loss
of some medical characteristics. So we add a reconstruction
loss to make a constraint. The reconstruction loss is defined
as follows:

Lrec = ‖G(xt, xs)− xt‖2 (4)

where G(xt, xs) means the source-like image produced by
generator, and xt is the original target domain image. The
loss function we choose is the Mean Squared Error.

IV. EXPERIMENTS

In this section we describe experimental details of fundus
images domain adaptation. We evaluate our method using four
different public and private fundus datasets and we report the
experiment results of each dataset. Furthermore, we use t-
SNE [41] to visualize and analyze the distribution of source
images, original images and source-like images generated by
UDAGAN.

A. Datasets

The experiments are conducted on four datasets: Drishti-GS
dataset [42], REFUGE challenge dataset1, PrivateDataset1 and
PrivateDataset2. All these datasets are described in detail in
Table I.

TABLE I
DATASETS USED TO TRAIN AND TEST IN OUR DAGD METHOD

Dataset Glaucoma Non-glaucoma Total
train test train test train test

Drishti-GS 32 38 18 13 50 51
REFUGE 40 40 360 360 400 400

PrivateDataset1 31 32 269 68 300 100
PrivateDataset2 958 131 7285 899 8243 1030

• Drishti-GS: The Drishti-GS [42] contains 101 images
(training and test set). We use training set to train our
UDAGAN and leverage test set to evaluate our method.
The training set of Drishti-GS contains 32 glaucoma-
tous images and 18 non-glaucoma images. The test set
contains 38 glaucomatous images and 13 non-glaucoma
images.

• REFUGE challenge: The REFUGE challenge dataset
is composed of 1200 images(training, validate and test

1https://refuge.grand-challenge.org/Home/

(a) Target (b) Synthesized (c) Source

Fig. 5. Target image, synthesized source-like image, and source image. (a)
is sampled from Drishti-GS dataset. (b) is the synthesized image combining
Drishti-GS features with style features of PrivateDataset2. (c) is sampled from
PrivateDataset2 dataset.

set). We choose the training set and validation set from
REFUGE challenge. Both of the training and validation
set are composed of 40 glaucomatous and 360 non-
glaucoma images.

• PrivateDataset1: The PrivateDataset1 contains 400 fun-
dus images in total. We divide 300 images of the dataset
into a training set and the others into a test set. The train-
ing set contains 31 glaucomatous images and 269 non-
glaucoma images. The test set contains 32 glaucomatous
images and 68 non-glaucoma images.

• PrivateDataset2: PrivateDataset2 includes 9273 images,
we split 8243 images into training set and 1030 images
into test set. The images of the training set are not only
used as source domain data to train UDAGAN model,
but also used to train our classification networks.

B. Experiment Setup and Implementation

a) Classification Model: Our classification model is
trained along with PrivateDataset2. The classification model
architecture we use is ResNet-50 [43], which has been proved
to be an effective architecture in the classification of glaucoma
images [44]. In the procedure of data pre-processing, we
resize PrivateDataset2 images to 512x512 pixel and flip the
images horizontally with a probability of 0.5. And in the
training phase, due to the imbalance of the proportion of
positive and negative samples, we set a weighted random
sampler to constrain the sampling process. The weight of the
non-glaucoma fundus images is set to 1, and the weight of
glaucomatous fundus images is set to 9. The optimization we
use is the Adam solver [45] with β1 = 0.5 and β2 = 0.999 and
batch size is 48. The network is trained with a fixed learning
rate of 0.0001.

b) UDAGAN: Our generative model UDAGAN is com-
posed of a generator and a discriminator. The generator
encoders architecture and decoder architecture are the same as
pix2pix [35]. In the intermediate stage, however, we add three
AdaIn blocks [34] and connect an AdaIn block after every two
residual blocks, so that the entire network can not only retain
the information of the original target domain images but also
learn the style of source domain images. For the discriminator,
we used 70 x 70 PatchGANs [35]–[37], which has been proved
to be an effective architecture in the field of image-to-image
translation.



(a) Drishti-GS → PrivateDataset2 (b) REFUGE → PrivateDataset2 (c) PrivateDataset1 → PrivateDataset2

Fig. 6. Target images, synthesized source-like images, and source images.(a) The adaptation from Drishti-GS to PrivateDataset2, (b) the adaptation from
REFUGE to PrivateDataset2 and (c) the adaptation from PrivateDataset1 to PrivateDataset2.

(a) Drishti-GS (b) REFUGE (c) PrivateDataset1

Fig. 7. t-SNE plots of the data distribution before and after domain adaptation in three datasets. (a) is Drishti-GS data distribution and (b) indicates REFUGE
data. (c)is the PrivateDataset1. Green triangle indicates the original data distribution before domain adaptation and red square indicates the synthesized data
distribution after domain adaptation. The blue dot denotes the PrivateDataset2 data distribution.

In all the experiments, we set γ = 2 in Eq. (3). We use
the Adam solver [45] with β1 = 0.5 and β2 = 0.999. For
data augmentation, we flip the images horizontally with a
probability of 0.5 and resize the images to 512 x 512 pixel. The
batch size is set to 4 for all experiments. We train our model
with a fixed learning rate of 0.0001 until 1000 epochs and
linearly decay up to 3000 epochs. We also use weight decay
at a rate of 0.0001. The weight is initialized from a zero-
centered non-glaucoma distribution with a standard deviation
of 0.02.

For the adaptation from Drishti-GS to PrivateDataset2, due
to the proportion of glaucomatous and non-glaucoma samples
in Drishti-GS is closed to 2 : 1, we choose the weight random
sampler to set the weight of 1 for the glaucoma samples
and 2 for non-glaucoma samples. For the adaptation from
REFUGE to PrivateDataset2, the proportion of positive and
negative samples in REFUGE is closed to 1 : 9, so we set
different weights between glaucoma images and non-glaucoma
images, glaucoma sample weight is set to 9 and non-glaucoma

is set to 1. The proportion of glaucoma and non-glaucoma in
PrivateDataset1 is closed to 1 : 16, so the glaucoma sample
weight is set to 16 and non-glaucoma is set to 1.

C. Experimental Results

We experimentally validate our proposed method in an
unsupervised domain adaptation task on three medical fun-
dus datasets, Drishti-GS, REFUGE and PrivateDataset1. The
PrivateDataset2 is used to train the classification networks and
as the source domain to train UDAGAN. Images sampled from
each dataset and the synthesized source-like target images are
visualized in Fig. 5 and Fig. 6.

a) Visualization: From Fig. 6(a), the difference between
the Drishti-GS and PrivateDataset2 is obvious and it is mainly
reflected in the position of the optic disc and optic cup.
Comparing the synthesized source-like images with original
images (details are shown in Fig. 5), the optic disc and cup
do not change a lot. The main changes are concentrated
in the background which is not the determining factor for
classification. And from Fig. 7 (a), we can find out the data



TABLE II
ACCURACY(%), SENSITIVITY(%) AND SPECIFICITY(%) VALUES ON THE THREE DATASETS. THE RESNET-SOURCE ONLY COLUMN REPRESENTS TARGET

IMAGES PREDICTION RESULTS ON THE PRE-TRAINED SOURCE-TASK MODEL

Dataset Assessment ResNet-Source only DAGD

Drishti-GS → PrivateDataset2
Accuracy 56.25 89.58
Sensitivity 63.64 75.00
Specificity 54.05 94.44

REFUGE → PrivateDataset2
Accuracy 88.75 89.75
Sensitivity 70.00 72.50
Specificity 90.83 91.66

PrivateDataset1 → PrivateDataset2
Accuracy 79.00 82.00
Sensitivity 78.13 81.25
Specificity 79.41 82.35

distribution of original Drishti-GS images (green triangle) has
been transformed to a different distribution area (red square)
which is closed to source domain data distribution (blue dot).
For the adaptation from REFUGE to PrivateDataset2, the most
obvious difference is the style of the fundus images. After
the domain adaptation, the style of REFUGE is similar to
the source domain and the data distribution has also changed
greatly (shown in Fig. 7 (b)) and become closer to the source
domain. For PrivateDataset1, image-level features change very
little, but the distribution (shown in Fig. 7 (c)) also shows that
our method can transform the target domain into a source-like
domain without much modification to the original images.

b) Quantitative Evaluation: To quantify our generated
source-like images and the ability to capture the internal
statistics of the source images, we use Accuracy of diagnosis,
Sensitivity and Specificity value as the evaluation criteria
system. The sensitivity and specificity value are important
evaluation index in glaucoma diagnosis tasks based on fundus
images. The sensitivity indicates the proportion of patients
who are actually diagnosed and correctly diagnosed. The
specificity indicates the proportion of patients who are actually
disease-free and diagnosed as disease-free.

The experimental result is shown in Table II. For Drishti-GS
to PrivateDataset2, the accuracy rate, the sensitivity and speci-
ficity value are greatly improved. Using the DAGD method,
the accuracy rate increases from 56.25% to 89.58%, and
sensitivity increases from 63.64% to 75.0%. The specificity
has also been greatly improved from 54.05% to 94.44%.
Compared with the other two datasets, the Drishti-GS dataset
is significantly different from PrivateDataset2, but our model
performs well and successfully transforms the target domain
to the source domain. For the REFUGE dataset, the brightness
of images is higher than PrivateDataset2, but we still improve
the accuracy, sensitivity and specificity value. The accuracy
improves from 88.75% to 89.75%, sensitivity increases from
70.0% to 72.5%, and specificity enhances from 90.83% to
91.66%. For the PrivateDataset1, we increase the accuracy
and sensitivity from 79.00% to 82.00% and from 78.13%
to 81.25% respectively. The specificity is improved from
79.41% to 82.35%. In three datasets, although the data has
a homogeneous domain shift caused by different devices and
collection rules, our method still achieves good results.

V. CONCLUSION

In this paper, we proposed DAGD, a GAN-based domain
adaptation method for glaucoma diagnosis. The framework
includes a UDAGAN model, which can learn the latent feature
from target domain images and extract style feature from the
source domain, and a classification model, which is trained
based on ResNet-50. In addition, we adopt a reconstruction
loss, which not only reduces model complexity and model
parameters but also keeps the optic disc and label unchanged.
The experiment results show that our method performs very
well in the domain adaptation task of glaucoma diagnosis. Fu-
ture work will focus on advancing GANs such as pix2pixHD
for high-resolution fundus image synthesis and further at-
tempts to generate source-like images without changing many
pixel-level features.
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